Math 551: Applied PDE and Complex Vars

Problem Set 1

Assigned Weds Aug 30

Due Fri Sep 8

Linear Algebra Review

-1. <u>Homework policy</u>: Homework is to be submitted via <u>www.gradescope.com</u> or using the Gradescope tool from the Math 551 Sakai webpage.

Please SHOW ALL WORK leading up to your solutions – intermediate steps are important (and will get you partial credit)!

Unexcused late homeworks will not be accepted. Any extensions or excuses must be requested before the due date.

<u>Office hours</u>: We will vote (web poll) for times for regular office hours. You can always email me at any time with your questions or to request to schedule a time to meet with me.

- 0. Reading : Haberman, Appendix to Section 5.5 (pp. 178–183).
- 1. The eigen-expansion method for solving systems of linear equations

Consider the matrix equation $\mathbf{L}\mathbf{u} = \mathbf{b}$:

$$\begin{pmatrix} 6 & 2 & -8\\ 18 & -19 & 36\\ 4 & -7 & 18 \end{pmatrix} \mathbf{u} = \begin{pmatrix} 32\\ 1\\ -17 \end{pmatrix}.$$

- (a) You are given that two eigenvalues for $\mathbf{L}\boldsymbol{\phi} = \lambda\boldsymbol{\phi}$ are $\lambda_1 = -10, \lambda_2 = 5$. What is λ_3 ?
- (b) Find the eigenvectors $\{\phi_1, \phi_2, \phi_3\}$.¹ Scale them so that the last entry of each vector is equal to one.
- (c) Show that $\{\phi_1, \phi_2, \phi_3\}$ are not orthogonal, but they are linearly independent. Hint: To test for orthogonality, calculate the dot products $\phi_i \cdot \phi_j$. For linear independence, recall the definition: vectors are linearly independent if $c_1\phi_1 + c_2\phi_2 + c_3\phi_3 = \mathbf{0}$ only for $c_1 = c_2 = c_3 = 0$. This can be written as a matrix-vector equation, $\mathbf{\Phi c} = \mathbf{0}$, with the vectors being the columns of $\mathbf{\Phi}$. What does det $(\mathbf{\Phi})$ tell you about the uniqueness of the
- (d) Find the adjoint eigenvectors $\{\psi_1, \psi_2, \psi_3\}$. Scale them so that the last entry of each vector is equal to one.
- (e) Determine the expansion coefficients c_k and compute the solution $\mathbf{u} = \sum_k c_k \phi_k$ to confirm that this agrees with $\mathbf{u} = \mathbf{L}^{-1} \mathbf{b} = (3, -1, -2)^T$.
- 2. Linear algebra with a different inner $product^2$

solution?

- (a) Haberman page 183, Problem 5.5A.3.
- (b) Find the adjoint eigenvectors of **A** with respect to the regular dot product. Verify orthogonality by calculating the inner products $\phi_i \cdot \psi_j$.
- (c) Let $\mathbf{M} = \begin{pmatrix} \frac{1}{4} & 0\\ 0 & 1 \end{pmatrix}$. Show that the book's " $\mathbf{a} \cdot \mathbf{b}$ " dot product can be written as a "weighted inner product" defined by $\langle \mathbf{a}, \mathbf{b} \rangle \equiv \mathbf{a} \cdot \mathbf{M} \mathbf{b}$ (or $= a_1 b_1 \sigma_1 + a_2 b_2 \sigma_2$ with $\sigma_1 = m_{1,1}$ and $\sigma_2 = m_{2,2}$).
- (d) Find the positive diagonal matrix \mathbf{C} such that $\mathbf{M} = \mathbf{C}^2$. (continued)

¹About notation: I'm using (parentheses) for matrices and vectors, $\langle bra, ket \rangle$ for inner products and {curly braces} for sets of things.

²There will be many problems coming soon which will use weighted inner products.

- (e) Multiply the eigenvalue equation $\mathbf{A}\phi = \lambda\phi$ on the left by \mathbf{M} to get $\mathbf{M}\mathbf{A}\phi = \lambda\mathbf{M}\phi$. Then write $\mathbf{M} = \mathbf{C}^2$ and $\phi = \mathbf{C}^{-1}\mathbf{y}$ in this equation and re-arrange to give an eigenvalue/eigenvector equation for \mathbf{y} , $\mathbf{B}\mathbf{y} = \lambda\mathbf{y}$, where \mathbf{B} is a real symmetric matrix, $\mathbf{B} = \mathbf{B}^{\mathbf{T}}$. What is the matrix \mathbf{B} ? (please express it's general form in terms of \mathbf{A} , \mathbf{C} and also specific numbers for this problem)
- (f) Explain why the orthogonality relation for the \mathbf{y} 's is $\mathbf{y}_1 \cdot \mathbf{y}_2 = 0$ and use this to justify the orthogonality of the $\boldsymbol{\phi}$'s in the weighted inner product from part (c). Hint: Use $\mathbf{y} = \mathbf{C}\boldsymbol{\phi}$ in the dot product.

3. Linear algebra with complex-valued vectors³

For vectors whose entries are complex numbers $(\mathbf{x}, \mathbf{y} \in \mathbb{C}^n)$ the inner product is defined as $\langle \mathbf{x}, \mathbf{y} \rangle \equiv \mathbf{x}^T \bar{\mathbf{y}}$, where $\bar{\mathbf{y}}$ is the complex conjugate of vector \mathbf{y} , conjugated entry by entry in the vector.

The conjugate of a complex number, z = a + ib is defined as $\overline{z} = \overline{a + ib} = a - ib$ where $i^2 = -1$. Note that $\overline{z + w} = \overline{z} + \overline{w}$ and $\overline{zw} = \overline{z} \overline{w}$ for all complex numbers z, w.

- (a) Show that the "real inner product" $(\mathbf{x}^T \mathbf{y})$ does not satisfy the norm property for complex vectors. Hint: What is the value of $\mathbf{x}^T \mathbf{x}$ for the vector $\mathbf{x} = (1, i)^T$?
- (b) Let $\mathbf{x} = (a+ib, c+id)^T$, where a, b, c, d are real numbers. Show that the "complex inner product" is a norm, with $||\mathbf{x}||^2 = \langle \mathbf{x}, \mathbf{x} \rangle \ge 0$.
- (c) How is the value of the complex inner product $\langle \mathbf{x}, \mathbf{y} \rangle$ related to the value of $\langle \mathbf{y}, \mathbf{x} \rangle$?
- (d) If **A** is a matrix with complex-valued entries, what is the formula for the adjoint **A**^{*} satisfying $\langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{A}^*\mathbf{y} \rangle$ with respect to the complex inner product? How are the adjoint eigenvalues γ_k related to the λ_k of **A**?
- (e) Find $\{\lambda_k, \phi_k\}$ and $\{\gamma_k, \psi_k\}$ for $\mathbf{A} = \begin{pmatrix} i & -1 \\ 2 & i+2 \end{pmatrix}$ and show that $\phi_1 \perp \psi_2$ and $\phi_2 \perp \psi_1$.

(f) Haberman page 183, Problem 5.5A.6. Hint: For part (a) of this problem, consider the complex inner product of the matrix times an eigenvector against the same eigenvector, and consider what happens when you factor a constant out of the inner product (from the first vs. second factors) to end up showing that $(\lambda_k - \overline{\lambda}_k) = 0$. (This works for both complex-Hermitian matrices and real-symmetric matrices.)

4. Solution of initial value problems for matrix-vector ODE systems

Haberman page 183, Problem 5.5A.4, part (a).

³Complex inner products will be used near the end of the course when we do Fourier transforms.