Linear Algebra Review

-1. Homework policy: Homework is to be submitted via www.gradescope.com or using the Gradescope tool from the Math 551 Sakai webpage.
Please SHOW ALL WORK leading up to your solutions - intermediate steps are important (and will get you partial credit)!
Unexcused late homeworks will not be accepted. Any extensions or excuses must be requested before the due date.
Office hours: We will vote (web poll) for times for regular office hours. You can always email me at any time with your questions or to request to schedule a time to meet with me.
0. Reading: Haberman, Appendix to Section 5.5 (pp. 178-183).

1. The eigen-expansion method for solving systems of linear equations

Consider the matrix equation $\mathbf{L u}=\mathbf{b}$:

$$
\left(\begin{array}{rrr}
6 & 2 & -8 \\
18 & -19 & 36 \\
4 & -7 & 18
\end{array}\right) \mathbf{u}=\left(\begin{array}{r}
32 \\
1 \\
-17
\end{array}\right) \text {. }
$$

(a) You are given that two eigenvalues for $\mathbf{L} \phi=\lambda \phi$ are $\lambda_{1}=-10, \lambda_{2}=5$. What is λ_{3} ?
(b) Find the eigenvectors $\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\} .{ }^{1}$ Scale them so that the last entry of each vector is equal to one.
(c) Show that $\left\{\boldsymbol{\phi}_{1}, \phi_{2}, \phi_{3}\right\}$ are not orthogonal, but they are linearly independent.

Hint: To test for orthogonality, calculate the dot products $\phi_{i} \cdot \phi_{j}$.
For linear independence, recall the definition: vectors are linearly independent if $c_{1} \phi_{1}+c_{2} \phi_{2}+$ $c_{3} \boldsymbol{\phi}_{3}=\mathbf{0}$ only for $c_{1}=c_{2}=c_{3}=0$. This can be written as a matrix-vector equation, $\mathbf{\Phi c}=\mathbf{0}$, with the vectors being the columns of $\boldsymbol{\Phi}$. What $\operatorname{does} \operatorname{det}(\boldsymbol{\Phi})$ tell you about the uniqueness of the solution?
(d) Find the adjoint eigenvectors $\left\{\boldsymbol{\psi}_{1}, \boldsymbol{\psi}_{2}, \boldsymbol{\psi}_{3}\right\}$. Scale them so that the last entry of each vector is equal to one.
(e) Determine the expansion coefficients c_{k} and compute the solution $\mathbf{u}=\sum_{k} c_{k} \phi_{k}$ to confirm that this agrees with $\mathbf{u}=\mathbf{L}^{-1} \mathbf{b}=(3,-1,-2)^{T}$.
2. Linear algebra with a different inner product ${ }^{2}$
(a) Haberman page 183, Problem 5.5A.3.
(b) Find the adjoint eigenvectors of \mathbf{A} with respect to the regular dot product.

Verify orthogonality by calculating the inner products $\phi_{i} \cdot \boldsymbol{\psi}_{j}$.
(c) Let $\mathbf{M}=\left(\begin{array}{ll}\frac{1}{4} & 0 \\ 0 & 1\end{array}\right)$. Show that the book's "a $\cdot \mathbf{b}$ " dot product can be written as a "weighted inner product" defined by $\langle\mathbf{a}, \mathbf{b}\rangle \equiv \mathbf{a} \cdot \mathbf{M b}$ (or $=a_{1} b_{1} \sigma_{1}+a_{2} b_{2} \sigma_{2}$ with $\sigma_{1}=m_{1,1}$ and $\sigma_{2}=m_{2,2}$).
(d) Find the positive diagonal matrix \mathbf{C} such that $\mathbf{M}=\mathbf{C}^{2}$.
(continued)

[^0](e) Multiply the eigenvalue equation $\mathbf{A} \phi=\lambda \phi$ on the left by \mathbf{M} to get $\mathbf{M A} \boldsymbol{\phi}=\lambda \mathbf{M} \phi$. Then write $\mathbf{M}=\mathbf{C}^{2}$ and $\boldsymbol{\phi}=\mathbf{C}^{-1} \mathbf{y}$ in this equation and re-arrange to give an eigenvalue/eigenvector equation for $\mathbf{y}, \mathbf{B y}=\lambda \mathbf{y}$, where \mathbf{B} is a real symmetric matrix, $\mathbf{B}=\mathbf{B}^{\mathbf{T}}$.
What is the matrix \mathbf{B} ? (please express it's general form in terms of \mathbf{A}, \mathbf{C} and also specific numbers for this problem)
(f) Explain why the orthogonality relation for the \mathbf{y} 's is $\mathbf{y}_{1} \cdot \mathbf{y}_{2}=0$ and use this to justify the orthogonality of the $\boldsymbol{\phi}$'s in the weighted inner product from part (c).
Hint: Use $\mathbf{y}=\mathbf{C} \boldsymbol{\phi}$ in the dot product.
3. Linear algebra with complex-valued vectors ${ }^{3}$

For vectors whose entries are complex numbers $\left(\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}\right)$ the inner product is defined as $\langle\mathbf{x}, \mathbf{y}\rangle \equiv \mathbf{x}^{T} \overline{\mathbf{y}}$, where $\overline{\mathbf{y}}$ is the complex conjugate of vector \mathbf{y}, conjugated entry by entry in the vector.
The conjugate of a complex number, $z=a+i b$ is defined as $\bar{z}=\overline{a+i b}=a-i b$ where $i^{2}=-1$. Note that $\overline{z+w}=\bar{z}+\bar{w}$ and $\overline{z w}=\bar{z} \bar{w}$ for all complex numbers z, w.
(a) Show that the "real inner product" ($\mathbf{x}^{T} \mathbf{y}$) does not satisfy the norm property for complex vectors. Hint: What is the value of $\mathbf{x}^{T} \mathbf{x}$ for the vector $\mathbf{x}=(1, i)^{T}$?
(b) Let $\mathbf{x}=(a+i b, c+i d)^{T}$, where a, b, c, d are real numbers. Show that the "complex inner product" is a norm, with $\|\mathbf{x}\|^{2}=\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$.
(c) How is the value of the complex inner product $\langle\mathbf{x}, \mathbf{y}\rangle$ related to the value of $\langle\mathbf{y}, \mathbf{x}\rangle$?
(d) If \mathbf{A} is a matrix with complex-valued entries, what is the formula for the adjoint \mathbf{A}^{*} satisfying $\langle\mathbf{A x}, \mathbf{y}\rangle=\left\langle\mathbf{x}, \mathbf{A}^{*} \mathbf{y}\right\rangle$ with respect to the complex inner product? How are the adjoint eigenvalues γ_{k} related to the λ_{k} of \mathbf{A} ?
(e) Find $\left\{\lambda_{k}, \boldsymbol{\phi}_{k}\right\}$ and $\left\{\gamma_{k}, \boldsymbol{\psi}_{k}\right\}$ for $\mathbf{A}=\left(\begin{array}{rr}i & -1 \\ 2 & i+2\end{array}\right)$ and show that $\boldsymbol{\phi}_{1} \perp \boldsymbol{\psi}_{2}$ and $\boldsymbol{\phi}_{2} \perp \boldsymbol{\psi}_{1}$.
(f) Haberman page 183, Problem 5.5A.6.

Hint: For part (a) of this problem, consider the complex inner product of the matrix times an eigenvector against the same eigenvector, and consider what happens when you factor a constant out of the inner product (from the first vs. second factors) to end up showing that $\left(\lambda_{k}-\bar{\lambda}_{k}\right)=0$. (This works for both complex-Hermitian matrices and real-symmetric matrices.)
4. Solution of initial value problems for matrix-vector ODE systems

Haberman page 183, Problem 5.5A.4, part (a).

[^1]
[^0]: ${ }^{1}$ About notation: I'm using (parentheses) for matrices and vectors, $\langle b r a, k e t\rangle$ for inner products and \{curly braces\} for sets of things.
 ${ }^{2}$ There will be many problems coming soon which will use weighted inner products.

[^1]: ${ }^{3}$ Complex inner products will be used near the end of the course when we do Fourier transforms.

