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Preface

Chapter 1 will explain what this book is about. Here I will explain why I chose to write the
book, how it is written, where and when the work was done, and who helped.

Why. It would make a good story if I was inspired to write this book by an image of Paul
Erdös magically appearing on a cheese quesadilla, which I later sold for thousands on dollars
on eBay. However, that is not true. The three main events that led to this book were (i) the
use of random graphs in the solution of a problem that was part of Nathanael Berestycki’s
thesis, (ii) a talk that I heard Steve Strogatz give on the CHKNS model, which inspired me
to prove some rigorous results about their model, and (iii) a book review I wrote on the
books by Watts and Barabási for the Notices of the American Math Society.

The subject of this book was attractive for me, since many of the papers were outside the
mathematics literature, so the rigorous proofs of the results were, in some cases, interesting
mathematical problems. In addition, since I had worked for a number of years on the proper-
ties of stochastic spatial models on regular lattices, there was the natural question of how did
the behavior of these systems change when one introduced long range connections between
individuals or considered power law degree distributions. Both of these modifications are
reasonable if one considers the spread of influenza in a town where children bring the disease
home from school, or the spread of sexually transmitted diseases through a population of
individuals that have a widely varying number of contacts.

How. The aim of this book is to introduce the reader to the subject in the same way that
a walk through Museé d’Orsay exposes the visitor to the many styles of impressionism. We
will choose results to highlight the major themes, but we will not examine in detail every
variation of preferential attachment that has been studied. We will concentrate on the ideas,
giving the interesting parts of proofs, and referring the reader to the literature for the missing
details. As Tom Liggett said after he had written his book on Interacting Particle Systems,
there is no point in having a book that is just a union of papers.

Throughout we approach the subject with a probabilistic viewpoint. One pragmatic
reason is that, in the absence of futuristic procedures like the one Tom Cruise’s character
had in The Minority Report, these are the only eyes through which I can view the world. For
connections to computer algorithms and their analysis, you will have to ask someone who
knows that story. In addition, we will emphasize topics not found in other mathematical
books. We have nothing to add to the treatment of random regular graphs in Janson, Luczak,
and Rucińsky (2000), so we will not spend much time on this special case of random graphs
with a fixed degree distribution. The classical theory of random graphs of Erdös and Rényi
is covered nicely by Bollobás’ (2001), so we keep our treatment to the minimum necessary
to prepare for more complicated examples.

Several reviewers lobbied for an introductory chapter devoted to some of the tools:
branching processes, large deviations, martingales, convergence of Markov chains, almost
exponentiality of waiting times, etc. Personally I do not think it is necessary (or even desir-
able) to read the entire Kama Sutra before having sex the first time, so instead I approach
the book as I do my Ph.D. students’ research projects. We will start looking at the subject
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and learn about the tools as they arise. Readers who find these interruptions distracting can
note the statement and skip the proof, advice that can be applied to most of the results in
the book.

When and where. The first version of these notes was written for a graduate seminar,
which I gave on the topic at Cornell in the Fall of 2004. On the Monday of the first full
week of the semester, as I sat at my desk in Malott Hall, my back began to hurt, and I
thought to myself that I had worked too hard on notes over the weekend. Two months, new
desk chairs, a variety of drugs, physical therapy, and a lot of pain later, an MRI showed my
problem was an infected disk. I still remember the radiologist’s exciting words: “We can’t
let you go home until we get in touch with your Doctor.” Four days in the hospital and four
months of sipping coffee every morning while an IV dripped antibiotics into my arm, the
bugs in me had been defeated, and I was back to almost normal. Reading papers on random
graphs, figuring out proofs, and organizing the material while lying on my bed helped me to
get through that ordeal.

In the summer of 2005, I revised the notes and added new material in preparation for six
lectures on this topic, which I gave at the first Cornell Probability summer school. Several
more iterations of polishing follows. When my brain told me that the manuscript was in
great shape, several paid reviewers showed me that there was still work to do. Finally, a
month in Paris at École Normale Supérieure in February 2006 provided a pleasant setting
for finishing the project. I would like to thank Jean Francois LeGall for the invitation to
visit Paris, radio station 92.1 FM for providing the background music while I typed in my
apartment, and the restaurants on and around Rue Mouffetard for giving me something to
look forward to at the end of the day.

Who. If I were Sue Grafton, the title of this book would be “G is for Random Graphs.”
Continuing in the tradition of the first six books, I will update the story of my family by
saying that my older son David is a freshman at Ithaca College studying journalism, while
Greg is a senior who has been accepted at MIT and will probably go there to study computer
science. With eight years of tuition, room and board, and books to pay for in the next five
years, I desperately need you to buy this book, or better yet put $50 in an envelope and
mail it to me.

In the last two decades of diapers, ear infections, special education meetings, clarinet
lessons, after school activities, weekend music events, summer internships, and driving tests,
my wife Susan Myron has been the one with the more difficult job. There are no words that
can adequately convey my happiness after 25 years of marriage, except that I am hoping for
many more.

I would like to thank Mark Newman for his good natured answers to several random
emails. Postdocs Paul Jung and Lea Popovic read several of the early chapters in detail and
made a number of useful suggestions. The anonymous reviewers who each read one or two
chapters helped illuminate the dark corners of the manuscript and contributed some useful
insights. Lauren Cowles did a wonderful job of managing the process, and the book is much
better for her efforts.

As usual, I look forward to your constructive criticisms and corrections by email to
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rtd1@cornell.edu and you can look for lists of typos, etc., on my web page:
www.math.cornell.edu/˜durrett

There you can find also copies of my recent papers, most of which concern probability
problems that arise from biology.
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Chapter 1

Overview

1.1 Introduction to the introduction

The theory of random graphs began in the late 1950s in several papers by Erdös and Rényi.
However, the introduction at the end of the 20th century of the small world model of Watts
and Strogatz (1998) and the preferential attachment model of Barabási and Albert (1999)
have led to an explosion of research. Querying the Science Citation Index in early July 2005
produced 1154 citations for Watts and Strogatz (1998) and 964 for Barabási and Albert
(1999). Survey articles of Albert and Barabási (2002), Dorogovstev and Mendes (2002), and
Newman (2003) each have hundreds of references. A book edited by Newman, Barabási,
and Watts (2006) contains some of the most important papers. Books by Watts (2003)
and Barabási (2002) give popular accounts of the new science of networks, which explains
“how everything is connected to everything else and what it means for science, business, and
everyday life.”1

While this literature is extensive, many of the papers are outside the mathematical liter-
ature, which makes writing this book a challenge and an opportunity. A number of articles
have appeared in Nature and Science. These journals with their impressive impact factors
are, at least in the case of random graphs, the home of 10 second sound bite science. An
example is the claim that “the Internet is robust yet fragile. 95% of the links can be removed
and the graph will stay connected. However, targeted removal of 2.3% of the hubs would
disconnect the Internet.”

These shocking statements grab headlines. Then long after the excitement has subsided,
less visible papers show that these results aren’t quite correct. When 95% of links are removed
the Internet is connected, but the fraction of nodes in the giant component is 5.9× 10−8, so
if all 6 billion people were connected initially then after the links are removed only 36 people
can check their email. The targeted removal result depends heavily on the fact that the
degree distribution was assumed to be exactly a power law for all values of k, which forces
pk ∼ 0.832k−3. However if the graph is generated by the preferential attachment model with

1This is the subtitle of Barabási’s book.
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4 CHAPTER 1. OVERVIEW

m = 2 then pk ∼ 12k−3 and one must remove 33% of the hubs. See Section 4.7 for more
details.

Many of the papers we cover were published in Physical Review E. In these we encounter
the usual tension when mathematicians and physicists work on the same problems. Feynman
once said “if all of mathematics disappeared it would set physics back one week.” In the other
direction, mathematicians complain when physicists leap over technicalities, such as throwing
away terms they don’t like in differential equations. They compute critical values for random
graphs by asserting that cluster growth is a branching process and then calculating when the
mean number of children is > 1. Mathematicians worry about justifying such approximations
and spend a lot of effort coping with paranoid delusions, e.g., in section 4.2 that a sequence
of numbers all of which lie between 1 and 2 might not converge.

Mathematicians cherish the rare moments where physicists’ leaps of faith get them into
trouble. In the current setting physicists use the branching process picture of cluster growth
when the cluster is of order n (and the approximation is not valid) to compute the average
distance between points on the giant component of the random graph. As we will see, the
correct way to estimate the distance from x to y is to grow the clusters until they have
size C

√
n and argue that they will intersect with high probability. In most cases, the two

viewpoints give the same answer, but in the case of some power law graphs, the physicists’
argument misses a power of 2, see Section 4.5.

While it is fun to point out physicists’ errors, it is much more satisfying when we discover
something that they don’t know. Barbour and Reinert (2001) have shown for the small
world and van der Hofstad, Hooghiemestra, and Znamenski (2005a) have proved for models
with a fixed degree distribution, see Theorems 5.2.1 and 3.4.1, that the fluctuations in the
distance between two randomly chosen points are O(1), a result that was not anticipated
by simulation. We have been able to compute the critical value of the Ising model on the
small world exactly, see Section 5.4, confirming the value physicists found by simulation. A
third example is the Kosterlitz-Thouless transition in the CHKNS model. The five authors
who introduced this model (only one of whom is a physicist) found the phenomenon by
numerically solving a differential equation. Physicists Dorogovstev, Mendes, and Samukhin
(2001) demonstrated this by a detailed and semi-rigorous analysis of a generating function.
However, the rigorous proof of Bollobás, Janson, and Riordan (2004), which is not difficult
and given in full in Section 7.4, helps explain why this is true.

Despite remarks in the last few paragraph, our goal is not to lift ourselves up by putting
other people down. As Mark Newman said in an email to me “I think there’s room in the
world for people who have good ideas but don’t have the rigor to pursue them properly –
makes more for mathematicians to do.” The purpose of this book is to give an exposition
of results in this area and to provide proofs for some facts that had been previously demon-
strated by heuristics and simulation, as well as to establish some new results. This task is
interesting since it involves a wide variety of mathematics: random walks, large deviations,
branching processes, branching random walks, martingales, urn schemes, and the modern
theory of Markov chains which emphasizes quantitative estimates of convergence rates.

Much of this book concentrates on geometric properties of the random graphs: primarily
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emergence of a giant component and its small diameter. However, our main interest here
is in processes taking place on these graphs, which is one of the two meanings of our title,
Random Graph Dynamics. The other meaning is that we will be interested in graphs such
as the preferential attachment model and the CHKNS model described in the final section
that are grown dynamically rather than statically defined.
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1.2 Erdös, Rényi, Molloy, and Reed

In the late 1950’s Erdös and Rényi introduced two random graph models. In each there are n
vertices. In the first and less commonly used version, one picks m of the n(n− 1)/2 possible
edges between these vertices at random. Investigation of the properties of this model tells us
what a “typical” graph with n vertices and m edges looks like. However, there is a small and
annoying amount of dependence caused by picking a fixed number of edges, so here we will
follow the more common approach of studying the version in which each of the n(n − 1)/2
possible edges between these vertices are independently present with probability p. When
p = 2m/n(n− 1), the second model is closely related to the first.

Erdös and Rényi discovered that there was a sharp threshold for the appearance of many
properties. One of the first properties that was studied, and that will be the focus of much
or our attention here, is the emergence of a giant component.

• If p = c/n and c < 1 then, when n is large, most of the connected components of the
graph are small, with the largest having only O(log n) vertices, where the O symbol
means that there is a constant C < ∞ so that the probability the largest component
is ≤ C log n tends to 1 as n→∞.

• In contrast if c > 1 there is a constant θ(c) > 0 so that for large n the largest
component has ∼ θ(c)n vertices and the second largest component is O(log n). Here
Xn ∼ bn means that Xn/bn converges to 1 in probability as n→∞.

Chapter 2 is devoted to a study of this transition and properties of Erdös-Rényi random
graphs below, above, and near the critical value p = 1/n. Much of this material is well known
and can be found in considerably more detail in Bollobás’ (2001) book, but the approach here
is more probabilistic than combinatorial, and in any case an understanding of this material
is important for tackling the more complicated graphs, we will consider later.

In the theory of random graphs, most of the answers can be guessed using the heuristic
that the growth of the cluster is like that of a branching process. In Physical Review E,
these arguments are enough to establish the result. To explain the branching process ap-
proximation for Erdös-Rényi random graphs, suppose we start with a vertex, say 1. It will
be connected to a Binomial(n − 1, c/n) number of neighbors, which converges to a Poisson
distribution with mean c as n → ∞. We consider the neighbors of 1 to be its children, the
neighbors of its neighbors to be its grandchildren, etc. If we let Zk be the number of vertices
at distance k, then for small k, Zk behaves like a branching process in which each individual
has an independent and mean c number of children.

There are three sources of error. (i) If we have already exposed Z0 + · · ·+Zk = m vertices
then the members of the kth generation have only n −m new possibilities for connections.
(ii) Two or more members of the kth generation can have the same child. (iii) Members
of the branching process that have no counterpart in the growing cluster can have children.
In Section 2.2 we will show that when m = o(

√
n), i.e., m/

√
n → 0, the growing cluster is
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equal to the branching process with high probability, and when m = O(n1−ε) with ε > 0 the
errors are of a smaller order than the size of the cluster.

When c < 1 the expected number of children in generation k is ck which converges to
0 exponentially fast and the largest of the components containing the n vertices will be
O(log n). When c > 1 there is a probability θ(c) > 0 that the branching process does not
die out. To construct the giant component, we argue that with probability 1 − o(n−1) two
clusters that grow to size n1/2+ε will intersect. The result about the second largest component
comes from the fact with probability 1− o(n−1) a cluster that reaches size C log n will grow
to size n1/2+ε. An error term that is o(n−1) guarantees that with high probability all clusters
will do what we expect.

When c > 1 clusters that don’t die out grow like ck (at least as long as the branching
process approximation is valid). Ignoring the parenthetical phrase we can set ck = n and
solve to conclude that the giant component has “diameter” k = log n/(log c). For a concrete
example suppose n = 6 billion people on the planet and the mean number of neighbors
c = np = 42.62. In this case, log n/(log c) = 6, or we have six degrees of separation between
two randomly chosen individuals. We have placed diameter in quotation marks since it
is commonly used in the physics literature for the distance between two randomly chosen
points on the giant component. On the Erdös-Renyi random graphs the mathematically
defined diameter is ≥ C log n with C > 1/ log c, but exact asymptotics are not known, see
the discussion after Theorem 2.4.2.

The first four sections of Chapter 2 are the most important for later developments. The
next four can be skipped by readers eager to get to recent developments. In Section 2.5,
we prove a central limit theorem for the size of the giant component. In Section 2.6, which
introduces the combinatorial viewpoint, we show that away from the critical value, i.e.,
for p = c/n with c 6= 1, most components are trees with sizes given by the Borel-Tanner
distribution. A few components, O(1), have one cycle, and only the giant component is more
complicated.

Section 2.7 is devoted to the critical regime p = 1/n+ θ/n4/3, where the largest compo-
nents are of order n2/3 and there can be components more complex than unicyclic. There
is a wealth of detailed information about the critical region. The classic paper by Janson,
Knuth, Luczak, and Pittel (1993) alone is 126 pages. Being a probabilist, we are content to
state David Aldous’ (1997) result which shows that in the limit as n → ∞ the growth of
large components is a multiplicative coalescent.

In Section 2.8 we investigate the threshold for connectivity, i.e., ALL vertices in ONE
component. As Theorem 2.8.1 shows and 2.8.3 makes more precise, the Erdös-Rényi random
graph becomes connected when isolated vertices disappear, so the threshold = (log n)/n +
O(1). The harder, upper bound, half of this result is used in Section 4.5 for studying the
diameter of random graphs with power law degree distributions.

In Chapter 3 we turn our attention to graphs with a fixed degree distribution that has
finite second moment. Bollobás (1980) proved results for the interesting special case of a
random r-regular graph, but Molloy and Reed (1995) were the first to construct graphs with
a general distribution of degrees. Here, we will use the approach of Newman, Strogatz, and
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Watts (2001, 2002) to define our model. Let d1, . . . dn be independent and have P (di = k) =
pk. Since we want di to be the degree of vertex i, we condition on En = {d1+· · ·+dn is even}.
To construct the graph now we imagine di half-edges attached to i, and then pair the half-
edges at random. The resulting graph may have self-loops and multiple edges between
points. The number is O(1) so this does not bother me, but if you want a nice clean graph,
you can condition on the event An that there are no loops or multiple edges, which has
limn→∞ P (An) > 0.

Again, interest focuses first on the existence of a giant component, and the answer can
be derived by thinking about a branching process, but the condition is not that the mean∑

k kpk > 1. If we start with a given vertex x then the number of neighbors (the first
generation in the branching process) has distribution pj. However, this is not true for the
second generation. A first generation vertex with degree k is k times as likely to be chosen as
one with degree 1, so the distribution of the number of children of a first generation vertex
is for k ≥ 1

qk−1 =
kpk

µ
where µ =

∑
k

kpk

The k− 1 on the left-hand side comes from the fact that we used up one edge connecting to
the vertex. Note that since we have assumed p has finite second moment, q has finite mean
ν =

∑
k k(k − 1)pk/µ.

q gives the distribution of the number of children in the second and all subsequent
generations so, as one might guess, the condition for the existence of a giant component
is ν > 1. The number of vertices in the kth generation grows like µνk−1, so using the
physicist’s heuristic, the average distance between two points on the giant component is
∼ log n/(log ν) = logν n. This result is true and there is a remarkable result of van der
Hofstad, Hooghiemstra, and Van Mieghem (2004), see Theorem 3.4.1, which shows that the
fluctuations around the mean are O(1). Let Hn be the distance between 1 and 2 in the
random graph on n vertices, and let H̄n = (Hn|Hn < ∞). The Dutch trio showed that
Hn − [logν n] is O(1), i.e., the sequence of distributions is tight in the sense of weak con-
vergence, and they proved a very precise result about the limiting behavior of this quantity.
As far as I can tell the fact that the fluctuations are O(1) was not guessed on the basis of
simulations.

Section 3.3 is devoted to an

Open problem. What is the size of the largest component when ν < 1?

The answer, O(log n), for Erdös-Renyi random graphs is not correct for graphs with a fixed
degree distribution. For an example, suppose pk ∼ Ck−γ with γ > 3 so that the variance is
finite. The degrees have P (di > k) ∼ Ck−(γ−1) (here and in what follows C is a constant
whose value is unimportant and may change from line to line). Setting P (di > k) = 1/n and
solving, we conclude that the largest of the n degrees is O(n1/(γ−1)). Trivially, the largest
component must be at least this large.

Conjecture. If pk ∼ Ck−γ with γ > 3 then the largest cluster is O(n1/(γ−1)).
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One significant problem in proving this is that in the second and subsequent generations the
number of children has distribution qk ∼ Ck−(γ−2). One might think that this would make
the largest of the n degrees O(n1/(γ−2)), but this is false. The size biased distribution q can
only enhance the probability of degrees that are present in the graph, and the largest degree
present is O(n1/(γ−1)).

In support of the conjecture in the previous paragraph we will now describe a result of
Chung and Lu (2002), who have introduced a variant of the Molloy and Reed model that is
easier to study. Their model is specified by a collection of weights w1, . . . , wn that represent
the expected degree sequence. The probability of an edge between i and j is wiwj/

∑
k wk.

They allow loops from i to i so that the expected degree at i is∑
j

wiwj∑
k wk

= wi

Of course, for this to make sense we need (maxiwi)
2 <

∑
k wk.

Let d = (1/n)
∑

k wk be the average degree. As in the Molloy and Reed model, when we
move to neighbors of a fixed vertex, vertices are chosen proportional to their weights, i.e., i
is chosen with probability wi/

∑
k wk. Thus the relevant quantity for connectedness of the

graph is the second order average degree d̄ =
∑

iw
2
i /
∑

k wk.

Theorem 3.3.2. Let vol(S) =
∑

i∈S wi. If d̄ < 1 then all components have volume at most
A
√
n with probability at least

1− dd̄2

A2(1− d̄)

Note that when γ > 3, 1/(γ − 1) < 1/2 so this is consistent with the conjecture.
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1.3 Six degrees, small worlds

As Duncan Watts explains in his (2003) book Six Degrees, the inspiration for his thesis came
from his father’s remark that he was only six handshakes away from the president of the
United States. This remark is a reference to “six degrees of separation,” a phrase that you
probably recognize, but what does it mean? There are a number of answers.

Answer 1. The most recent comes from the “Kevin Bacon game” that concerns the film
actors graph. Two actors are connected by an edge if they appeared in the same movie. The
objective is to link one actor to another by a path of the least distance. As three college
students who were scheming to get on Jon Stewart’s radio talk show observed, this could
often be done efficiently by using Kevin Bacon as an intermediate.

This strategy leads to the concept of a Bacon number, i.e., the shortest path connecting
the actor to Kevin Bacon. For example, Woody Allen has a Bacon number of 2 since he
was in Sweet and Lowdown with Sean Penn, and Sean Penn was in Mystic River with Kevin
Bacon. The distribution of Bacon numbers given in the next table shows that most actors
have a small Bacon number, with a median value of 3:

0 1 2 3 4 5 6 7 8
1 1673 130,851 349,031 84,615 6,718 788 107 11

The average distance from Kevin Bacon for all actors is 2.94, which says that two randomly
chosen actors can be linked by a path through Kevin Bacon in an average of 6 steps. Albert
Barabási, who will play a prominent role in the next section, and his collaborators, computed
the average distance from each person to all of the others in the film actors graph. They
found that Rod Steiger with an average distance of 2.53 was the best choice of intermediate.
It took them a long time to find Kevin Bacon on their list, since he was in 876th place.

Erdös numbers. The collaboration graph of mathematics, in which two individuals are
connected by an edge if they have coauthored a paper, is also a small world. The Kevin
Bacon of mathematics is Paul Erdös, who wrote more than 1500 papers with more than 500
co-authors. Jerrold Grossman (2000) used 60 years of data from MathSciNet to construct a
mathematical collaboration graph with 337,454 vertices (authors) and 496,489 edges. There
were 84,115 isolated vertices. Discarding these gives a graph with average degree 3.92,
and a giant component with 208,200 vertices with the remaining 45,139 vertices in 16,883
components. The average Erdös number is 4.7 with the largest known finite Erdös number
within mathematics being 15. Based on a random sample of 66 pairs, the average distance
between two individuals was 7.37. These numbers are likely to change over time. In the
1940s 91% of mathematics papers had one author, while in the 1990s only 54% did.

Answer 2. The phrase “six degrees of separation” statement is most commonly associated
with a 1967 experiment conducted by Stanley Milgram, a Harvard social psychologist, who
was interested in the average distance between two people. In his study, which was first
published in the popular magazine Psychology Today as “The Small World Problem,” he
gave letters to a few hundred randomly selected people in Omaha, Nebraska. The letters



1.3. SIX DEGREES, SMALL WORLDS 11

were to be sent toward a target person, a stockbroker in Boston, but recipients could send
the letters only to someone they knew on a first-name basis. 35% of the letters reached their
destination and the median number of steps these letters took was 5.5. Rounding up gives
“six degrees of separation.”

The neat story in the last paragraph becomes a little more dubious if one looks at the
details. One third of the test subjects were from Boston, not Omaha, and one-half of those
in Omaha were stockbrokers. A large fraction of the letters never reached their destination
and were discarded from the distance computation. Of course, those that reached their
destination only provide an upper bound on the distance, since there might have been better
routes.

Answer 3. Though it was implicit in his work, Milgram never used the phrase “six degrees
of separation.” John Guare originated the term in the title of his 1991 play. In the play
Ousa, musing about our interconnectedness, tells her daughter, “Everybody on the planet
is separated by only six other people. Six degrees of separation. Between us and everybody
else on this planet. The president of the United States. A gondolier in Venice . . . It’s not
just the big names. It’s anyone. A native in a rain forest. A Tierra del Fuegan. An Eskimo.
I am bound to everyone on this planet by a trail of six people. It is a profound thought.”

Answer 4. While the Guare play may be the best known literary work with this phrase,
it was not the first. It appeared in Hungarian writer Frigyes Karinthy’s story Chains. “To
demonstrate that people on Earth today are much closer than ever, a member of the group
suggested a test. He offered a bet that we could name any person among the earth’s one
and a half billion inhabitants and through at most five acquaintances, one of which he knew
personally, he could link to the chosen one.”

Answer 5. Our final anecdote is a proof by example. A few years ago, the staff of the
German newspaper Die Zeit accepted the challenge of trying to connect a Turkish kebab-
shop owner to his favorite actor Marlon Brando. After a few months of work, they found that
the kebab-shop owner had a friend living in California, who works alongside the boyfriend
of a woman, who is the sorority sister of the daughter of the producer of the film Don Juan
de Marco, in which Brando starred.

In the answers we have just given, it sometimes takes fiddling to make the answer six, but
it is clear that the web of human contacts and the mathematical collaboration graph have a
much smaller diameter than one would naively expect. Albert, Jeong, and Barabási (1999)
and Barabási, Albert, and Jeong (2000) studied the world wide web graph whose vertices
are documents and whose edges are links. Using complete data on the domain nd.edu at
his home institution of Notre Dame, and a random sample generated by a web crawl, they
estimated that the average distance between vertices scaled with the size of the graph as
0.35 + 2.06 log n. Plugging in their estimate of n = 8 × 108 web pages at the time they
obtained 18.59. That is, two randomly chosen web pages are on the average 19 clicks from
each other. The logarithmic dependence of the distance is comforting, because it implies
that “if the web grows by a 1000 per cent, web sites would still only be separated by an
average of 21 clicks.”
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Small world model. Erdös-Rényi graphs have small diameters, but have very few
triangles, while in social networks if A and B are friends and A and C are friends, then it is
fairly likely that B and C are also friends. To construct a network with small diameter and
a positive density of triangles, Watts and Strogatz started from a ring lattice with n vertices
and k edges per vertex, and then rewired each edge with probability p, connecting one end
to a vertex chosen at random. This construction interpolates between regularity (p = 0) and
disorder (p = 1).

Let L(p) be the average distance between two randomly chosen vertices and define the
clustering coefficient C(p) to be the fraction of connections that exist between the

(
k
2

)
pairs

of neighbors of a site. The regular graph has L(0) ∼ n/2k and C(0) ≈ 3/4 if k is large,
while the disordered one has L(1) ∼ (log n)/(log k) and C(1) ∼ k/n. Watts and Strogatz
(1998), showed that L(p) decreases quickly near 0, while C(p) changes slowly so there is a
broad interval of p over which L(p) is almost as small as L(1), yet C(p) is far from 0. These
results will be discussed in Section 5.1.

Watts and Strogatz (1998) were not the first to notice that random long distance con-
nections could drastically reduce the diameter. Bollobás and Chung (1988) added a random
matching to a ring of n vertices with nearest neighbor connections and showed that the
resulting graph had diameter ∼ log2 n. This graph, which we will call the BC small world,
is not a good model of a social network because every individual has exactly three friends
including one long range acquaintance, however these weaknesses make it easier to study.

The small world is connected by definition, so the first quantity we will investigate is the
average distance between two randomly chosen sites in the small world. For this problem
and all of the others we will consider below, we will not rewire edges but instead consider
Newman and Watts (1999) version of the model in which no edges are removed but one adds
a Poisson number of shortcuts with mean nρ/2 and attaches then to randomly chosen pairs
of sites. This results in a Poisson mean ρ number of long distance edges per site. We will
call this the NW small world.

Barbour and Reinert (2001) have done a rigorous analysis of the average distance between
points in a continuum model in which there is a circle of circumference L and a Poisson
mean Lρ/2 number of random chords. The chords are the shortcuts and have length 0. The
first step in their analysis is to consider an upper bound model that ignores intersections
of growing arcs and that assumes each arc sees independent Poisson processes of shortcut
endpoints. Let S(t) be size, i.e., the Lebesgue measure, of the set of points within distance
t of a chosen point and let M(t) be the number of intervals. Under our assumptions

S ′(t) = 2M(t)

while M(t) is a branching process in which there are no deaths and births occur at rate 2ρ.
M(t) is a Yule process run at rate 2ρ so EM(t) = e2ρt and M(t) has a geometric distri-

bution
P (M(t) = k) = (1− e−2ρt)k−1e−2ρt

Being a branching process e−2ρtM(t) → W almost surely. In the case of the Yule process, it
is clear from the distribution of M(t), that W has an exponential distribution with mean 1.



1.3. SIX DEGREES, SMALL WORLDS 13

Integrating gives

ES(t) =

∫ t

0

2e2ρs ds =
1

ρ
(e2ρt − 1)

At time t = (2ρ)−1(1/2) log(Lρ), ES(t) = (L/ρ)1/2 − 1. Ignoring the −1 we see that if we
have two independent clusters run for this time then the expected number of connections
between them is √

L

ρ
· ρ ·

√
L/ρ

L
= 1

since the middle factor gives the expected number of shortcuts per unit distance and the last
one the probability a short cut will hit the second cluster. The precise result is:

Theorem 5.2.1. Suppose Lρ→∞. Let O be a fixed point of the circle, choose P at random,
and let D be the distance from O to P . Then

P

[
D >

1

ρ

(
1

2
log(Lρ) + x

)]
→
∫ ∞

0

e−y

1 + 2e2xy
dy

Note that the fluctuations in the distance are of order 1.
Sections 5.3, 5.4, and 5.5 are devoted to a discussion of processes taking place on the

small world. We will delay discussion of these results until after we have introduced our next
family of examples.
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1.4 Power laws, preferential attachment

One of my favorite quotes is from the 13 April 2002 issue of The Scientist

“What do the proteins in our bodies, the Internet, a cool collection of atoms and
sexual networks have in common? One man thinks he has the answer and it is
going to transform the way we view the world.”

Albert-László Barabási (the man in the quote above) and Reka Albert (1999) noticed that
the actor collaboration graph and the world wide web had degree distributions that were
power laws pk ∼ Ck−γ as k →∞. Follow up work has identified a large number of examples
with power law degree distributions, which are also called scale-free random graphs. When
no reference is given, the information can be found in the survey article by Dorogovstev and
Mendes (2002). We omit biological networks (food webs, metabolic networks, and protein
interaction networks) since they are much smaller and less well characterized compared to
the other examples.

• By the world wide web, we mean the collection of web pages and the oriented links
between them. Barabási and Albert (1999) found that the in-degree and out-degrees
of web pages follow power laws with γin = 2.1, γout = 2.7.

• By the Internet, we mean the physically connected network of routers that move email
and files around the Internet. Routers are united into domains. On the interdomain
level the Internet is a small network. In April 1998, when Faloutos, Faloutos, and
Faloutos (1999) did their study, there were 3,530 vertices, 6,432 edges and the maximum
degree was 745, producing a power law with γ = 2.16. In 2000 there were about 150,000
routers connected by 200,000 links and a degree distribution that could be fit by a power
law with γ = 2.3.

• The movie actor network in which two actors are connected by an edge if they have
appeared in a film together has a power law degree distribution with γ = 2.3.

• The collaboration graph in a subject is a graph with an edge connecting two people
if they have written a paper together. Barabási et al. (2002) studied papers in math-
ematics and neuroscience published in 1991–1998. The two databases that they used
contained 70,901 papers with 70,975 authors, and 210,750 papers with 209,293 authors,
respectively. The fitted power laws had γM = 2.4 and γNS = 2.1.

• Newman (2001a,b) studied the collaboration network in four parts of what was then
called the Los Alamos preprint archive (and is now called the arXiv). He found that
the number of collaborators was better fit by a power law with an exponential cutoff
pk = Ck−τ exp(−k/kc)
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• The citation network is a directed graph with an edge from i to j if paper i cites paper
j. Redner (1998) studied 783,339 papers published in 1981 in journals cataloged by
the ISI and 24,296 papers published in volumes 11–50 of Physical Review D. The first
graph had 6,716,198 links, maximum degree 8,904, and γin = 2.9. The second had
351,872 links, maximum degree 2,026, and γin = 2.6. In both cases the out degree
had an exponentially decaying tail. One reason for the rapid decay of the out-degree
is that many journals have a limit on the number of references.

• Liljeros et al. (2001) analyzed data gathered in a study of sexual behavior of 4,781
Swedes, and found that the number of partners per year had γmale = 3.3 and γfemale =
3.5.

• Ebel, Mielsch, and Bornholdt (2002) studied email network of Kiel University, recording
the source and destination of every email to or from a student account for 112 days.
They found a power law for the degree distribution with γ = 1.81 and an exponential
cutoff at about 100. Recently the Federal Energy Regulatory Commission has made a
large email data set available posting 517,341 emails from 151 users at Enron.

To give a mechanistic explanation for power laws Barabási and Albert (1999) introduced
the preferential attachment model. For a mental image you can think of a growing world
wide web in which new pages are constantly added and they link to existing pages with
a probability proportional to their popularity. Suppose, for concreteness, that the process
starts at time 1 with two vertices linked by m parallel edges. (We do this so that the total
degree at any time t is 2mt.) At every time t ≥ 2, we add a new vertex with m edges that
link the new vertex to m vertices already present in the system. To incorporate preferential
attachment, we assume that the probability πi that a new vertex will be connected to a vertex
i depends on the connectivity of that vertex, so that πi = ki/

∑
j kj. To be precise, when we

add a new vertex we will add edges one a time, with the second and subsequent edges doing
preferential attachment using the updated degrees. This scheme has the desirable property
that a graph of size n for a general m can be obtained by running the m = 1 model for nm
steps and then collapsing vertices km, km− 1, . . . (k − 1)m+ 1 to make vertex k.

The first thing to be proved for this model, see Theorem 4.1.4, is that the fraction vertices
of degree k converges to:

pk →
2m(m+ 1)

k(k + 1)(k + 2)
as n→∞

This distribution ∼ Ck−3 as k → ∞, so for any value of m we always get a power of 3.
Krapivsky, Redner, and Leyvrasz (2000) showed that we can get other behavior for pk by
generalizing the model so that vertices of degree k are chosen with probability proportional
to f(k).

• if f(k) = kα with α < 1 then pk ≈ µk−α exp(−ck1−α)
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• if f(k) = kα with α > 1 then the model breaks down: there is one vertex with degree
of order ∼ t and the other vertices have degree O(1)

• if f(k) = a+ k and a > −1, pk ∼ Ck−(3+a)

In the last case we can achieve any power in (2,∞). However, there are many other means
to achieving this end. Cooper and Frieze (2003) describe a very general model in which: old
nodes sometimes generate new edges, and choices are sometimes made uniformly instead of
by preferential attachment. See Section 4.2 for more details and other references.

Does preferential attachment actually happen in growing networks? Liljeros is quoted in
the April 2002 of The Scientist as saying “Maybe people become more attractive the more
partners they get.” Liljeros, Edling, and Amaral (2003) are convinced of the relevance of this
mechanism for sexual networks, but Jones and Handcock (2003) and others are skeptical.
Jeong, Néda, and Barabási (2001) and Newman (2001c) have used collaboration databases
to study the growth of degrees with time. The first paper found support for α ≈ 0.8 in
the actor and neuroscience collaboration networks, while Newman finds α = 1.04 ± 0.04
for Medline and α = 0.89 ± 0.09 for the arXiv, which he argues are roughly compatible
with linear preferential attachment. However, as Newman observes, a sublinear power would
predict a stretched exponential distribution, which is consistent with his data.

These models and results may look new, but in reality they are quite old. If we think of
a vertex i with degree d(i) as d(i) balls of color i, then the m = 1 version of the preferential
attachment model is just a Polya urn scheme. We pick a ball at random from the urn,
return it and a ball of the same color to the urn and add a ball of a new color. For more the
connection between preferential attachment and urn schemes, see the second half of Section
4.3.

Yule (1925) used a closely related branching process model for the number of species of
a given genus, which produces limiting frequencies pk ∼ Ck−γ for any γ > 1. Simon (1955)
introduced a model of word usage in books, where the (n+1)th word is new with probability
α or is otherwise chosen at random from the previous n words, and hence proportional to
their usage. The limiting frequency of words used k times pk ∼ Ck−1+1/(1−α). Again this
allows any power in (2,∞). For more details, see Section 4.2.

The first two sections of Chapter 4 concentrate on the fraction of vertices with a fixed
degree k. In Section 4.3 we shift our attention to the other end of the spectrum and look at
the growth of the degrees of a fixed vertex j. Mori (2005) has used martigales to study the
case f(k) = k+ β and to show that if Mn is the maximum degree when there are n vertices.

Theorem 4.3.2. With probability one, n−1/(2+β)Mn → µ.

Since
∑∞

k=K pk ∼ CK−(2+β) this is the behavior we should expect by analogy with maxima
of i.i.d. random variables.

Having analyzed the limiting degree distribution in preferential attachment models, we
turn our attention now to the distance between two randomly chosen vertices. For simplicity,
we consider the fixed degree formulation in which the graph is created in one step rather
than grown. When 2 < γ < 3 the size biased distribution qk ∼ Ck−(γ−1) so the mean is
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infinite. Let α = γ − 2. In the branching process cartoon of cluster growth, the number of
vertices at distance m, Zm grows doubly exponentially fast:

Theorem 4.5.1. αm(log(Zm + 1)) → W .

Intuitively, the limit theorem says log(Zm+1) ≈ α−mW , so replacing Zm+1 by n, discarding
the W and solving gives m ∼ (log log n)/(log(1/α). However the right result which van der
Hofstadt, Hooghiemestra, and Znamenski (2005a) have proved for the fixed degrees model
is that the average distance

∼ 2 · log log n

log(1/α)

To see the reason for the 2, notice that if we grow clusters from x and y until they have
√
n

members then each process takes time (log log n)/(log(1/α) to reach that size. In Theorem
4.5.2, we prove the upper bound for the corresponding Chung and Lu model.

In the borderline case γ = 3, Bollobás and Riordan (2004b) have shown for the prefer-
ential attachment model, see Theorem 4.6.1, that the diameter ∼ log n/(log log n). Chung
and Lu have shown for the corresponding case of their model that the distance between two
randomly chosen vertices O(log n/(log log n)), while the diameter due to dangling ends is
O(log n). To foreshadow later developments, we note that if we want degree distribution
function F (x) = P (di ≤ x) then we can choose the weights in Chung and Lu’s model to be

wi = (1− F )−1(i/n)

If 1− F (x) = Bx−γ+1 solving gives wi = (nB/i)1/(γ−1). Recalling that the probability of an
edge from i to j in the Chung and Lu model is pi,j = wiwj/

∑
wk and

∑
wk ∼ µn since the

degree distribution has finite mean µ, we see that when γ = 3

pi,j = c/
√
ij

Bollobás and Riordan (2004b) prove their result by relating edge probabilities for the pref-
erential attachment graph to this nonhomogeneous percolation problem. This process will
also make an appearance in Section 7.4 in the proof of the Kosterlitz-Thouless transition for
the CHKNS model, which has connectivity probabilities c/(i ∧ j). A recent paper of Bol-
lobás, Janson, and Riordan (2006), which is roughly half the length of this book, investigates
inhomogenenous random graphs in great detail.
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1.5 Epidemics and percolation

The spread of epidemics on random graphs has been studied extensively. There are two
extremes: in the first all individuals are susceptible and there is a probability p that an
infected individual will transmit the infection to a neighbor, in the second only a fraction
p of individuals are susceptible, but the disease is so contagious that if an individual gets
infected all of their susceptible neighbors will become infected.

In percolation terms, the first model is bond percolation, where edges are retained with
probability p and deleted with probability 1 − p. The second is site percolation, where the
randomness is applied to the sites instead of the edges. Percolation is easy to study on
a random graph, since the result of retaining a fraction p of the edges or sites is another
random graph. Using the branching process heuristic, percolation occurs (there will be a
giant component) if and only if the mean of the associated branching process is > 1. This
observation is well known in the epidemic literature, where it is phrased “the epidemic will
spread if the number of secondary infections caused by an infected individual is > 1.”

When the degree distribution has finite variance, the condition for a supercritical bond
percolation epidemic is E(D̂(D̂−1))/E(D̂) > 1 where D̂ is the number of edges along which
the disease will be transmitted, see Section 3.5. Newman (2002) was the first to do this
calculation for random graphs with a fixed degree distribution, but incorrectly assumed that
the transmission events for different edges are independent, which is false when the duration
of the infectious period is random. While the random graph setting for epidemics is new, the
associated supercriticality condition is not. May and Anderson (1988) showed that for the
transmission of AIDS and other diseases where there is great heterogeneity in the number of
secondary infections, k, the basic reproductive number R0 = ρ0(1 + C2

V ) where ρ0 =< k >
is the average number of secondary infections, CV = (< k2 > / < k >2)− 1 is the coefficient
of variation of the connectivity distribution, and < X > is physicist’s notation for expected
value EX.

As noted in the previous section, many networks have power law degree distributions
with power 2 < γ < 3. In this case the sized biased distribution q has infinite mean. Thus
for any p > 0 the mean number of secondary contacts is > 1 and the critical value for
percolation pc = 0. This “surprising result” has generated a lot of press since it implies that
“within the observed topology of the Internet and the www, viruses can spread even when
the infection probabilities are vanishingly small.”

This quote is from Lloyd and May’s (2001) discussion in Science of Pastor-Satorras and
Vespignani (2001). This dire prediction applies not only to computers but also to sexu-
ally transmitted diseases. “Sexual partnership networks are often extremely heterogeneous
because a few individuals (such as prostitutes) have very high numbers of partners. Pastor-
Satorras and Vespignani’s results may be of relevance in this context. This study highlights
the potential importance of studies on communication and other networks, especially those
with scale-free and small world properties, for those seeking to manage epidemics within
human and animal populations.” Fortunately for the people of Sweden, γmale = 3.3 and
γfemale = 3.5, so sexually transmitted diseases have a positive epidemic threshold.
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Dezsö and Barabási (2002) continue this theme in their work: “From a theoretical per-
spective viruses spreading on a scale free network appear unstoppable. The question is, can
we take advantage of the increased knowledge accumulated in the past few years about the
network topology to understand the conditions in which one can successfully eradicate the
viruses?” The solution they propose is obvious. The vanishing threshold is a consequence
of the nodes of high degree, so curing the “hubs” is a cost-effective method for combating
the epidemic. As Liljeros et al. (2001) say in the subhead of their paper: “promiscuous
individuals are the vulnerable nodes to target in safe-sex campaigns.” For more on virus
control strategies for technological networks, see Balthrop, Forrest, Newman, and Williamson
(2004). The SARS epidemic with its superspreaders is another situation where the highly
variable number of transmissions per individual calls for us to rethink our approaches to
preventing the spread of disease, see e.g., Lloyd-Smith, Schreiber, Kopp and Getz (2005).

One of the most cited properties of scale-free networks, which is related to our discussion
of epidemics, is that they are “robust to random damage but vulnerable to malicious attack.”
Albert, Jeong, and Barabási (2000) performed simulation studies on the result of attacks
on a map of the Internet consisting of 6,209 vertices and 24,401 links. Their simulations
and some approximate calculations suggested that 95% of the links can be removed and
the graph will stay connected. Callaway, Newman, Strogatz, and Watts (2000) modeled
intentional damage as removal of the vertices with degrees k > k0, where k0 is chosen so
that the desired fraction of vertices f is eliminated. They computed threshold values for
the distribution pk = k−γ/ζ(γ) when γ = 2.4, 2.7, 3.0. Here ζ is Riemann’s function, which
in this context plays the mundane role of giving the correct normalization to produce a
probability distribution. The values of fc in the three cases are 0.023, 0.010, and 0.002, so
using the first figure for the Internet, the targeted destruction of 2.3% of the hubs would
disconnect the Internet.

The results in the last paragraph are shocking, which is why they attracted headlines.
However, as we mentioned earlier, one must be cautious in interpreting them. Bollobás
and Riordan (2004c) have done a rigorous analysis of percolation on the Barbási-Albert
preferential attachment graph, which has β = 3. In the case m = 1 the world is a tree and
destroying any positive fraction of the edges disconnects it.

Theorem 4.7.3. Let m ≥ 2 be fixed. For 0 < p ≤ 1 there is a function

exp(−C/p2) ≤ λ(p) ≤ exp(−c/p)

so that with probability 1−o(1) the size of largest component is (λ(p)+o(1))n and the second
largest is o(n).

Heuristic results presented in Section 4.7 suggest that the upper bound is the right answer
and for the concrete case considered above c = 1/ζ(3). In words, if p is small then the giant
component is tiny, and it is unlikely you will be able to access the Internet from your house.
Using ζ(3) = 1.202057 and setting p = 0.05 gives the result quoted in the first section of this
introduction that the fraction of nodes in the giant component in this situation is 5.9× 10−8
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Bollobás and Riordan (2004c) have also done a rigorous analysis of intentional damage
for the preferential attachment model, which they define as removal of the first nf nodes,
which are the ones likely to have the largest degrees.

Theorem 4.7.4. Let m ≥ 2 and 0 < f < 1 be constant. If f ≥ (m − 1)/(m + 1) then
with probability 1− o(1) the largest component is o(n). If f < (m− 1)/(m+ 1) then there is
a constant θ(f) so that with probability 1 − o(1) the largest component is ∼ θ(f)n, and the
second largest is o(n).

It is difficult to compare this with the conclusions of Callaway, Newman, Strogatz, and Watts
(2000) since for any m in the preferential attachment model we have pk ∼ 2m(m+ 1)k−3 as
k →∞. However, the reader should note that even when m = 2, one can remove 1/3 of the
nodes.

One of the reasons why CNSW get such small number is that, as Aiello, Chung, and
Lu (2000,2001) have shown, graphs with degree distribution pk = k−γ/ζ(γ) have no giant
component for γ > 3.479. Thus the fragility is an artifact of assuming that there is an
exact power law, while in reality the actual answer for graphs with pk ∼ Ck−γ depends on
the value of C as well. This is just one of many criticisms of the claim that the Internet
is “robust yet fragile.” Doyle et al. (2005) examine in detail how the scale free depiction of
compares with the real Internet.

Percolation on the small world is studied in Section 5.3. Those results are the key to the
ones in the next section.
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1.6 Potts models and the contact process

In the Potts model, each vertex is assigned a spin σx which may take one of q values.
Given a finite graph G with vertices V and edges E, e.g., the small world, the energy of a
configuration is

H(σ) = 2
∑

x,y∈V,x∼y

1{σ(x) 6= σ(y)}

where x ∼ y means x is adjacent to y. Configurations are assigned probabilities exp(−βH(σ)),
where β is a variable inversely proportional to temperature. We define a probability measure
on {1, 2, . . . q}V by

ν(σ) = Z−1 exp(−βH(σ))

where Z is a normalizing constant that makes the ν(σ) sum to 1. When q = 2 this is the
Ising model, though in that case it is customary to replace {1, 2} by {−1, 1}, and write the
energy as

H2(σ) = −
∑

x,y∈V,x∼y

σ(x)σ(y)

This leads to the same definition of ν since every pair with σ(x) 6= σ(y) increases H2 by 2
from its minimum value in which all the spins are equal, so H − H2 is constant and after
normalization the measures are equal.

To study the Potts model on the small world, we will use the random-cluster model of
Fortuin and Kastelyn. This is a {0, 1}-valued process η on the edges E of the graph:

µ(η) = Z−1

{∏
e∈E

pη(e)(1− p)1−η(e)

}
qχ(η)

where χ(η) is the number of connected components of η when we interpret 1-bonds as
occupied and 0-bonds as vacant and Z is another normalizing constant.

Having introduced the model with a general q, we will now restrict our attention to the
Ising model with q = 2. By using some comparison arguments we are able to show that
on a general graph the Ising model has long range order for β > βI where tanh(βI) = pc,
the threshold for percolation in the model with independent bonds. See Theorem 5.4.5. To
explain the significance of this equation, consider the Ising model on a tree with forward
branching number b ≥ 2. The critical value for the onset of “spontaneous magnetization”
has tanh(βc) = 1/b. This means that when β > βc if we impose +1 boundary conditions
at sites a distance n from the root and let n → ∞ then in the resulting limit spins σ(x)
have positive expected value. When 0 ≤ β ≤ βc there is a unique limiting Gibbs state
independent of the boundary conditions. See e.g., Preston (1974).

This connection allows us to show in Section 5.4 that for BC small world, which looks
locally like a tree of degree 3, the Ising model critical value is

βI = tanh−1(1/2) = 0.5493
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1/βI = 1.820 agrees with the critical value of the temperature found from simulations of
Hong, Kim, and Choi (2002), but physicists seem unaware of this simple exact result. Using
results of Lyons (1989, 1990) who defined a branching number for trees that are not regular,
we are able to extend the argument to the nearest neighbor NW small world, which locally
like a two type branching process.

In making the connection with percolation, we have implicitly been considering the SIR
(susceptible-infected-removed) epidemic model in which sites, after being infected, become
removed from further possible infection. This is the situation for many diseases, such as
measles, and would seem to be reasonable for computers whose anti-virus software has been
updated to recognize the virus. However, Pastor-Satorras and Vespignani (2001a, 2001b,
2002) and others have also considered the SIS (susceptible-infected-susceptible) in which
sites that have been cured of the infection are susceptible to reinfection. We formulate the
model in continuous time with infected sites becoming healthy (and again susceptible) at rate
1, while an infected site infects each of its susceptible neighbors at rate λ. In the probability
literature, this SIS model is called Harris’ (1974) contact process. There it usually takes
place on a regular lattice like Z2 and is more often thought of as a model for the spread of
a plant species.

The possibility of reinfection in the SIS model allows for an endemic equilibrium in
which the disease persists infecting a positive fraction of the population. Since the graph is
finite the infection will eventually die out, but as we will see later, there is a critical value
λc of the infection rate the disease persists for an extremely long time. Pastor-Satorras
and Vespigniani have made an extensive study of this model using mean-field methods. To
explain what this means, let ρk(t) denote the fraction of vertices of degree k that are infected
at time t, and θ(λ) be the probability that a given link points to an infected site. If we make
the mean-field assumption that there are no correlations then

d

dt
ρk(t) = −ρk(t) + λk[1− ρk(t)]θ(λ)

Analysis of this equation suggests the following conjectures about the SIS model on power
law graph with degree distribution pk ∼ Ck−γ.

• If γ ≤ 3 then λc = 0.

• If 3 < γ < 4, λc > 0 but θ(λ) ∼ C(λ− λc)
1/(γ−3) as λ ↓ λc.

• If β > 4 then λc > 0 and θ(λ) ∼ C(λ− λc) as λ ↓ λc.

The second and third claims are interesting open problems. Berger, Borgs, Chayes,
and Saberi (2004) have considered the contact process on the Barbási-Albert preferential
attachment graph. They have shown that λc = 0 and proved some interesting results about
the probability the process will survive from a randomly chosen site. The proof of λc = 0 is
very easy and is based on the following
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Lemma 4.8.2. Let G be a star graph with center 0 and leaves 1, 2, . . . k. Let At be the set
of vertices infected in the contact process at time t when A0 = {0}. If kλ2 →∞ then

P (Aexp(kλ2/10) 6= ∅) → 1

The largest degree in the preferential attachment graph is O(n1/2) so if λ > 0 is fixed the
process will survive for time at least exp(cn1/2).

At this point we have considered the Ising model on the small world, and the contact
process on graphs with a power law degree distribution. The other two combinations have
also been studied. Durrett and Jung (2005) have considered the contact process on a gener-
alization of the BC small world and showed that like the contact process on trees the system
has two phase transitions, see Section 5.5 for details.

Dorogovstev, Goltsev, and Mendes (2002) have studied the Ising model on power law
graphs. Their calculations suggest that βc = 0 for γ ≤ 3, the spontaneous magnetization
M(β) ∼ (β − βc)

1/(γ−3) for 3 < γ < 5 while for γ > 5, M(β) ∼ (β − βc)
1/2. A rigorous proof

of the results for critical exponents seems difficult, but can one use the connection between
the Ising model and percolation to show βc = 0 for γc ≤ 3?
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1.7 Random walks and voter models

There have been quite a few papers written about the properties of random walks on small
world networks studying the probability the walker is back where it started after n steps,
the average number of sites visited, etc. See for example, Monasson (1999), Jespersen,
Sokolov, and Blumen (2000), Lahtinen, Kertesz, and Kaski (2001), Pandit and Amritkar
(2001), Almaas, Kulkarni, and Stroud (2003), and Noh and Reiger (2004). In most cases the
authors have concentrated on the situation in which the density of shortcuts p is small, and
shown that for small times t << ξ2 with ξ = 1/p the behavior is like a random walk in one
dimension, at intermediate times the behavior is like a random walk on a tree, and at large
times the walker realizes it is on a finite set.

Here, we will concentrate instead on the rate of convergence to equilibrium for random
walks. Let K(x, y) be the transition kernel of the lazy walk that stays put with probability
1/2 and otherwise jumps to a randomly chosen neighbor. The laziness gets rid of problems
with periodicity and negative eigenvalues. Let π(x) be its stationary distribution, and define
Q(x, y) = π(x)K(x, y) to be the flow from x to y in equilibrium. Our walks satisfy the
detailed balance condition, i.e., Q(x, y) = Q(y, x).

In most cases we will bound the rate of convergence to equilibrium by considering the
conductance

h = min
π(S)≤1/2

Q(S, Sc)

π(S)

where Q(S, Sc) =
∑

x∈S,y∈Sc Q(x, y). If all of the vertices have the same degree d and we let
e(S, Sc) be the number of edges between S and Sc, h = ι/2d where

ι = min
|S|≤n/2

e(S, Sc)

|S|
is the edge isoperimetric constant.

Cheeger’s inequality and standard results about Markov chains, see Sections 6.1 and
6.2, imply that if h is bounded away from 0 as the size of the graph n tends to ∞, then
convergence to equilibrium takes time that is O(log n). This result takes care of most of our
examples. Bollobás (1988) estimated the isoperimetric constant for random regular graphs,
the special case of a fixed degree distribution with pr = 1 for some r ≥ 3. In Section 6.3, we
will prove a more general result with a worse constant due to Gkantsidis, Mihail, and Saberi
(2003)

Theorem 6.3.2. Consider a random graph with a fixed degree distribution in which the
minimum degree is r ≥ 3. There is a constant α0 > 0 so that h ≥ α0.

In Sections 6.4 and 6.5 we will show that the same conclusion holds for Barabási and Albert’s
preferential attachment graph, a result of Mihail, Papadimitrou, and Saberi (2004), and for
connected Erdös-Rényi random graphs ER(n, (c log n)/n) with c > 1, a result of Cooper and
Frieze (2003).

It is easy to show that the random walk on the BC small world in which each vertex
has degree 3, mixes in time O(log n). In contrast the random walk on the NW small world
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mixes in time at least O(log2 n) and at most O(log3 n). The lower bound is easy to see and
applies to any graph with a fixed degree distribution with p2 > 0. There are paths of length
O(log n) in which each vertex has degree 2. The time to escape from this interval starting
from the middle is O(log2 n) which gives a lower bound of O(log2 n) on the mixing time. The
upper bound comes from showing that the conductance h ≥ C/ log n, which translates into
a bound of order log3 n. We believe that the lower bound is the right order of magnitude.
In Section 6.7 we prove this is correct for a graph with a fixed degree distribution in which
p2 + p3 = 1.

The voter model is a very simple model for the spread of an opinion. On any of our
random graphs it can be defined as follows. Each site x has an opinion ξt(x) and at the
times of a rate 1 Poisson process decides to change its opinion. To do this it picks a neighbor
at random and adopts the opinion of that neighbor. If you don’t like this simple minded
sociological interpretation, you can think instead of this as a spatial version of the Moran
model of population genetics.

To analyze the voter model we use a “dual process” ζx,t
s that works backwards in time

to determine the source of the opinion at x at time t and jumps if voter at ζx,t
s at time

t − s imitated one of its neighbors. The genealogy of one opinion is a random walk. If we
consider several at once we get a coalescing random walk since ζx,t

s = ζt,y
s implies that the

two processes will agree at all later times.
If we pick the starting points x and y according to the stationary distribution π for the

random walk and let TA be the time at which they first hit, Proposition 23 of Aldous and
Fill (2002) implies

sup
t
|Pπ(TA > t)− exp(−t/EπTA)| ≤ τ2/EπTA

where τ2 is the relaxation time, which they define (see p. 19) to be 1 over the spectral gap.
In many of our examples τ2 ≤ C log2 n and as we will see EπTA ∼ cn so the hitting time is
approximately exponential. To be precise, we will show this in Section 6.9 for the BC and
NW small worlds, fixed degree distributions with finite variance, and connected Erdös-Rényi
random graphs.

Holley and Liggett (1975) showed that on the d-dimensional lattice Zd, if d ≤ 2 the voter
model approaches complete consensus, i.e., P (ξt(x) = ξt(y)) → 1, while if d ≥ 3 and we
start from product measure with density p (i.e., we assign opinions 1 and 0 independently
to sites with probabilities p and 1− p) then as t→∞, ξp

t converges in distribution to ξp
∞, a

one parameter family of stationary distributions.
On a finite set the voter model will eventually reach an absorbing state in which all voters

have the same opinion. Cox (1989) studied the voter model on a finite torus (Z mod N)d

and showed that if p ∈ (0, 1) then the time to reach consensus τN satisfies τN = O(sN)
where sN = N2 in d = 1, sN = N2 logN in d = 2, and sN = Nd in d ≥ 3. Our results
for the voter model on the BC or NW small worlds show that while the world starts out
one dimensional, the long range connections make the behavior like that of a voter model
in d ≥ 3, where the time to reach the absorbing state is proportional to the volume of the
system. Before reaching the absorbing state the voter model settles into a quasi-stationary
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distribution, which is like the equilibrium state in dimensions d ≥ 3. Castelano, Vilone, and
Vespigiani (2003) arrived at these conclusions on the basis of simulation.

While the voter model we have studied is natural, there is another one with nicer prop-
erties. Consider the voter model defined by picking an edge at random from the graph,
flipping a coin to decide on an orientation (x, y), and then telling the voter at y to imitate
the voter at x. The random walk in this version of the voter model has a uniform stationary
distribution and in the words of Suchecki, Eguúıluz and Miguel (2004): “conservation of the
global magnetization.” In terms more familiar to probabilists, the number of voters with a
given opinion is a time change of simple random walk and hence is a martingale. If we con-
sider the biased voter model in which changes from 0 to 1 are always accepted but changes
from 1 to 0 occur with probability λ < 1, then the last argument shows that the fixation
probability for a single 1 introduced in a sea of 0’s does not depend on the structure of the
graph, the small world version of a result of Maruyama (1970) and Slatkin (1981). Because
of this property, Lieberman, Hauert, and Nowak (2005), who studied evolutionary dynamics
on general graphs, call the random walk isothermal.
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1.8 CHKNS model

Inspired by Barabási and Albert (1999), Callaway, Hopcroft, Kleinberg, Newman, and Stro-
gatz (2001) introduced the following simple version of a randomly grown graph. Start with
G1 = {1} with no edges. At each time n ≥ 2, we add one vertex and with probability δ add
one edge between two randomly chosen vertices. Note that the newly added vertex is not
necessarily an endpoint of the added edge and when n is large, it is likely not to be.

In the original CHKNS model, which we will call model #0, the number of edges was
1 with probability δ, and 0 otherwise. To obtain a model that we can analyze rigorously,
we will study the situation in which a Poisson mean δ number of vertices are added at each
step. We prefer this version since, in the Poisson case, if we let Ai,j,k be the event no (i, j)
edge is added at time k then P (Ai,j,k) = exp

(
−δ/

(
k
2

))
for i < j ≤ k and these events are

independent.

P (∩n
k=jAi,j,k) =

n∏
k=j

exp

(
− 2δ

k(k − 1)

)
= exp

(
−2δ

(
1

j − 1
− 1

n

))
≥ 1− 2δ

(
1

j − 1
− 1

n

)
#1

The last formula is somewhat ugly, so we will also consider two approximations

≈ 1− 2δ

(
1

j
− 1

n

)
#2

≈ 1− 2δ

j
#3

The approximation that leads to #3 is not as innocent as it looks. If we let En be the
number of edges then using the definition of the model EEn ∼ δn in models #1 and #2 but
EEn ∼ 2δn in model #3. Despite this, it turns out that models #1, #2, and #3 have the
same qualitative behavior, so in the long run we will concentrate on #3.

The first task is to calculate the critical value for the existence of a giant component.
CHKNS showed that the generating function g(x) of the size of the component containing a
randomly chosen site satisfied

g′(x) =
1

2δx
· x− g(x)

1− g(x)

and used this to conclude that if g(1) = 1 then the mean cluster size g′(1) = (1−
√

1− 8δ)/4δ.
Since this quantity becomes complex for δ > 1/8 they concluded δc = 1/8. See Section 7.1
for a more complete description of their argument. One may quibble with the proof but the
answer is right. As we will prove in Section 7.2, in models #1, #2, or #3 the critical value
δc = 1/8.

In contrast to the situation with ordinary percolation on the square lattice where Kesten
(1980) proved the physicists’ answer was correct nearly twenty year after they had guessed
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it, this time the rigorous answer predates the question by more than ten years. We begin
by describing earlier work on the random graph model on {1, 2, 3, . . .} with pi,j = λ/(i ∨ j).
Kalikow and Weiss (1988) showed that the probability G is connected (ALL vertices in ONE
component) is either 0 or 1, and that 1/4 ≤ λc ≤ 1. They conjectured λc = 1 but Shepp
(1989) proved λc = 1/4. To connect with the answer δc = 1/8, note that λ = 2δ. Durrett
and Kesten (1990) proved a result for a general class of pi,j = h(i, j) that are homogeneous
of degree −1, i.e., h(ci, cj) = c−1h(i, j). It is their methods that we will use to prove the
result.

To investigate the size of the giant component, CHKNS integrated the differential equa-
tion for the generating function g near δ = 1/8. Letting S(δ) = 1 − g(1) the fraction of
vertices in the infinite component they plotted log(− logS)) vs log(δ − 1/8) and concluded
that

S(δ) ∼ exp(−α(δ − 1/8)−β)

where α = 1.132±0.008 and β = 0.499±0.001. Based on this they conjectured that β = 1/2.
Note that, in contrast to the many examples we have seen previously where S(δ) ∼ C(δ−δc)
as δ ↓ δc, the size of the giant component is infinitely differentiable at the critical value. In
the language of physics we have a Kosterlitz-Thouless transition. If you are Russian you add
Berezinskii’s name at the beginning of the name of the transition.

Inspired by CHKNS’ conjecture Dorogovstev, Mendes, and Samukhin (2001) computed
that as δ ↓ 1/8,

S ≡ 1− g(1) ≈ c exp(−π/
√

8δ − 1)

To compare with the numerical result we note that π/
√

8 = 1.1107. To derive their formula
DMS change variables u(ξ) = 1− g(1− ξ) in the differential equation for g to get

u′(ξ) =
1

2δ(1− ξ)
· u(ξ)− ξ

u(ξ)

They discard the 1 − ξ in the denominator (without any justification or apparent guilt at
doing so), solve the differential equation explicitly and then do some asymptotic analysis of
the generating function, which one can probably make rigorous. The real mystery is why
can you drop the 1− ξ?

Again one may not believe the proof, but the result is correct. Bollobás, Janson, and
Riordan (2005) have shown, see Theorem 7.4.1, that if η > 0 then

S(δ) ≤ exp(−(1− η)/
√

8δ − 1)

when δ − δc > 0 is small, and they have proved a similar lower bound. Their proof relates
the percolation process in the random graph in which i is connected to j with probability
c/(i∨ j) to the one in which the probability is c/

√
ij. The latter process played a role in the

analysis of the diameter of the preferential attachment model in Section 4.6.
In addition to the striking behavior of the size of the giant component, the behavior of

the cluster size distribution is interesting at the critical point and in the subcritical regime.
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As we show in Section 7.3 for models #0 or #1, at δ = 1/8 the probability a randomly
chosen site belongs to a cluster of size k, bk ∼ 1/(k log k)2, when δ < 1/8

bk ∼ Cδk
−2/(1−

√
1−8δ)

Our results on the probability of i→ j, i.e., a path from i to j, are not as good. We are
able to show, see Section 7.5 for model #3, that for δ = 1/8, and 1 ≤ i < j ≤ n,

P (i→ j) ≤ 3

8
Γn

i,j where Γn
i,j =

(log i+ 2)(log n− log j + 2)

(log n+ 4)
.

and that this implies
1

n

n∑
i=1

E|Ci| ≤ 6

so the mean cluster size is finite at the critical value. However, we are not able to prove that
P (i→ j) ≥ cΓi,j when i is close to 1 and j is close to n. In the subcritical regime, we prove
in Section 7.3 for model #3 that if i < j then

P (i→ j) ≤ c

2ri1/2−rj1/2+r

where r =
√

1− 8δ/2. This upper bound is an important ingredient in the proof of the
Bollobás, Janson, and Riordan (2005) result in Section 7.4, but in view of our difficulties
when δ = 1/8, we have not investigated lower bounds.
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Chapter 2

Erdös-Rényi Random Graphs

In this chapter we will introduce and study the random graph model introduced by Erdös and
Rényi in the late 1950’s. This example has been extensively studied and a very nice account
of many of the results can be found in the classic book of Bollobás (2001), so here we will
give a brief account of the main results on the emergence of a giant component, in order to
prepare for the analysis of more complicated examples. In contrast to other treatments, we
mainly rely on methods from probability and stochastic processes rather than combinatorics.

To define the model, we begin with the set of vertices V = {1, 2, . . . n}. For 1 ≤ x < y ≤ n
let ηx,y be independent = 1 with probability p and 0 otherwise. Let ηy,x = ηx,y. If ηx,y = 1
there is an edge from x to y. Here, we will be primarily concerned with situation p = λ/n
and in particular with showing that when λ < 1 all of the components are small, with the
largest O(log n), while for λ > 1 there is a giant component with ∼ g(λ)n vertices. The
intuition behind this result is that a site has a Binomial(n − 1, λ/n) number of neighbors,
which has mean ≈ λ. Suppose that we start with I0 = 1, and for t ≥ 1 let It be the set of
vertices not in ∪t−1

s=0Is that are connected to some site in It−1. Then when t is not too large
the number of points in It, Zt = |It|, is approximately a branching process in which each
individual in generation t has an average of λ children. If λ < 1 the branching process dies
out quickly and all components are small. When λ > 1, the branching process survives with
probability g(λ), and all sites with surviving branching processes combine to make the giant
component.

2.1 Branching processes

In this section we define branching processes and gives their basic properties. Since n will
be the number of vertices in our graph, we will use t and s for our discrete time parameter.
Let ξt

i , i, t ≥ 0, be i.i.d. nonnegative integer-valued random variables. Define a sequence Zt,
t ≥ 0 by Z0 = 1 and

Zt+1 =

{
ξt+1
1 + · · ·+ ξt+1

Zt
if Zt > 0

0 if Zt = 0

31
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Zt is called a Galton-Watson process. The idea behind the definition is that Zt is the
number of people in the tth generation, and each member of the tth generation gives birth
independently to an identically distributed number of children. pk = P (ξt

i = k) is called the
offspring distribution.

Lemma 2.1.1. Let Ft = σ(ξs
i : i ≥ 1, 1 ≤ s ≤ t) and µ = Eξt

i ∈ (0,∞). Then Zt/µ
t is a

martingale w.r.t. Ft.

Proof. Clearly, Zt is measurable with respect to Ft, or Zt ∈ Ft. Recall, see Exercise 1.1 in
Chapter 4 of Durrett (2004), that if X = Y on B ∈ F then E(X|F) = E(Y |F) on B. On
{Zt = k},

E(Zt+1|Ft) = E(ξt+1
1 + · · ·+ ξt+1

k |Ft) = kµ = µZt

Dividing both sides by µt+1 now gives the desired result.

Theorem 2.1.2. If µ < 1 then Zt = 0 for all t sufficiently large.

Proof. E(Zt/µ
t) = E(Z0) = 1, so E(Zt) = µt. Now Zt ≥ 1 on {Zt > 0} so

P (Zt > 0) ≤ E(Zt;Zt > 0) = E(Zt) = µt → 0

exponentially fast if µ < 1.

The last answer should be intuitive. If each individual on the average gives birth to less
than one child, the species will die out. The next result shows that after we exclude the
trivial case in which each individual has exactly one child, the same result holds when µ = 1.

Theorem 2.1.3. If µ = 1 and P (ξt
i = 1) < 1 then Zt = 0 for all t sufficiently large.

Proof. When µ = 1, Zt is itself a nonnegative martingale, so the martingale convergence
theorem, (2.11) in Chapter 4 of Durrett (2004), implies that Zt converges to an a.s. finite
limit Z∞. Since Zt is integer valued, we must have Zt = Z∞ for large t. If P (ξt

i = 1) < 1
and k > 0 then P (Zt = k for all t ≥ T ) = 0 for any T , so we must have Z∞ ≡ 0.

Theorem 2.1.4. If µ > 1 then P (Zt > 0 for all t) > 0.

Proof. For θ ∈ [0, 1], let φ(θ) =
∑

k≥0 pkθ
k where pk = P (ξt

i = k). φ is the generating
function for the offspring distribution pk. Differentiating gives for θ < 1

φ′(θ) =
∞∑

k=1

k pkθ
k−1 ≥ 0

φ′′(θ) =
∞∑

k=2

k(k − 1)pkθ
k−2 ≥ 0

So φ is increasing and convex, and limθ↑1 φ
′(θ) =

∑∞
k=1 kpk = µ. Our interest in φ stems

from the following facts.
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(a) If θt = P (Zt = 0) then θt =
∑∞

k=0 pkθ
k
t−1 = φ(θt−1)

Proof of (a). If Z1 = k, an event with probability pk, then Zt = 0 if and only if all k
families die out in the remaining t − 1 units of time, independent events with probability
θk

t−1. Summing over the disjoint possibilities for each k gives the desired result.

(b) If φ′(1) = µ > 1 there is a unique ρ < 1 so that φ(ρ) = ρ.

Proof of (b). φ(0) ≥ 0, φ(1) = 1, and φ′(1) > 1, so φ(1− ε) < 1− ε for small ε. The last two
observations imply the existence of a fixed point. To see it is unique, observe that µ > 1
implies pk > 0 for some k > 1, so φ′′(θ) > 0 for θ > 0. Since φ is strictly convex, it follows
that if ρ < 1 is the smallest fixed point, then φ(x) < x for x ∈ (ρ, 1).
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Generating function for Poisson mean λ = 1.25.

(c) As t ↑ ∞, θt ↑ ρ.

Proof of (c). θ0 = 0, φ(ρ) = ρ, and φ is increasing, so induction implies θt is increasing and
θt ≤ ρ. Let θ∞ = lim θt. Taking limits in θt = φ(θt−1), we see θ∞ = φ(θ∞). Since θ∞ ≤ ρ, it
follows that θ∞ = ρ.

Combining (a)–(c) shows P (Zt = 0 for some t) = limt→∞ θt = ρ < 1.

Example. Consider the Poisson distribution with mean λ, i.e,

P (ξ = k) = e−λλ
k

k!
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In this case φ(s) =
∑∞

k=0 e
−λskλk/k! = exp(λ(s− 1)) so the fixed point equation is

ρ = exp(λ(ρ− 1)) (2.1.1)

Theorem 2.1.4 shows that when µ > 1, the limit of Zt/µ
t has a chance of being nonzero.

The best result on this question is due to Kesten and Stigum:

Theorem 2.1.5. Suppose µ > 1. W = limZt/µ
t is not ≡ 0 if and only if

∑
pkk log k <∞.

For a proof, see Athreya and Ney (1972), p. 24–29. We will now prove the following simpler
result

Theorem 2.1.6. If
∑

k pk > 1 and
∑
k2pk <∞ then W = limZt/µ

t is not ≡ 0.

Proof. Let σ2 = var (ξt
i). Let Xt = Zt/µ

t. Writing Xt = Xt−1 + (Xt −Xt−1).

E(X2
t |Ft−1) = X2

t−1 + 2Xt−1E(Xt −Xt−1|Ft−1) + E((Xt −Xt−1)
2|Ft−1)

= X2
t−1 + E((Xt −Xt−1)

2|Ft−1) (2.1.2)

since Xt is a martingale. To compute the second term, we observe

E((Xt −Xt−1)
2|Ft−1) = E((Zt/µ

t − Zt−1/µ
t−1)2|Ft−1)

= µ−2tE((Zt − µZt−1)
2|Ft−1) (2.1.3)

On {Zt−1 = k},

E((Zt − µZt−1)
2|Ft−1) = E

(( k∑
i=1

ξt
i − µk

)2∣∣∣∣Ft−1

)
= kσ2 = Zt−1σ

2

Combining the last three equations gives

EX2
t = EX2

t−1 + E(Zt−1σ
2/µ2t) = EX2

t−1 + σ2/µt+1

since E(Zt−1/µ
t−1) = EZ0 = 1. Now EX2

0 = 1, so EX2
1 = 1 + σ2/µ2, and induction gives

EX2
t = 1 + σ2

t+1∑
s=2

µ−s (2.1.4)

This shows suptEX
2
t < ∞, so by the L2 convergence theorem for martingales, (4.5) in

Chapter 4 of Durrett (2004), Xt → W in L2, and hence EXt → EW . EXt = 1 for all t, so
EW = 1 and W is not ≡ 0.

Our next result shows that whenW is not ≡ 0 it is positive on the set where the branching
process does not die out.

Theorem 2.1.7. If P (W = 0) < 1 then {W > 0} = {Zn > 0 for all n }, i.e., the symmetric
difference of the two sets has probability 0.
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Proof. Let ρ = P (W = 0). In order for Zt/µ
t to converge to 0 this must also hold for the

branching process started by each of the children in the first generation. Breaking things
down according to the number of children in the first generation

ρ =
∞∑

k=0

pkρ
k = φ(ρ)

so ρ < 1 is a fixed point of the generating function and hence ρ = P (Zt = 0 for some t).
Clearly, {W > 0} ⊂ {Zt > 0 for all t}. Since the two sets have the same probability
P ({Zt > 0 for all t} − {W > 0}) = 0, which is the desired result.

The limit theorems above describe the growth of the process when it does not die out.
Our next question is: what happens in a supercritical branching process when it dies out?

Theorem 2.1.8. A supercritical branching process conditioned to become extinct is a sub-
critical branching process. If the original offspring distribution is Poisson(λ) with λ > 1 then
the conditioned one is Poisson(λρ) where ρ is the extinction probability.

Proof. Let T0 = inf{t : Zt = 0} and consider Z̄t = (Zt|T0 < ∞). To check the Markov
property for Z̄t note that the Markov property for Zt implies:

P (Zt+1 = zt+1, T0 <∞|Zt = zt, . . . Z0 = z0) = P (Zt+1 = zt+1, T0 <∞|Zt = zt)

To compute the transition probability for Z̄t, observe that if ρ is the extinction probability
then Px(T0 < ∞) = ρx. Let p(x, y) be the transition probability for Zt. Note that the
Markov property implies

p̄(x, y) =
Px(Z1 = y, T0 <∞)

Px(T0 <∞)
=
Px(Z1 = y)Py(T0 <∞)

Px(T0 <∞)
=
p(x, y)ρy

ρx

Taking x = 1 and computing the generating function

∞∑
y=0

p̄(1, y)θy = ρ−1

∞∑
y=0

p(1, y)(θρ)y = ρ−1φ(θρ)

where py = p(1, y) is the offspring distribution.
p̄y = p̄(1, y) is the distribution of the size of the family of an individual, conditioned on

the branching process dying out. If we start with x individuals then in Zn each gives rise to
an independent family. In Z̄n each family must die out, so Z̄n is a branching process with
offspring distribution p̄(1, y). To prove this formally observe that

p(x, y) =
∑

j1,...jx≥0,j1+···+jx=y

pj1 · · · pjx
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Writing
∑

∗ as shorthand for the sum in the last display

p(x, y)ρy

ρx
=
∑
∗

pj1ρ
j1

ρ
· · · pjxρ

jx

ρ
=
∑
∗

p̄j1 · · · p̄jx

In the case of the Poisson distribution φ(s) = exp(λ(s − 1)) so if λ > 1, using the fixed
point equation (2.1.1)

φ(sρ)

ρ
=

exp(λ(sρ− 1))

exp(λ(ρ− 1))
= exp(λρ(s− 1))

which completes the proof.

Geometrically, a supercritical branching process conditioned to die out is a branching
process with a generating function that is obtained by taking the graph of φ over [0, ρ] and
rescaling to make the domain and range [0, 1]. In the next result we take the graph of φ over
[ρ, 1] and rescale to make the domain and range [0, 1].
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Theorem 2.1.9. Consider a supercritical branching process with offspring distribution pk

and generating function φ. If we condition on nonextinction and look only at the individuals
that have an infinite line of descent then the number of individuals in generation t, Z̃t is a
branching process with offspring generating function

φ̃(θ) =
φ((1− ρ)θ + ρ)− ρ

1− ρ

where ρ is the extinction probability, i.e., the smallest solution of φ(ρ) = ρ in [0, 1].
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Proof. There is nothing to prove if ρ = 0 so suppose 0 < ρ < 1. If Z0 = 1 and we condition
on survival of the branching process, then the number of individuals in the first generation
who have an infinite line of descent has distribution

p̃j =
1

1− ρ

∞∑
k=j

pk

(
k

j

)
(1− ρ)jρk−j

Multiplying by θj, summing, and interchanging the order of summation

∞∑
j=1

p̃jθ
j =

1

1− ρ

∞∑
j=1

∞∑
k=j

pk

(
k

j

)
(1− ρ)jρk−jθj

=
1

1− ρ

∞∑
k=1

pk

k∑
j=1

(
k

j

)
(1− ρ)jθjρk−j

Using the binomial theorem and noticing that the j = 0 term is missing the above

=
1

1− ρ

∞∑
k=1

pk{((1− ρ)θ + ρ)k − ρk}

We can add the k = 0 term to the sum since its value is 0. Having done this the result is

φ((1− ρ)θ + ρ)− φ(ρ)

1− ρ

Since φ(ρ) = ρ the result follows.
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2.2 Cluster growth as an epidemic

In this section we use branching process results to study the growth of the connected com-
ponent, or cluster, containing 1, a process which is the same as a discrete time epidemic.
To begin the construction, we let S0 = {2, 3, . . . , n}, I0 = {1}, and R0 = ∅. The letters are
motivated by the epidemic interpretation of the growing cluster. St are the susceptibles, It
are infected, and Rt are removed. In graph terms, we have already examined the connections
of all sites in Rt, It are the sites to be investigated on this turn, and St are unexplored. These
sets evolve as follows:

Rt+1 = Rt ∪ It
It+1 = {y ∈ St : ηx,y = 1 for some x ∈ It}
St+1 = St − It+1 (2.2.1)

The cluster containing 1, C1 = ∪∞t=0It.
Kendall (1956) was the first to suggest a branching process approximation for epidemics.

To define a comparison branching process we introduce a new independent set of variables
ζt
x,y, x, t ≥ 1, 1 ≤ x, y ≤ n that are independent, = 1 with probability λ/n, and 0 otherwise.

Let Z0 = 1, Sc
t = {1, 2, . . . , n} − St and

Zt+1 =
∑

x∈It,y∈St

ηx,y +
∑
x∈It

∑
y∈Sc

t

ζt
x,y +

n+Zt−|It|∑
x=n+1

n∑
y=1

ζt
x,y (2.2.2)

The third term represents children of individuals in the branching process that are not in
It. The second term, which we will denote by Bt, is the set of extra births in the branching
process due to the fact that |St| < n. As for the first term,

Ct+1 =
∑

x∈It,y∈St

ηx,y − |It+1| ≥ 0

is the number of collisions, i.e., the number of births that occur in the branching process but
are not matched by an increase in the cluster size. It is immediate from the construction
that Zt is a branching process with offspring distribution Binomial(n, λ/n) and

Zt ≥ |It|

This is enough to take care of the case λ < 1. EZt = λt, so the mean cluster size

E|C1| = E

(
∞∑

t=0

|It|

)
≤

∞∑
t=0

λt =
1

1− λ
<∞ (2.2.3)

To study the case λ > 1 (and to show that the last result is asymptotically sharp) we
need to bound the difference between Zt and |It|. Let Y0 = 0 and for t ≥ 0 let

Yt+1 =
t∑

s=0

Zs = Yt + Zt ≥ |Rt+1|
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Let Ft be the σ-field generated by Ss, Is, Rs for s ≤ t and ζs
x,y with s ≤ t.

E(Bt+1|Ft) =
λ

n
|It|(|It|+ |Rt|) ≤

λ

n
Zt(Zt + Yt) =

λ

n
ZtYt+1 (2.2.4)

To bound the collision term we observe that

Ct+1 ≤ |{(x, x′, y) : x, x′ ∈ It, y ∈ St, x < x′, ηx,y = ηx′,y = 1}|

so using |St| ≤ n and |It| ≤ Zt we have

E(Ct+1|Ft) ≤
(
λ

n

)2

|It|2|St| ≤
λ2

n
Z2

t (2.2.5)

To estimate the third term in (2.2.2), we call the Cs + Bs individuals added at time s
immigrants, and let As,t be the children at time t ≥ s of immigrants at time s, with As,s =
Bs + Cs. The third error term is

∑t
s=1As,t. Clearly

E(As,t) = λt−sE(Bs + Cs) (2.2.6)

The next result shows that in the subcritical regime the cluster size distribution is very
close to the total progeny in the branching process when n is large.

Theorem 2.2.1. If λ < 1,
∑∞

t=1E(Zt − |It|) ≤ C
n
.

Here and in what follows C is a constant whose value is unimportant and may change from
line to line.

Proof. Since Zt − |It| =
∑t

s=1As,t, interchanging the order of summation and using (2.2.6)
gives

∞∑
t=1

E(Zt − |It|) ≤ E

(
∞∑

s=1

∞∑
t=s

As,t

)
≤ 1

1− λ
E

∞∑
s=1

(Bs + Cs) (2.2.7)

Using (2.2.4), (2.2.5), and recalling Ys+1 =
∑s

r=0 Zr = Ys + Zs the above is

E
∞∑

s=1

(Bs + Cs) ≤
λ

n
E

(
∞∑

s=1

s−1∑
r=0

ZrZs

)
+
λ+ λ2

n
E

∞∑
s=0

Z2
s (2.2.8)

If r < s then E(ZrZs|Fr) = ZrE(Zs|Fr) = λs−rZ2
r , so

E(ZrZs) = λs−rEZ2
r (2.2.9)

and interchanging the order of summation

E

(
∞∑

r=0

∞∑
s=r+1

ZrZs

)
=

λ

1− λ
E

∞∑
r=0

Z2
r
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Combining the last three displays we see that to complete the proof it is enough to show
that E

∑∞
s=0 Z

2
s ≤ C. To do this we compute the second moments recursively. Adding and

subtracting λZs−1 = E(Zs|Fs−1) inside the square and noting that the crossproduct term
vanishes

E(Z2
s |Fs−1) = λ2Z2

s−1 + E((Zs − λZs−1)
2|Fs−1)

= λ2Z2
s−1 + σ2Zs−1

since conditional on Fs−1, Zs is a sum of Zs−1 random variables with mean λ and variance
σ2 = n(λ/n)(1− λ/n) ≤ λ. EZs−1 = λs−1 so

EZ2
s ≤ λs + λ2EZ2

s−1

Iterating we have

EZ2
s ≤ λs + λs+1 + λ4EZ2

s−2

≤ λs + λs+1 + λs+2 + λ6EZ2
s−3

≤
∞∑

r=s

λr = λs/(1− λ)

which completes the proof.

Theorem 2.2.2. If λ > 1, E(Zt − |It|) ≤ C
n
λ2t+2.

Proof. Using (2.2.8) with (2.2.9) as in the previous proof

E(Bs + Cs) ≤
λ

n
E

(
s−1∑
r=0

ZrZs

)
+
λ+ λ2

n
EZ2

s ≤
λ+ λ2

n

(
s∑

r=0

λs−rEZ2
r

)

Using (2.1.4), EZ2
r ≤ Cλ2r, so E(Bs + Cs) ≤ Cλ2s+2/n, and it follows from (2.2.7) that

E(Zt − |It|) ≤ E

(
t∑

s=0

As,t

)
≤ C

n
λ2t+2

and the proof is complete.

When t = a log n/(log λ), Theorem 2.2.2 becomes

E(Zt − |It|) ≤ Cn2a−1

If a < 1/2 then the right-hand side tends to 0 and Zt = |It| with a probability that tends
to 1 as n → ∞. EZt = λt = na so if a < 1, E(Zt − |It|) = o(EZt). In words, the cluster is
almost the same size as the branching process at times when the expected size is o(n).
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2.3 Cluster growth as a random walk

Although the connection with branching processes is intuitive, it is more convenient techni-
cally to expose the cluster one site at a time to obtain something that can be approximated
by a random walk. In this section we will introduce that connection and use it to prove the
existence of a giant component with ∼ θ(λ)n vertices when p = λ/n with λ > 1.

Since we have an emotional attachment to using St for a random walk, we will change the
previous notation and let R0 = ∅, U0 = {2, 3, . . . , n}, and A0 = {1}. Rt is the set of removed
sites, Ut are the unexplored sites and At is the set of active sites. At time τ = inf{t : At = ∅}
the process stops. If At 6= ∅, pick it from At according to some rule that is measurable with
respect to At = σ(A0, . . . At) and let

Rt+1 = Rt ∪ {it}
At+1 = At − {it} ∪ {y ∈ Ut : ηit,y = 1}
Ut+1 = Ut − {y ∈ Ut : ηit,y = 1} (2.3.1)

This time |Rt| = t for t ≤ τ , so the cluster size is τ .

Upper bound for λ < 1. To define a comparison random walk, we introduce a new
independent set of variables ζt

y, t ≥ 1, y ≤ n that are independent, = 1 with probability
λ/n, and 0 otherwise. Let S0 = 1 and for t ≥ 0, let U c

t = {1, 2, . . . , n} − Ut

St+1 = St − 1 +

{ ∑
y∈Ut

ηit,y +
∑

y∈Uc
t
ζt
y if At 6= ∅∑n

y=1 ζ
t
y if At = ∅

St is a random walk with St ≥ |At| if t ≤ τ , so if T = inf{t : St = 0} then τ ≤ T .
The increments Xi of the random walk are −1 + Binomial(n, λ/n). If λ < 1 stopping

the martingale St − (λ− 1)t at the bounded stopping time T ∧ t gives

EST∧t − (λ− 1)E(T ∧ t) = ES0 = 1

Since EST∧t ≥ 0, it follows that E(T∧t) ≤ 1/(1−λ). Letting t→∞ we have ET ≤ 1/(1−λ).
Having verified that ET <∞ we can now use Wald’s equation, see e.g., (1.6) in Chapter 3
of Durrett (2004), to conclude E(ST − S0) = (λ− 1)ET and hence

ET = 1/(1− λ) (2.3.2)

We can get a much better result by using the moment generating function:

Theorem 2.3.1. Suppose λ < 1 and let α = λ− 1− log(λ) > 0. If a > 1/α then

P

(
max
1≤x≤n

|Cx| ≥ a log n

)
→ 0
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Remark. This bound is very accurate. Corollary 5.11 of Bollobás (2001) shows that the
size of the largest component is asymptotically

1

α

(
log n− 5

2
log log n

)
+O(1)

Proof. We begin by computing the moment generating function:

φ(θ) = E exp(θXi)) = e−θ(1− λ/n+ (λ/n)eθ)n

≤ exp(−θ + λ(eθ − 1)) = ψ(θ) (2.3.3)

since 1 + x ≤ ex. Note that the right-hand side is the moment generating function of −1 +
Poisson mean λ. ψ′(0) = EXi = 1 − λ so if λ < 1 then ψ(θ) < 1 when θ > 0 is small. To
optimize we set the derivative

d

dθ
(−θ + λ(eθ − 1)) = −1 + λeθ = 0

when θ1 = − log λ. At this point ψ(θ1) = exp(log(λ) + 1 − λ) ≡ e−α < 1. exp(θ1St)/φ(θ1)
t

is a nonnegative martingale, so using the optional stopping theorem for the nonnegative
supermartingale Mt = exp(θ1St)/ψ(θ1)

t, see e.g., (7.6) in Chapter 4 of Durrett (2004)

1/λ = eθ1 ≥ E(ψ(θ1)
−T ) = E(eαT )

so using Chebyshev’s inequality

P (T ≥ k) ≤ e−kα/λ (2.3.4)

Letting Cx denote the cluster containing x, noting that T ≥ |Cx| in distribution, and taking
k = (1 + ε)(log n)/α

P (|Cx| ≥ (1 + ε)(log n)/α) ≤ n−(1+ε)/λ

from which the desired result follows.

Lower Bound for λ > 1. To get a lower bound on the growth of the cluster let Û δ
t

consists of the (1− δ)n smallest members of Ût. As long as Ât 6= ∅ and Û t
δ ≥ (1− δ)n which

corresponds to |Ât|+ t ≤ nδ, we can define

R̂t+1 = R̂t ∪ {jt}
Ât+1 = Ât − {jt} ∪ {y ∈ Û δ

t : ηjt,y = 1}
Ût+1 = Ût − {y ∈ Û δ

t : ηjt,y = 1} (2.3.5)

where jt = min Ât. It is easy to see that if we take it = jt in (2.3.1) then |At| ≥ |Ât|. To
define a comparison random walk, we let W0 = 1 and for

t ≤ TW = inf{s : Ws = 0, or Ws + s ≥ nδ}
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define

Wt+1 = Wt − 1 +

{∑
y∈Ûδ

t
ηit,y if t < TW∑n(1−δ)

y=1 ζt
y if t ≥ TW

It is easy to see that for t ≤ TW , |Ât| = Wt so τ ≥ TW .
We will use the comparison random walk to prove

Theorem 2.3.2. Suppose λ > 1. There is a constant β so that with probability → 1, there
is only one component of the random graph with more than β log n vertices. The size of
this component ∼ (1 − ρ(λ))n where ρ(λ) is the extinction probability for the Poisson(λ)
branching process.

Remark. This time our constant is the end result of several choices and is not so good.
Corollary 5.11 of Bollobás (2001) shows that when λ > 1 the largest non-giant component
is asymptotically (1/α) log n where α = λ − 1 − log(λ) > 0. We will prove that result in
Theorem 2.6.4.

Proof. There are four steps.

Step 1. There is a constant γ = 2/θδ so that if W0 ≥ γ log n then the probability Wt ever
hits 0 is ≤ n−2.

Step 2. Using |At| ≈ St the random walk from the previous section, we show there is a
constant β so that P (0 < |A(β log n)| < γ log n) = o(n−1).

Step 3. Using Wt ≤ |At| ≤ St, we show that with probability ≥ 1 − exp(−ηn2/3) we
have εn2/3 ≤ |A(n2/3)| ≤ 2λn2/3. Combined with the first two steps, this shows that with
probability → 1, all clusters reaching size β log n will intersect producing a giant component.

Step 4. We show that the number of sites with clusters of size ≥ β log n is asymptotically
ρn.

Step 1. The increments of W have the distribution −1 + Binomial((1 − δ)n, λ/n). By
(2.3.3) the moment generating function of an increment

φδ(θ) ≤ exp(−θ + λ(1− δ)(eθ − 1)) ≡ ψδ(θ) (2.3.6)

Choose δ > 0 so that λ(1− δ) > 1. ψ′δ(0) = −1 + λ(1− δ) > 0 so ψδ(−θ) < 1 when θ > 0 is
small. Since ψδ(−θ) is convex and tends to ∞ as θ →∞ there is a unique positive solution
of ψδ(−θδ) = 1. φδ(−θδ) ≤ 1 so Mt = exp(−θδWt) is a nonnegative supermartingale. Let
T0 = inf{t : Wt = 0}. Stopping at time T0 ∧ t we have

e−θδ ≥ E1(exp(−θδW (T0));T0 ≤ t) ≥ P1(T0 ≤ t)

Letting t→∞ we have

e−θδ ≥ P1(T0 <∞) (2.3.7)
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To compare with the previous approach using branching processes, note that ρ = e−θ0 < 1
has θ0 + λ(e−θ0 − 1) = 0 (since ψ0(−θ0) = 1) so rearranging gives

ρ = exp(λ(ρ− 1))

which is the fixed point equation for the branching process.
From the proof of (2.3.7) it is immediate that if Pm denotes the probability when W0 = m

Pm(T0 <∞) ≤ e−θδm (2.3.8)

We want to make sure that all of the components Cx, 1 ≤ x ≤ n behave as we expect, so we
take mδ = (2/θδ) log n to make the right-hand side n−2.

Large deviations bound. To control the behavior of Wt and St with good error bounds
we use the following:

Lemma 2.3.3. Let Z = X1+ · · ·+Xt where the Xi are independent Binomial((1−δ)n, λ/n).
Let µ = EZ = tλ(1− δ). Let γ(x) = x log x− x+ 1 which is > 0 when x 6= 1. If x < 1 < y
then P (Z ≤ xµ) ≤ e−γ(x)µ and P (Z ≥ yµ) ≤ e−γ(y)µ.

Proof. E exp(θZ) ≤ exp(µ(eθ − 1)) by (2.3.6). If θ > 0 Markov’s inequality implies

P (Z ≥ yµ) ≤ exp((−θy + eθ − 1)µ)

Since y > 1, −θy + eθ − 1 < 0 for small θ > 0. Differentiating we see that the bound is
optimized by taking θ = log y. If θ < 0 Markov’s inequality implies

P (Z ≤ xµ) ≤ exp((−θx+ eθ − 1)µ)

Since x < 1, −θx + eθ − 1 < 0 for small θ < 0. Differentiating we see that the bound is
optimized by taking θ = log x.

Step 2. Let ε = (λ− 1)/2. Applying Lemma 2.3.3 to St − S0 + t with x = (1 + ε)/λ we
see that there is an η1 > 0 so that

P (St − S0 ≤ εt) ≤ exp(−η1t) (2.3.9)

Taking y = 2 in Lemma 2.3.3 we have an η2 > 0 so that

P (St − S0 + t ≥ 2λt) ≤ exp(−η2t) (2.3.10)

Recall S0 = 1. When St + t ≤ 2λt, we have |Us| ≥ n − 2λt for all s ≤ t, so the number of
births lost in As for s ≤ t ∧ τ

≤
t−1∑
s=0

n∑
y=|Us|+1

ζt
y ≤ Binomial(2λt2, λ/n) (2.3.11)
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From this it follows that

P (|At| > 0, St 6= |At|) ≤ 2λ2t2/n (2.3.12)

P (|At| > 0, St − |At| ≥ 2) ≤
(

2λt2

2

)(
λ

n

)2

(2.3.13)

We are going to use the results in the previous paragraph at time r = β log n where β is
chosen so that βε ≥ 3/θδ, βη1 ≥ 2 and βη2 ≥ 2. Combining (2.3.9), (2.3.10), and (2.3.13)
we have

P (0 < |Ar| ≤ (3/θδ) log n− 2) ≤ C
(log n)2

n2

If n is large (3/θδ) log n − 2 ≥ (2/θδ) log n = mδ, so (2.3.8) implies that if |Ar| > 0 it is
unlikely that the lower bounding random walk will ever hit 0.

Step 3. Let εδ = (λ(1− δ)− 1)/2. Using Lemma 2.3.3 twice we have

P1(W (n2/3)−W (0) ≤ εδn
2/3) ≤ exp(−η3n

2/3)

P1(W (n2/3)−W (0) + n2/3 ≥ 2λn2/3) ≤ exp(−η4n
2/3) (2.3.14)

Here we take W (0) = |Ar| ≤ 2λβ log n. Since Wt + t is nondecreasing this shows that with
probability 1 − O(n−2), Ws + s ≤ δn for all s ≤ n2/3, and the coupling between Ws and
|A(s+ r)| remains valid for 0 ≤ s ≤ n2/3.

The first bound in (2.3.14) implies that if a cluster reaches size r = β log n then the set
of active sites at time r + n2/3 is ≥ εδn

2/3 with high probability. Thus if we have two such
clusters of size ≥ β log n then either (a) they will intersect by time r + n2/3 of (b) at time
r + n2/3 they have disjoint sets I and J of active sites of size ≥ εδn

2/3. The probability of
no edge connecting I and J is

=

(
1− λ

n

)ε2δn4/3

≤ exp(−η5n
1/3)

where η5 = λε2δ . This proves the first assertion in Theorem 2.3.2.

Step 4. To prove the second assertion it suffices to show that

|{x : |Cx| ≤ β log n}|/n→ ρ(λ) (2.3.15)

The first step is to show P (|Cx| ≤ β log n) → ρ(λ). Let T0 = inf{t : St = 0}. Because
St ≥ |At|, the probability in question is

≥ P (T0 ≤ β log n)− o(1) → ρ(λ)

For the other direction we note that (2.3.13) shows that P (T0 > β log n, St 6= |At|) → 0.
To complete the proof of (2.3.15) we will show that the random variables Yx = 1 if

|Cx| ≤ β log n and 0 otherwise are asymptotically uncorrelated. We isolate the reasoning as
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Lemma 2.3.4. Let F be an event that involves exposing J vertices starting at 1, and let G
be an event that involves exposing K vertices starting at 2. Then

|P (F ∩G)− P (F )P (G)| ≤ JK · 2λ

n

Proof. Let Rt, Ut and At be the process of exposing the cluster of 1. Introduce independent
copies of the basic indicator random variables η′x,y. Let R′

0 = ∅, A′
0 = {2} and U ′

0 =
{1, 2, . . . , n} − {2}. If A′

t 6= ∅, pick i′t = minA′
t. If i′t 6∈ Rβ log n let

R′
t+1 = R′

t ∪ {i′t}
A′

t+1 = A′
t − {i′t} ∪ {y ∈ U ′

t : η′i′t,y = 1}
U ′

t+1 = U ′
t − {y ∈ U ′

t : η′i′t,y = 1} (2.3.16)

However if i′t ∈ RJ , an event we call a collision, we use ηi′t,y
instead of η′i′t,y

. In words if
while growing cluster 2 we choose a site that was used in the growth of cluster 1, we use the
original random variables ηx,y. Otherwise we use independent random variables.

It should be clear from the construction that

P (Y1 = 1, Y2 = 1)− P (Y1 = 1)P (Y2 = 1) ≤ P (RJ ∩R′
K 6= ∅) ≤ JK · λ

n

and this completes the proof.

Using Lemma 2.3.4 with J = K = β log n, the probability of a collision is at most
λ(β log n)2/n. Using our bound on the covariance

var

(
n∑

x=1

Yx

)
≤ n+

(
n

2

)
λ(β log n)2

n
≤ Cn log n

so it follows from Chebyshev’s inequality that

P

(
n∑

x=1

(Yx − EYx) ≥ n2/3

)
≤ Cn log n

n4/3
→ 0

This proves (2.3.15) and completes the proof of Theorem 2.3.2.
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2.4 Diameter of the giant component

Having proved the existence of the giant component, we can use the branching process results
from Section 2 to study the typical distance between two points on the giant component.

Theorem 2.4.1. Suppose λ > 1 and pick two points x and y at random from the giant
component. Then d(x, y)/ log n→ 1/ log λ in probability.

The answer in Theorem 2.4.1 is intuitive. The branching process approximation grows at
rate λt, so the average distance is given by solving λt = n, i.e., t = (log n)/ log λ.

Proof. We begin with a small detail. The growth of the cluster containing x in the graph on
n can be approximated by a branching process Zn

t . Unfortunately the offspring distribution
Binomial(n, λ/n) depends on n, so if we are concerned with the behavior of Zn(tn) with
tn → ∞ we have a triangular array, not a single sequence. To deal with this, we use
(6.4) in Chapter 2 of Durrett (2004) to conclude that the total variation distance between
Binomial(n, λ/n) and Poisson(λ) is ≤ 2λ/n. It follows from the definition of the total
variation distance that ξ = Binomial(n, λ/n) and ξ′ = Poisson(λ) can be constructed on the
same space in such a way that P (ξ 6= ξ′) ≤ 2λ/n. In what follows we will run the branching
process until the total number of birth events is o(n) so with a probability that → 1 there
are no differences between the Binomial and Poisson versions. Thus we can use the growth
results for the Poisson process and make conclusions about the Binomial one.

The size of Zt ≥ |It| at time (1 − ε) log n/ log λ is ∼ n1−εW , so most of the points are
at least distance ≥ (1 − ε) log n/ log λ. As Theorem 2.3.2 shows, membership in the giant
component is asymptotically equivalent to the cluster size being larger than β log n. Let Y∞
be the total progeny of the branching process. When λ > 1, P (β log n < Y∞ < ∞) → 0 as
n→∞, so points in the infinite cluster are with high probability associated with branching
processes that don’t die out. If δ is small then the size of one of these processes at time
(1+ ε) log n/(2 log λ) is ∼ n(1+ε)/2δ with high probability. If we consider two growing clusters
at this time then either (a) they have already intersected or (b) they will have n1+εδ2 chances
to intersect at the next time, and the probability they will fail is

≤
(

1− λ

n

)n1+εδ2

≤ exp(−nεδ2) → 0

and the proof is complete.

Our next task is to show that the diameter D = max d(x, y) of the giant component has
a different limiting behavior than the average distance between two randomly chosen points.
A dangling end is path v0, v1, . . . vk+1 with the degree d(v0) = 1 and d(vi) = 2 for 1 ≤ i ≤ k.

Theorem 2.4.2. Let p1 = e−λλ and choose k(n) so that cn = np
k(n)+1
1 stays bounded away

from 0 and ∞. When n is large the probability of a dangling end of length k(n) is approxi-
mately 1− exp(−cn).
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Here k(n) = log n/(log p1) + O(1). The statement is made complicated by the fact that

increasing k(n) by 1 decreases np
k(n)+1
1 by a factor p1, so we cannot choose k(n) to make cn

converge to c ∈ (0,∞).

Proof. Let A(x,y) be the event that there is dangling end v0 = x, v1, . . . vk+1 = y

P (∪(x,y)A(x,y)) ≤
∑
(x,y)

P (A(x,y)) ∼ n(n− 1) · pk+1
1 · 1

n− 1
= cn

To see this note that there are n(n− 1) values for the ordered pair (x, y) with y 6= x. v0 has
degree 1, an event of probability p1. As for the vi with i > 0, we arrive there along the edge
from vi−1 and we have n− i uninspected outgoing edges so the probability of finding exactly
one open is ∼ p1. When i < k we don’t care what vertex we connect to, but when i = k we
want vk to connect to y, an event that by symmetry has probability 1/(n− 1).

By the inclusion-exclusion formula we can get a lower bound by subtracting the sum of
P (A(x,y) ∩A(w,z)) for all (x, y) 6= (w, z). It is easy to see that if y 6= z, A(x,y) ∩A(x,z) = ∅. In
all the other cases the paths for these two events cannot intersect, except perhaps at y = z.
This gives the second event less room to occur, so in all cases

P (A(x,y) ∩ A(w,z)) ≤ P (A(x,y)) · P (A(w,z)) (2.4.1)

Combining the two estimates we have∑
(x,y) 6=(w,x)

P (A(x,y) ∩ A(w,z)) ≤
1

2
(n(n− 1))2P (A(x,y))

2 ∼ c2n/2

Before progressing to the third level of approximation, we need to improve (2.4.1) by
observing that the occurrence of Ax,y in effect removes k + 1 vertices from the graph so
unless x = w and y 6= z,

P (A(x,y) ∩ A(w,z))/P (A(x,y)) · P (A(w,z)) → 1

as n→∞. This result generalizes easily to a fixed finite number of events. Using this with
the mth approximation to the inclusion exclusion formula we get an approximation

cn − c2n/2! + · · ·+ (−1)m+1cmn /m!

which is an upper bound or a lower bound depending on whether the last term is + or −.
The infinite series is 1− exp(−cn) and the desired result follows.

Suppose we have two dangling ends, one from x to y and the other from w to z, each
of length a log n. Conditioning on their existence removes some vertices from the graph but
does not significantly change the growth of clusters from y and z. Thus in ER(n, λ/n), we
have positive probability of y and z belonging to the giant component. When they do, they
will have distance ≈ (log n)/(log λ), and x and w will have distance 2a log n+(log n)/(log λ).
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Chung and Lu (2001) have obtained upper bounds on the diameter of the giant component,
see Theorem 6 on their page 272.

Looking at the last paragraph, a mathematician might conclude that the diameter is
what we should be studying, because it is harder to understand than the typical distance.
While the diameter is the more traditional notion, there are two good reasons to study the
distance between two randomly chosen points. The first is that the diameter is a number
while the distribution of the typical distance contains substantially more information. In
addition, the diameter is rather sensitive to small changes in the graph: adding a dangling
end can substantially change the diameter, but will not affect the typical distance.
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2.5 CLT for the giant component

Up to this point we have been content to study the growth of clusters while they are o(n).
In this section we will use an idea of Martin-Löf (1986) to follow the random walk approach
all of the way to the end of the formation of the giant component and prove a central limit
theorem for the size of the giant component.

To avoid the problem caused by the process dying out, it is convenient to modify the
rules so that if At = ∅ we pick it ∈ Ut, and rewrite the recursion as

Rt+1 = Rt ∪ {it}
At+1 = At − {it} ∪ {y ∈ Ut : ηit,y = 1}
Ut+1 = Ut − ({it} ∪ {y ∈ Ut : ηit,y = 1})

In words, when one cluster is finished we pick a new vertex and start exposing its cluster.
WhenAt = ∅ we subtract 1 + Binomial(|Ut|, λ/n) points from Ut versus Binomial(|Ut|, λ/n)

points when At 6= ∅. However, we will experience only a geometrically distributed number
of failures before finding the giant component, so this difference can be ignored. Let Ft be
the σ-field generated by the process up to time t. Let un

t = |Ut|.

Lemma 2.5.1. un
[ns]/n converges in distribution to us the solution of

dus

ds
= −λus u0 = 1

and hence us = exp(−λs).

Proof. Let ∆un
t = un

t+1 − un
t . If At 6= ∅ then

E(∆un
t |Ft) = −un

t

λ

n

var (∆un
t |Ft) = un

t

λ

n

(
1− λ

n

)
If we let t = [ns] for 0 ≤ s ≤ 1 and divide by n then

E

(
∆un

[ns]

n

∣∣∣∣F[ns]

)
= −

un
[ns]

n
· λ · 1

n

var

(
∆un

[ns]

n

∣∣∣∣F[ns]

)
=

un
[ns]

n
· λ
(

1− λ

n

)
· 1

n2
(2.5.1)

Dividing each right-hand side by 1/n, the time increment in the rescaled process, we see that
∆un

[ns] has

infinitesimal mean = −
un

[ns]

n
λ
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infinitesimal variance =
un

[ns]

n
λ

(
1− λ

n

)
· 1

n

Letting n → ∞, the infinitesimal variance → 0, so the result follows from (7.1) in Durrett
(1996).

The last proof is simple and intuitive, but may be too sophisticated for some reader’s tastes,
so we now give

Alternative Proof. The calculations above show that

Mn
t =

(
1− λ

n

)−t

un
t /n

is a martingale with

E(Mn
t −Mn

0 )2 =
t−1∑
s=0

E(Mn
s+1 −Mn

s )2

≤
t−1∑
s=0

(
1− λ

n

)−s+1

λ/n2 → 0

so by Kolmogorov’s maximal inequality

E

(
max
0≤s≤n

(Mn
s −Mn

0 )2

)
→ 0

Since Mn
0 = 1, this says that when n is large Mn

s ≈ 1 uniformly in s, so un
[ns]/n ≈ (1 −

λ/n)[ns] → e−λs.

To determine the size of the giant component, we note that when un
t + rn

t = n, At = ∅.
This may occur several times for small t while we are seaching for the giant component, but
the solution we are looking for is the first occurrence after an excursion of O(n). To locate
roughly the time at which this occurs, we note that scaling rn

t = |Rt| ≡ t as we did un
t ,

rn
[ns]/n → s. [Here and in what follows we will use t for the original integer time scale and

s ∈ [0, 1] for rescaled time.] After scaling

un
t + rn

t = n ⇒ e−λs + s = 1

Solving we have 1 − s = exp(λ((1 − s) − 1)), which is the fixed point equation for the
extinction probability, 1− s. As the graph below shows e−λs + s > 1 for s > 1− ρ, so we are
interested only in un

[ns]/n for 0 ≤ s ≤ 1− ρ+ ε. In this part of the process we first generate
a geometrically distributed number of small clusters and then expose the giant component.
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Consider now yn
[ns] = (un

[ns] − n exp(−λs))/
√
n for 0 ≤ s ≤ 1− ρ.

Lemma 2.5.2. As n → ∞, yn
[ns] converges in distribution to a normal with mean 0 and

variance e−λs − e−2λs.

Proof. If A[ns] 6= ∅ then using the formulas in (2.5.1)

E(∆yn
[ns]|F[ns]) = − 1√

n

(
−un

[ns] ·
λ

n
− n exp(−λs)(exp(−λ/n)− 1)

)
∼ −λ

n

(
un

[ns] − n exp(−λs)
√
n

)
= −λyn

[ns] ·
1

n

var (∆yn
[ns]|F[ns]) = var

(
∆un

[ns]√
n

∣∣∣∣F[ns]

)
=

1

n
· un

[ns] ·
λ

n

(
1− λ

n

)
∼ λe−λs · 1

n

Using (7.1) in Chapter 8 of Durrett (1996) again, we see that yn
[ns] converges in distribution

to the solution of the following stochastic differential equation.

dys = −λys ds+
√
λe−λs dBs y0 = 0

The solution to this equation is

ys =

∫ s

0

e−λ(s−r)
√
λe−λr dBr (2.5.2)
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To check this, recall that if one continuously invests an amount gs in an exponentially
decaying stock market then your net wealth xs satisfies

dxs

ds
= −λxs + gs

Since computation of interest is linear, each amount decays exponentially from its date of
investment, and this differential equation has solution

xs =

∫ s

0

e−λ(s−r)gr dr

Readers who want a more rigorous proof can use stochastic calculus to check this.
Since the integrand in (2.5.2) is deterministic, ys has a normal distribution with mean 0

and variance ∫ t

0

exp(−2λ(s− r))λe−λr dr = e−2λs

∫ s

0

λeλr dr = e−λs − e−2λs

which proves the result.

Remark. Again if one wants to avoid stochastic calculus, the theorem can be proved by
applying the martingale central limit theorem to

Mn
t −Mn

0 =

(
1− λ

n

)−t

un
t /n− 1

The key observation is that

[ns]−1∑
r=0

E((Mn
r+1 −Mn

r )2|Fr) →
∫ s

0

λeλu du = eλs − 1

i.e., the variance process has a deterministic limit. See e.g., Section 7.? in Durrett (2004).
Multiplying the martingale by e−λs, multiplies the variance by e−2λs and we arrive at the
same limit as before.

We have analyzed the fluctuations of un
[ns]. To determine the fluctutations of the point

where un
t + t = n, we can now prove the result as we do the central limit theorem of renewal

theory. To briefly recall that appraoch, let ξ1, ξ2, . . . be i.i.d. positive random variables with
Eξi = µ and var (ξi) = σ2 ∈ (0,∞). Let Tn = ξ1 + · · ·+ ξn and N(t) = inf{n : Tn > t}. The
central limit theorem implies

Tn ≈ nµ+ σ
√
nχ

where χ is a standard normal. Setting n = t/µ

Tt/µ ≈ t+ σ

√
t

µ
χ
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If χ > 0 then N(t) < t/µ. The law of large numbers implies Tn − Tm ≈ (n − m)µ when
n−m is large so we will have

t

µ
−N(t) ≈ σ

µ

√
t

µ
χ

The same reasoning applies in the current situation. Taking s = 1 − ρ in Lemma 2.5.2
and letting Z denote a normal with variance e−λ(1−ρ) − e−2λ(1−ρ) we have

un
[n(1−ρ)] ≈ n exp(−λ(1− ρ)) +

√
nZ (2.5.3)

A[ns] = ∅ when un
[ns] = n− [ns]. To find out when this occurs, we suppose equality holds at

s0 = (1− ρ) + Y/
√
n. Using (2.5.3) and noting s0 → (1− ρ) as n→∞

n exp(−λ{(1− ρ) + Y/
√
n}) +

√
nZ = un

[ns0] = n− [ns0]

or rearranging
exp(−λs0)− 1 + s0 = −

√
Z/
√
n

Let h(t) = e−λt − 1 + t which is = 0 at t = 1 − ρ. h′(t) = −λe−λt + 1, so we can write the
above as

h′(1− ρ)Y/
√
n ≈ −

√
Z/
√
n

or Y ≈ Z/h′(1− ρ). h′(1− ρ) = 1− λρ. Putting the pieces together.

Theorem 2.5.3. Suppose λ > 1. The size of the largest component C(1) satisfies

|C(1)| − n(1− ρ)√
n

⇒ χ

where ⇒ means convergence in distribution and χ has a normal distribution with mean 0
and variance (ρ− ρ2)/(1− λρ).

For other approaches to this result see Pittel (1990) and Barraez, Boucherno, and Fernandez
de la Vega (2000). To compare variances note that Pittel’s c = λ and T = ρ/λ.
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2.6 Combinatorial approach

Combinatorial methods give more refined results about the Erdös-Rényi model, but they
also work more easily in the presence of qualitative results like Theorems 2.3.1 and 2.3.2 and
the next lemma. First, we need some graph theoretic preliminaries. It is easy to see that a
tree with k vertices has k− 1 edges. We call a graph with k vertices and k edges, a unicyclic
graph, since it will have exactly one cycle, i.e., a path of adjacent vertices x0, x1, . . . , xk = x0,
and xj 6= x0 for 1 ≤ j < k. We call a graph with k vertices and k + ` edges with ` ≥ 1 a
complex component with complexity `.

Our first result, says that complex components are rare, except possibly near the critical
value λ = 1.

Lemma 2.6.1. Suppose λ 6= 1, let A < ∞ be a constant, and consider only components
with ≤ A log n vertices. The expected number of unicyclic components is ≤ λ(A log n)2. The
probability of having at least one complex component is ≤ (A log n)4λ2/n.

Proof. We look at the growth of the cluster from the random walk viewpoint. An increase
in complexity is caused by a “self-intersection”, i.e., a connection from it to some point in
At. Our assumption implies that there are ≤ A log n times and |At| ≤ A log n for all t
so the number of self-intersections is ≤ Binomial((A log n)2, λ/n). The result for unicyclic
components follows by recalling there are n possible starting points and taking expected
value. The result for complex components follows by computing the probability of two or
more self-intersections as we did in (2.3.13).

Having ruled out complex components, we can, for λ 6= 1, restrict our attention to tree
and unicyclic components. Cayley (1889) showed that there are kk−2 trees with k labeled
vertices. When p = λ/n the expected number of trees of size k present is(

n

k

)
kk−2

(
λ

n

)k−1(
1− λ

n

)k(n−k)+(k
2)−(k−1)

(2.6.1)

since each of the k − 1 edges in the tree needs to be present and there can be no edges
connecting its k vertices to its complement or any other edges connecting the k vertices. For
fixed k, we can drop −k2 +

(
k
2

)
− k + 1 from the exponent of the last term and the above is

asymptotic to

n
kk−2

k!
λk−1e−λk ≡ nqk (2.6.2)

Recalling that in the subcritical regime cluster sizes have the same distribution as the
total progeny in a Poisson(λ) branching process, we get the following corollary, which is
“well-known,” but not easy to prove directly from the definition of the branching process:

Corollary 2.6.2. The probability distribution of the total progeny τ of a Poisson(λ) branch-
ing process with λ < 1 is given by

P (τ = k) = kqk =
1

λ

kk−1

k!
(λe−λ)k (2.6.3)
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There is an extra factor of k due to the fact that a tree of size k is Cx for k values of x.
This distribution was first discovered by Borel (1942). It is called the Borel-Tanner

distribution, since Tanner (1961) showed that when λ < 1 it gave the distribution of the
total number of customers served in the first busy period of a queue with Poisson rate λ
arrivals and service times always equal to 1. Of course, this becomes a branching process if
we think of the customers that arrive during a person’s service time as their children.

Duality. Suppose λ > 1 and let ρ be the extinction probability. The title of this
subsection refers to the fact that there is a close relationship between Erdös-Rényi random
graphs with mean degrees λ > 1 and λρ < 1. Using the fixed point equation ρ = eλ(ρ−1)

implies
λρe−λρ = λeλ(ρ−1)e−λρ = λe−λ (2.6.4)

Let ER(n, p) denote an Erdös-Rényi graph with n vertices and edges present with probability
p. Let m = nρ and consider ER(m,λρ/m), an Erdös-Rényi graph with number of vertices
equal to the number of vertices in non-giant components of ER(n, λ/n). Changing variables
in (2.6.2) we see that

m

λρ

kk−2

k!
(λρe−λρ)k =

n

λ

kk−2

k!
(λe−λ)k

In words, the expected number of trees of size k is the same in ER(m,λρ/m) and ER(n, λ/n).
Changing variables in the same way in (2.6.3)

1

λρ

kk−1

k!
(λρe−λρ)k =

1

λ

kk−1

k!
(λe−λ)k · 1

ρ

In words, the total progeny of a Poisson(λ) branching process conditioned on extinction is
the same as that of a Poisson(λρ) branching process, which is Theorem 2.1.8.

(2.6.2) is a result about the expected number of trees. The next result is a law of large
numbers, which says that the actual number is close to the expected value.

Theorem 2.6.3. Let T n
k be the number of tree components of size k in the Erdos-Renyi

graph with n vertices. As n→∞, T n
k /n→ qk in probability, where qk is defined in (2.6.2)

Proof. This proof comes from Bollobás (2001), 106–107. The expected number of ordered
pairs of tree components of size k (with the second tree different from the first) is(

n

k

)
kk−2

(
λ

n

)k−1(
1− λ

n

)k(n−k)+(k
2)−k+1

·
(
n− k

k

)
kk−2

(
λ

n

)k−1(
1− λ

n

)k(n−2k)+(k
2)−k+1

(2.6.5)

The second formula differs from the first only in two places: first we have only n−k vertices
to choose from, and the first term already takes into account the fact that there are no
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connections from the first tree to the second. Since
(

n−k
k

)
≤
(

n
k

)
the above is

≤ (ETk)
2

(
1− λ

n

)−k2

≤ (ETk)
2eλk2/n

From this we get

var (Tk) = E(Tk(Tk − 1)) + ETk − (ETk)
2 ≤ ETk + (ETk)

2(eλk2/n − 1)

Using Chebyshev’s inequality

P (|Tk − ETk| ≥ n2/3) ≤ ETk + (ETk)
2(eλk2/n − 1)

n4/3
→ 0

since ETk ∼ nqk and eλk2/n − 1 ∼ λk2/n. This gives the desired result. Note that we could
replace n2/3 in the last display by ω(n)n1/2 where ω(n) →∞ as n→∞.

The results above allow us to verify the remark we made about the largest non-giant
component for λ > 1.

Theorem 2.6.4. Suppose λ > 1 and let C(2) be the second largest component. If α =
λ− 1− log λ and a > 1/α then as n→∞

P
(
|C(2)| ≥ a log n

)
→ 0

Proof. For simplicity we will do our calculations for the limit (2.6.2) rather than for the
exact formula (2.6.1). Stirling’s formula tells us that

k! ∼ kk+1/2e−k
√

2π as k →∞

so we have (Lemma 2.7.1 will show this is valid for k = o(n1/2))

qk =
1

λ
· k

k−2

k!
(λe−λ)k ∼ 1

λ
√

2π
k−5/2(λe1−λ)k

Now g(λ) ≡ λe1−λ = 1 when λ = 1 and g′(λ) = (1 − λ)e1−λ. Thus g(λ) is increasing for
λ < 1, decreasing for λ > 1, and has g(λ) < 1 when λ 6= 1. Summing and using the fact
that k−5/2 is decreasing and λe1−λ < 1

QK =
∞∑

k=K

qk ∼
1

λ
√

2π
K−5/2 (λe1−λ)K

1− λe1−λ

Taking K = a log n

(λe1−λ)a log n = exp((log λ− λ+ 1)a log n) = n−(1+ε)

when a = (1 + ε)/α, which proves the desired result.
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Unicyclic components. Let Un(λ) be the number of unicyclic components in ER(n, λ/n).
Rényi showed in 1959, see Bollobás (2001) page 119 for a proof, that the number of unicyclic
graphs with k vertices is

vk =
(k − 1)!

2

k−3∑
j=0

kj

j!

and for large k

vk ∼
(π

8

)1/2

kk−1/2 (2.6.6)

Computing with this formula as we did with Cayley’s formula for the number of trees, the
expected number of unicyclic components is

E|Uk
n(λ)| =

(
n

k

)
vk

(
λ

n

)k (
1− λ

n

)k(n−k)+(k
2)−k

(2.6.7)

As n→∞ the above converges to

E|Uk(λ)| = vk

k!
(λe−λ)k (2.6.8)

Using the last result with (2.6.6) and Stirling’s formula

E|Uk
n(λ)| ∼ 1

4
k−1(λe1−λ)k

This is summable for λ 6= 1. Thus, in contrast to the O(log2 n) upper bound in Lemma
2.6.1, the expected number of unicyclic components, EU(λ) converges to a finite limit.

When λ < 1 we can get an explicit formula for EU(λ) from a different approach. Consider
an evolving random graph in which at times of a rate n/2 Poisson process edges arrive and
are connected to two randomly chosen sites (if a connection between the sites does not exist
already). By standard results on thinning a Poisson process the rate at which edges appear
between a fixed pair x, y with x 6= y is (n/2)/

(
n
2

)
= 1/(n− 1). Therefore the probability an

edge is vacant at time t is exp(−t/(n− 1)) ∼ 1− (t/n).
Unicyclic components are formed when we pick two points in the same tree component

and they are not already connected by an edge. Call a collision picking two points in the
same tree component. If fk(t) is the fraction of vertices that belong to clusters of size k then
the rate at which collisions occur at time t is

n

2

∑
k

k − 1

n
fk(t) (2.6.9)

Now fk(t) = P (|C1| = k), so
∑

k kfk(t) = E|C1| = 1/(1 − t). Integrating we have for λ < 1
that the expected number of collisions satisfies

E|κn(λ)| = 1

2

∫ λ

0

1

1− t
− 1 dt =

1

2
(− log(1− λ)− λ)
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The number of edges for which there have been two arrivals has mean(
t

n

)2(
n

2

)
Subtracting this from the expected number of collisions

E|κn(λ)| → 1

2
(− log(1− λ)− λ− λ2)

From a result in Berestycki and Durrett (2004) we get

Theorem 2.6.5. If λ < 1 then as n → ∞, κn(λ) converges to a Poisson distribution
with mean (− log(1 − λ) − λ)/2 and Un(λ) converges to a Poisson distribution with mean
h(λ) = (− log(1− λ)− λ− λ2)/2

Proof. Let Nn(t) be the number of collisions up to time t. It follows from (2.6.9) that

Nn(t)− 1

2

∑
k

(k − 1)fk(t) is a martingale.

In the limit as n→∞, the compensator

1

2

∑
k

(k − 1)fk(t) →
1

2

(
1

1− t
− 1

)
Since the compensator converges to the deterministic limit, the Poisson convergence follows
from arguments in Jacod and Shiryaev (1987). If we let Mn(t) be the number of unicyclic
components created up to time t then subtracting the duplicated edges we see its compensator
converges to

1

2

(
1

1− t
− 1− 2t

)
and the desired result follows.

Corollary 2.6.6.

EU(λ) =

{
h(λ) λ < 1

h(λρ) λ > 1

Proof. The result for λ < 1 follows from Theorem 2.6.5. (2.6.8) and (2.6.4) imply that for
λ > 1, EU(λ) = EU(λρ).

Remark. Note that in contrast to duality result for tree sizes, the distribution of unicyclic
cluster sizes is the same in ER(n, λρ/n) and ER(n, λ/n). The difference is due to fact that
λ/n appears to the (k − 1)st power in (2.6.1) and to the kth power in (2.6.7).

Conjecture 2.6.7. If λ > 1 then as n→∞, Un(λ) converges to a Poisson distribution with
mean h(λρ).
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2.7 Critical regime

In this section we will look at component sizes when λ = 1 + θn−1/3 where −∞ < θ < ∞,
which corresponds to the critical regime for the random graph. We begin with a calculation
that is simple and gives the right answer but is incorrect. (2.6.2) and Stirling’s formula tell
us that the expected number of trees of size k is, for large k,

n
kk−2

k!
λk−1e−λk ∼ n

λ
√

2π
k−5/2(λe1−λ)k (2.7.1)

When λ = 1, λe1−λ = 1 so summing from k = K to ∞, the expected number of tree of size
≥ K is

∞∑
k=K

n√
2π
k−5/2 ∼ 2

3
√

2π
nK−3/2

This is small when K >> n2/3 suggesting that the largest tree components are of order n2/3.
Having figured out what to guess, we will now go back and do the calculation carefully.

For the moment λ is a general parameter value.

Lemma 2.7.1. Let α(λ) = λ − 1 − log(λ). If k → ∞ and k = o(n3/4) then the expected
number of tree components of size k

γn,k(λ) ≡
(
n

k

)
kk−2

(
λ

n

)k−1(
1− λ

n

)k(n−k)+(k
2)−k

(2.7.2)

∼ n · k
−5/2

λ
√

2π
exp

(
−α(λ)k + (λ− 1)

k2

2n
− k3

6n2

)
(2.7.3)

Proof. Using Stirling’s formula and k = o(n) to simplify the last exponent

γn,k(λ) ∼ n

[
k−1∏
j=1

(
1− j

n

)]
· k−5/2

e−k
√

2π
· λk−1

(
1− λ

n

)kn−k2/2

Using the expansion log(1− x) = −x− x2/2− x3/3− . . . we see that if k = o(n) then(
1− λ

n

)kn−k2/2

∼ exp(−λk + λk2/2n)

while if k = o(n3/4) we have

k−1∏
j=1

(
1− j

n

)
= exp

(
− 1

n

k−1∑
j=1

j − 1

2n2

k−1∑
j=1

j2 +O

(
k4

n3

))
∼ exp

(
− k

2

2n
− k3

6n2

)
Combining the last three calculations gives the desired formula.
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Taking λ = 1 in Lemma 2.7.1 we have

γn,k(λ) ∼ nk−5/2

√
2π

e−k3/6n2

(2.7.4)

which has an extra term not found in (2.7.1), but still says that the largest tree components
are of order n2/3.

To see what happens when λ = 1 + θn−1/3, note that

α(λ) = λ− 1− log(λ) α(1) = 0
α′(λ) = 1− 1/λ α′(1) = 0
α′′(λ) = 1/λ2 α′′(1) = 1

Using Taylor series approximation, α(1 − λ) ≈ (1 − λ)2/2, so setting 1 − λ = −θ/n1/3 the
exponential in (2.7.3) is

exp

(
−θ2 k

n2/3
− θ

k2

n4/3
− k3

6n2

)
Turning to more complex components we use the combinatorial fact, see Bollobás (2001),

p. 120, that the number of graphs of complexity ` on k labeled vertices, vk,` has

vk,` ∼ b`k
k+(3`−1)/2 as k →∞

Recall that for trees (` = −1), b−1 = 1, while for unicyclic components, (` = 0), (2.6.6) tells
us that b0 = (π/8)1/2.

Restricting our attention to λ = 1 for simplicity, the expected number of components of
size k and complexity ` is

=

(
n

k

)
vk,`

(
1

n

)k+`(
1− 1

n

)k(n−k)+(k
2)−(k+`)

= γn,k(1) · vk,`

kk−2
· n−1−`

∼ n
k−5/2

λ
√

2π
e−(k3/6n2) · b`k3/2+(3`)/2 · n−1−` as k →∞ (2.7.5)

When ` = 0, filling in the value of b0 gives (1/4)k−1 exp(−k3/n2) for large k. Again the
largest unicyclic component will be of order n2/3. If k = na then the exponential factor is 1
for a < 2/3 and 0 for a > 2/3. Summing we see that

Theorem 2.7.2. If λ = 1 the expected number of unicyclic components is

∼ 1

4

n2/3∑
k=1

k−1 =
1

4
· (2/3) log n =

1

6
log n (2.7.6)
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For ` ≥ 1, changing variables k = xn2/3 (with x > 0 and hence k large):

= n
x−5/2n−5/3

√
2π

e−x3/6 · b`x3/2+(3`)/2 · n1+` · n−1−`

Collecting the powers of x and the powers of n together, and summing, the expected number
of `-components of size ≥ yn2/3 is

b`√
2π

∑
x≥y,xn2/3∈Z

x−1+(3`/2)e−x3/6 · n−2/3

Again the largest components are O(n2/3) but (3` − 2)/2 ≥ 1/2 so setting y = 0 and
recognizing the last expression as a Riemann sum we see that as n → ∞ the expected
number of `-components converges to

b`√
2π

∫ ∞

0

x(3`−2)/2e−x3/6 dx <∞ (2.7.7)

The convergence of the integral tells us that most of the `-components have size ≥ εn2/3.
Luczak, Pittel, and Wierman (1994) made a detailed study of Erdös-Rényi graphs in

the critical regime. They proved in particular that the complexity of components remains
bounded in probability as n→∞. To do this they had to consider components of all possible
complexities. For this Bollobás’s (1984) bounds were useful:

vk,` ≤

{
(c1/`)

1/2kk+(3`−1)/2 ` ≤ k

(c2k)
k+` 1 ≤ ` ≤

(
k
2

)
− k

This allowed them to show that the largest component of any complexity is O(n2/3).
Even though there is a positive limiting probability for components of any complexity,

they are rare. Janson (1993) showed that if one considered the family ER(n, λ/n) with
the obvious coupling then with probability ≈ 0.87 there is never more than one complex
component – the giant component is highly complex. Janson, Knuth, Luczak, and Pittel
(1993) later showed that this probability is exactly 5π/18 and furthermore, at the critical
value λ = 1 the probability of m 1-components and no more complex components is(

5

18

)m

·
√

2

3
· 1

(2m)!
m = 0, 1, 2, . . .

Their 136 page paper provides a wealth of detailed information. For more recent work on
the size of the largest components at λ = 1 see Pittel (2001)

Back to the random walk viewpoint. The combinatorial approach in the critical
regime is made complicated by the fact that one must deal with components of arbitrarily
large complexity. Thus we will return to our approach of exposing one vertex at a time. Let
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Rt be the removed sites at time t, At the active sites, and Ut the unexplored sites. In our
first examination of this process we will stop at τ = inf{t : At = ∅}, but to make sure things
last a while we will start with |A0| large. The ideas here are from Martin-Löf (1998), but we
carry out the details somewhat differently.

As in our study of the giant component, we will speed up time and rescale the size of our
sets to get a limit. To see what to guess, note that the combinatorial calculations suggest
that the largest components are of order n2/3. Since Rt = t and Rτ is the size of the clusters
containing A0, we will scale time by n2/3. When λ = 1 + θn−1/3, |At| will be almost a mean
zero random walk. In this case |At| − |A0| will be O(t1/2) so we will scale the number by
n1/3.

Having decided on the scaling, we compute the infinitesimal mean and variance. Letting
at = |At|, ∆at = |At+1| − |At|, and noticing that ut = |Ut| = n− t− at, we have

E(∆at|Ft) = −1 + (n− t− at)(1 + θn−1/3)/n

= −t+ at

n
+ (θn−1/3)(1− (t+ at)/n)

var (∆at|Ft) = (n− t− at)
1 + θn−1/3

n

(
1− 1 + θn−1/3

n

)
Speeding up time by n2/3, dividing by n1/3, and recalling a[sn2/3] = O(n1/3),

E

(
∆a[sn2/3]

n1/3

∣∣∣∣F[sn2/3]

)
=

−[sn2/3]− a[sn2/3]

n · n1/3
+
θn−1/3 + o(n−1/3)

n1/3

= (−s+ θ) · n−2/3 + o(n−2/3)

The variance is much easier

var

(
∆a[sn2/3]

n1/3

∣∣∣∣F[sn2/3]

)
∼ 1

n2/3

Letting n→∞ we see that a[sn2/3]/n
1/3 converges in distribution to the solution of

das = (−s+ θ) ds+ dBs

which is simply as = Bs + θs− s2/2 (run until the first time it hits zero).

Aldous’ theorem. Our next goal is to describe a remarkable result of Aldous (1997)
that gives the joint distribution of the sizes of the large clusters divided by n2/3 and their
complexity. The paper that proves this result is 43 pages long, so we will content ourselves
to explain why this is true, making a number of Olympian leaps of faith in the process.

Consider now the version of RAU in which we choose it ∈ Ut when At = ∅. This adds
one to |At| each time it hits zero. If we do this to a simple random walk that goes up or
down by 1 with probability 1/2 on each step, we end up with a Markov chain Sn that has
p(0, 1) = 1 and p(k, k− 1) = p(k, k+ 1) = 1/2 when k > 0. As n→∞, Sn/

√
n converges to
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reflecting Brownian motion, B̂t, a process that is often defined as |Bt|, but is perhaps better
seen through the eyes of Paul Lévy:

B̂t = Bt − min
0≤s≤t

Bs

Here the second term is the number of ones we have added to keep Sn ≥ 0. In a similar way,
adding 1 each time |At| hits zero changes the limit process to

ât = at − min
0≤s≤t

as

When |At| = k, self-intersections happen at rate k/n. In our normalization k = xn1/3

so self-intersections happen at rate xn−2/3, or after time is sped up by a factor of n2/3, at
rate x. This motivates the introduction of a point process Nt that has points at rate ât, or
more formally Nt is a counting process (i.e., nonnegative integer valued, nondecreasing, and
all jumps of size one) so that

Nt −
∫ t

0

âs ds is a martingale

We say that (u, v) is an excursion interval of ât if âu = âv = 0 but ât 6= 0 for t ∈ (u, v).
During excursions |At| does not hit 0. Since we expose one vertex at a time, the lengths of
the excursion intervals represent cluster sizes in the random graph. Nv−Nu gives the number
of self-intersections that happened during the interval. Following Aldous’ terminology we
will call this the surplus, i.e., the number of extra edges compared to a tree of the same size
(= the complexity + 1).

Theorem 2.7.3. Let Kn
1 ≥ Kn

2 ≥ . . . be the ordered component sizes of ER(n, (1+θn−1/3)/n)
and let σn

1 , σ
n
2 , σ

n
3 . . . be the corresponding surpluses. Then as n→∞, {(n−2/3Kn

j , σ
n
j ) : j ≥

1} converges in distribution to {(Lj, σj) : j ≥ 1} where L1 > L2 > L3 > . . . are the ordered
lengths of excursion intervals in {âs : s ≥ 0} and σ1, σ2, σ3, . . . are the number of N-arrivals
in these intervals.

The limit distribution is not very explicit, but it does tell us that the largest cluster is O(n2/3)
and that the number of `-components converges in distribution.

Multiplicative coalescent. While Theorem 2.7.3 is nice, the truly remarkable part
of Aldous’ contribution is to view the large clusters in ER(n, (1 + tn−1/3)/n) as a process
indexed by −∞ < t < ∞. The first detail is to construct all of the random graphs on the
same space but this is easy: we assign independent random variables ζe uniformly distributed
on (0, 1) to each edge and declare that the edge is present if ζe < (1+tn−1/3)/n. The state at
time t will be the ordered component sizes {Kn

j (t)/n2/3}. Consider two clusters of sizes xn2/3

and yn2/3. In a short interval of time (t, t+ h), an individual edge is added with probability
hn−4/3, so the probability of making a connection between the two clusters is ≈ xyh.
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Thus in the limit as n→∞ we expect to get a limit process that follows the simple rule:
each pair of clusters of sizes (x, y) merges at rate xy to a cluster of size x+y. To have an honest
Markov process, we need a state space. Aldous chose `2↘ the collection of decreasing sequences
x1 ≥ x2 ≥ x3 ≥ . . . with

∑
k x

2
k < ∞. The other thing that should be noticed is that the

time interval is −∞ < t <∞ so there is no initial distribution. In Aldous’ original paper he
solved this problem by showing that there was only one “standard multiplicative coalescent”
that had the one dimensional distributions consistent with Theorem 2.7.3. Aldous and Limic
later characterized all processes on −∞ < t <∞ in which each pair of clusters of sizes (x, y)
merges at rate xy to a cluster of size x+ y. (In terms of the theory of Markov processes one
is finding all of the entrance laws.) In addition to the constant process (x1 = v > 0, xi = 0,
i ≥ 2) there are some nonstandard ones, which are irrelevant for the following application.

Theorem 2.7.4. Let Kn
1 (t) ≥ Kn

2 (t) ≥ . . . be the ordered component sizes of ER(n, (1 +
tn−1/3)/n). As n→∞, {Kn

j (t)/n2/3 : j ≥ 1}, −∞ < t <∞ converges in distribution to the
standard multiplicative coalescent.

The convergence of rescaled large components to the multiplicative coalescent, provides a
nice intuitive process of the growth of clusters in the critical regime. Alon and Spencer (2000)
describe the evolution as follows: “With t = −106, say we have feudalism. Many components
(castles) are each vying to be the largest. As t increases the components increase in size and
a few large components (nations) emerge. An already large France has much better chances
of becoming larger than a smaller Andorra. The largest components tend to merge and by
t = 106 it is very likely that a giant component, the Roman Empire, has emerged. With high
probability this component is nevermore challenged for supremacy but continues absorbing
smaller components until full connectivity – One World – is achieved.”

Remark. Yuval Peres has used ideas from Martin-Löf (1988) to show that if n > 7 then
the largest component C(1) has

P (C(1) > An2/3) ≤ 3 + 6n−1/3

A2

The key idea is to upper bound ∆at by −1 + Binomial(n, 1/n) for t < n2/3 and by −1 +
Binomial(n−n2/3, 1/n) for t ≥ n2/3. Nachmias and Peres (2005) prove in addition an upper
bound on P (C(1) < δn2/3) for δ small.
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2.8 Threshold for connectivity

In this section we will investigate the question: How large does λ have to be so that the
probability ER(n, λ/n) is connected (i.e., ALL vertices in ONE component) tends to 1. Half
of the answer is easy. Let dx be the degree of x.

P (dx = 0) =

(
1− λ

n

)n

Using the series expansion log(1 − x) = −x − x2/2 − x3/3 − . . . it is easy to see that if
λ = o(n1/2) then

n log

(
1− λ

n

)
= −λ− λ2/2n− λ3/3n2 − . . .

and hence (
1− λ

n

)n

eλ → 1 (2.8.1)

Thus when λ = a log n we have P (dx = 0) ∼ n−a, and if a < 1 the number of isolated
vertices In = |{x : dx = 0}| has

EIn = nP (dx = 0) ∼ n1−a →∞

To show that the actual value of In is close to the mean we note that if x 6= y

P (dx = 0, dy = 0) =

(
1− λ

n

)2n−1

=

(
1− λ

n

)−1

P (dx = 0)P (dy = 0)

so we have

var (In) = nP (d1 = 0)(1− P (d1 = 0)) + n(n− 1)

((
1− λ

n

)−1

− 1

)
P (d1 = 0)P (d2 = 0)

When λ = a log n

var (In) ∼ n1−a + n2

(
λ

n

)
n−2a ∼ EIn

Using Chebyshev’s inequality it follows that if a < 1

P
(
|In − EIn| > (log n)(EIn)1/2

)
≤ 1

log2 n
(2.8.2)

The last result shows that if λ = a log n with a < 1 then with high probability there are
about n1−a isolated vertices, and hence the graph is not connected. Showing that the graph
is connected is more complicated because we have to consider all possible ways in which the
graph can fail to be connected. (2.6.2) tells us that the expected number of trees of size k is

∼ n
kk−2

k!
λk−1e−λk
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When k = 2 and λ = a log n this is

n

2
(a log n)n−2a

Thus if 1/2 < a < 1 there are isolated vertices, but no components of size 2. It is easy to
generalize the last argument to conclude that when λ = a log n and 1/(k+1) < a < 1/k there
are trees of size k but not of size k+1. Bollobás (2001), see Section 7.1, uses this observation
with the fact we know that the largest component is O(log n) to sum the expected values
and prove:

Theorem 2.8.1. Consider G = ER(n, λ/n) with λ = a log n. The probability G is connected
tends to 0 if a < 1 and to 1 if a > 1.

Proof. We will use the approach of Section 1.3 to show that the probability a vertex fails
to connect to the giant component is o(1/n). Since we have a large λ we can use the lower
bound process with δ = 1/2. The constant θ1/2 that appears in (2.3.7) is defined by

θ + (λ/2)(e−θ − 1) = 0

This is hard to compute for fixed λ, so instead we decide we want θ = 1 and see that this
means λ = 2e/(e− 1). Using monotonicity we see that if λ ≥ 2e/(e− 1), (2.3.8) implies that
for our comparison random walk

P2 log n(T0 <∞) ≤ n−2

To reach size 2 log n we use the large deviations bound in Lemma 2.3.3, with δ = 0 and
x = 1/2 to conclude that if SK is a sum of K independent Binomial(n, λ/n) random variables
then µ = Kλ and

P (SK ≤ µ/2) ≤ exp(−γ(1/2)µ) (2.8.3)

where γ(1/2) = (1/2) log(1/2) − 1/2 + 1 = 1/2(1 − log(2)) ≥ .15. If λ = (1 + ε) log n with
ε ≥ 0 and K = 14 then

P (S14 ≤ 7 log n) ≤ n−2.1

The last calculation shows that if x has at least 14 neighbors, then with high probability
at distance 2 there are at least 7 log n vertices. The next step is to bound

P (dx ≤ 13) =
13∑

k=0

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k

≤
13∑

k=0

λk

k!
e−λ(n−k)/n ≤ 14(a log n)13n−ae(13a log n)/n

which is o(n−1) if a > 1.
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To finish up now (and to prepare for the next proof), we apply the large deviations result
lemma 2.3.3 to lower bounding random walk Wt twice to conclude that if −1 + (a log n) ≥
(a/2) log n then there are positive constants ηi so that

P (W (n1/2)−W (0) ≤ (a/2)n1/2 log n) ≤ exp(−η1n
1/2 log n)

P (W (n1/2) + n1/2 −W (0) ≥ 2an1/2 log n) ≤ exp(−η2n
1/2 log n)

Combining our results we see that with probability 1− o(n−1) the RAU process will not
expose n/2 vertices and have at least 0.1n1/2 log n active vertices at time n1/2. When this
occurs for x and for y the probability that their clusters fail to intersect is at most(

1− log n

n

)0.01n(log n)2

≤ e−(log n)3/100

and the proof is complete.

The next result is an easy extension of the previous argument and will allow us to get a
sharper result about the transition to connectivity.

Theorem 2.8.2. Consider G = ER(n, λ/n) with λ = a log n. If a > 1/2 then with proba-
bility tending to 1, G consists only of a giant component and isolated vertices.

Proof. It follows from the previous argument that if n is large P2 log n(T0 < ∞) ≤ n−2.
Using (2.8.3) it is easy to see that if S28 is a sum of 28 independent Binomial(n, λ/n) and
λ ≥ (1/2) log n then

P (S28 ≤ 7 log n) ≤ n−2.1

Consider now a branching process Zx
k with offspring distribution Binomial(n, λ/n). If

Zx
1 = 0 the cluster containing x is a singleton. We might be unlucky and have Zx

1 = 1 but
in this case

P (Zx
1 = 1, Zx

2 ≤ 27) = n
λ

n

(
1− λ

n

)n−1 27∑
k=0

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k

≤
27∑

k=0

λk+1

k!
e−λ(2n−k−1)/n ≤ 28(a log n)28n−2ae(28a log n)/n

which is o(n−1) if a > 1/2. If we are lucky enough to find two neighbors on the first try then

P (Zx
2 ≤ 28|Zx

1 ≥ 2) ≤
28∑

k=0

(
2n

k

)(
λ

n

)k (
1− λ

n

)2n−k

≤
28∑

k=0

(2λ)k

k!
e−2λ(n−k)/n ≤ 29(a log n)28n−2ae(56a log n)/n
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Here we have replaced 27 by 28 to take care of collisions. One collision has probability c/n,
but by a now familiar estimate, the probability of two collisions in one step of the branching
process is O(1/n2).

In the previous proof we only used a > 1/2 in the W-estimates and the final estimate so
the proof is complete.

We are now ready to more precisely locate the connectivity threshold.

Theorem 2.8.3. Consider G = ER(n, λ/n) with λ = log n+b+o(1). The number of isolated
vertices In converges to a Poisson distribution with mean e−b and hence the probability G is
connected tends to exp(−e−b).

Proof. By the previous result G will be connected if and only if there are no isolated vertices.
Using (2.8.1), the probability x is isolated is(

1− λ

n

)n

∼ exp(− log n− b) ∼ e−b/n

so EIn. The expected number of ordered k-tuples of isolated vertices is

(n · (n− 1) · · · (n− k + 1))

(
1− λ

n

)n+(n−1)+···+(n−k+1)

→ e−bk

so the Poisson convergence follows from the method of moments.

Having shown that the probability ER(n, c(log n)/n) is connected tends to 1 for c > 1,
our next question is to determine its diameter. The heuristic is the same as in Theorem 2.4.1
for ER(n, c/n). We set (np)m = n and solve to conclude that the average distance between
two points is log n/(log np). For ER(n, c(log n)/n) this is also the diameter. We begin with
a large deviations result for the Binomial distribution.

Lemma 2.8.4. Let X = Binomial(n, p) and let H(a) = a log(a/p)+(1−a) log((1−a)/(1−p)).
Then for b < p < c

P (X ≤ nb) ≤ exp(−H(b)n) P (X ≥ nc) ≤ exp(−H(c)n)

Remark. To see why this is the answer, note that from the definition of the Binomial
distribution and Stirling’s formula, n! ∼ nne−n

√
2πn,

P (X = na) =

(
n

na

)
pna(1− p)n(1−a) ≈ nn

(na)na(n(1− a))n(1−a)
pna(1− p)n(1−a)

Now cancel the nn’s in the fraction and take (1/n) log of both sides.
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Proof. Suppose a > p. Then for any θ > 0

enaθP (X ≥ na) ≤ ((1− p) + peθ)n

which we can rewrite as

P (X ≥ na) ≤
[
exp{−θa+ log((1− p) + peθ)}

]n
To optimize we differentiate the term in set braces with respect to θ and set

0 = −a+
peθ

(1− p) + peθ

Solving we have eθ = (a(1− p))/(p(1− a)). Using ((1− p) + peθ) = peθ/a = (1− p)/(1− a)
and plugging in we have

= exp

(
−a log

(
a(1− p)

p(1− a)

)
+ log((1− p)/(1− a))

)
= exp(−H(a)

For a < p the first equality is valid for θ < 0 but the remaining calculations are the same.

In many cases the following simplification is useful

Lemma 2.8.5. If X = Binomial(n, p) then

P (X ≤ n(p− z)) ≤ exp(−nz2/2p) P (X ≥ n(p+ z)) ≤ exp(−nz2/2(p+ z))

Taking z = py this becomes

P (X ≤ np(1− y)) ≤ exp(−npy2/2) P (X ≥ np(1 + y)) ≤ exp(−npy2/2(1 + y))

Remark. If X/n were Gaussian with variance p(1 − p)/n these probabilities would be
≤ exp(−nz2/2p(1− p))

Proof. We begin with the second inequality. The function defined in Lemma 2.8.4 has
H(p) = 0 and

H ′(a) = log(a/p)− log((1− a)/(1− p))

so H ′(p) = 0. If p < a ≤ 1, Taylor’s theorem implies that there is a y ∈ [p, a] so that
H(a) = H ′′(y)(a−p)2/2. Differentiating again H ′′(a) = 1/a(1−a) which is minimized at 1/2.
Therefore if a ≤ 1/2, H(a) ≥ (a− p)2/2a, while if a ≥ 1/2, H(a) ≥ 2(a− p)2 ≥ (a− p)2/2a.
Substituting a = p + z gives the second result. The argument for the first result is almost
identical, but when we substitute a = p− z we can let a = p in the denominator.

Theorem 2.8.6. If lim inf np/(log n) > c > 1 and (log p)/(log n) → 0 then the diameter of
ER(n, p), D(n, p) ∼ (log n)/(log np).
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Remarks. The first condition guarantees that the probability that the graph is connected
tends to 1 as n → ∞. To explain the second suppose p = n−15/17. In this case np = n2/7

and it is not hard to show that the diameter will be 9 with probability approaching 1, but
the formula gives 17/2. A more delicate situation occurs when

p = n(1/d)−1(log(n2/c))1/d

In this case in the limit the diameter is d with probability e−c/2 and d + 1 with probability
1 − e−c/2. See Theorem 10.10 in Bollobás (2001). Chung and Lu (2001) have shown, see
Theorem 5 on page 272, that the conclusion of Theorem 2.8.6 holds for the giant component
if log n > np→∞.

Proof. Fix x and let Bk(x) = {y : d(x, y) = k}. |Bk| is dominated by Zk a branching process
with a Binomial(n, p) offspring distribution. Using Lemma 2.8.5 with y = 3 we have

P (Z1 ≥ 4np) ≤ exp(−9np/8) ≤ n−9c/8

for large n. Using Lemma 2.8.5 again with n replaced by (k+ 2)(np)k−1n and y = 1/(k+ 2)
we have

P (Zk > (k + 3)(np)k|Zk−1 ≤ (k + 2)(np)k−1) ≤ exp(−(np)k/(k + 3))

Since np ≥ c log n for large n the right-hand side converges to 0 very rapidly as n→∞ and
we have

P (Zk ≤ (k + 3)(np)k for 1 ≤ k ≤ (log n)/(log np)) = 1−O(n−9c/8) (2.8.4)

To get a lower bound we note that by the proof of Theorem 2.8.1 P (|B1| ≤ 13) =
1− o(n−1) and

P (|B2| ≤ 7np | |B1| ≥ 14) ≤ n−2.1

To control the growth of |Bk| for k ≥ 3 we note that as long as
∑k

j=0 |Bj| ≤ n2/3, |Bk|
dominates a branching process with a Binomial (n′, p) offspring distribution where n′ =
n − n2/3 and n′p ≥ c log n for large n. Define a sequence of constants by a2 = 7 and for
k ≥ 3, ak = ak−1(1 − 1/k2). Since ak is decreasing, at each iteration we subtract less than
7/k2.

∑∞
k=3 1/k2 = π2/6− 1− 1/4 ≤ 0.4 so ak ≥ 4 for all k. Using Lemma 2.8.5 again with

n replaced by ak−1(n
′p)k−2n′ and y = 1/k2 we have for k ≥ 3

P (|Bk| < ak(n
′p)k−1|Zk−1 ≥ ak−1(n

′p)k−2) ≤ exp(−(n′p)k−1/2k4)

Since n′p ≥ c log n for large n the right-hand side converges to 0 very rapidly as n→∞ and
we have

P (|Bk| ≥ 4(n′p)k−1 for 2 ≤ k ≤ (0.6)(log n)/(log np)) = 1− o(n−1) (2.8.5)

Here 0.6 is chosen so that (2.8.4) implies that for large n we have
∑k

j=0 |Bj| ≤ n2/3 the
indicated range of k’s.
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The bound in (2.8.4) implies that if ε > 0 then with probability 1−O(n−9c/8)

(1−ε) log n/(log np)∑
k=0

Zk < n

for large n so lim infD(n, p)/(log n/(log np)) ≥ 1 − ε. Let k be the first integer larger than
1 + ((1 + ε)(log n))/(2(log np)) Using (2.8.5) we see that if ε > 0 then

P (|Bk| ≥ 4n(1+ε)/2) = 1− o(n−1)

By a now familiar estimate, when this occurs for two different starting points then either
the two clusters have already intersected or with probability ≥ exp(−16n(1+ε)) they will do
so on the next step. This shows that lim supD(n, p)/(log n/(log np)) ≤ 1 + ε and completes
the proof.



Chapter 3

Fixed Degree Distributions

3.1 Definitions and heuristics

In an Erdös-Rényi random graph, vertices have degrees that have asymptotically a Poisson
distribution. However, as discussed in Section 1.4, in social and communication networks,
the distribution of degrees is much different from the Poisson and in many cases has a power
law form, i.e., the fraction of vertices of degree k, pk ∼ Ck−β as k → ∞. Molloy and Reed
(1995) were the first to construct graphs with specified degree distributions. We will use the
approach of Newman, Strogatz, and Watts (2001, 2002) to define the model.

Let d1, . . . dn be independent and have P (di = k) = pk. Since we want di to be the degree
of vertex i, we condition on En = {d1+· · ·+dn is even}. If the probability P (E1) ∈ (0, 1) then
P (En) → 1/2 as n → ∞ so the conditioning will have little effect on the finite dimensional
distributions. If d1 is always even then P (En) = 1 for all n, while if d1 is always odd,
P (E2n) = 1 and P (E2n+1) = 0 for all n.

To build the graph we think of di half-edges attached to i and then pair the half-edges
at random. The picture gives an example with 8 vertices.

A
AA

�
��

C
CC

�
��

S
SS

C
CC

�
��

�
��

1 2 3 4

C
CC

�
��

C
CC

�
��

A
AA

�
��

5 6 7 8

�
�

A
A
A
A
A
A
A
A

B
B
B
B
B
BBPPPPPP

@
@������

1 2

3

4

56

7

8

This consruction can produce multiple edges and even self-loops but there are not very
many, if we suppose, as we will in the first four sections of this chapter, that

(A) pk has a finite second moment.

73
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Thus the probability that the graph is simple has a positive limit. We begin with a useful
result.

Lemma 3.1.1. Let x(k) = x(x − 1) · · · (x − k + 1) and let Zn be a sequence of nonnegative

integer valued random variables with EZ
(k)
n → λk for all positive integers k. Then Zn

converges in distribution to Z∞ = Poisson(λ).

Proof. The factorial moments of the Poisson EZ
(k)
∞ = λk. Since xk =

∑k
j=1 ck,jx

(j) we have

EZk
n → EZk

∞. The Poisson distribution is determined by its moments so the conclusion
follows, see e.g., Section 2.3.e in Durrett (2004).

Theorem 3.1.2. Let µ =
∑

k kpk and µ2 =
∑

k k(k − 1)pk. As n→∞, the number of self-
loops χ0 and the number of parallel edges χ1 are asymptotically independent Poisson(µ2/2µ)
and Poisson((µ2/2µ)2).

Proof. If D = d1 + · · ·+ dn then the expected number of self-loops is ∼
∑

i di(di− 1)/2D →
ν/2µ and the expected number of pairs of parallel edges is

∼ 1

2

∑
i

didi−1

2

∑
j 6=i

dj

D

dj − 1

D
→ (ν/2µ)2

To check the counting in the second formula, suppose that we will connect half-edges 3 and 7
from i to half-edges 5 and 2 from j. When we pick the two edges for i, order is not important,
but when it comes to j it is. The 1/2 in front comes from the fact that (i, j) and (j, i) are
both in the double sum.

This gives the asymptotics for the mean, but in almost the same way we can compute
the expected number of ordered k-tuples (for more details in a similar situation see the proof
of Theorem 2.4.2) to conclude that the self-loops and parallel edges have Poisson limits.
After this, we can consider product moments to get convergence of the joint distribution to
independent Poissons.

As we have seen in our analysis of Erdös-Renyi graphs, the growth of clusters can be
approximated in the early stages by a branching process. In this section we will follow
Newman, Strogatz, and Watts (2001) who were playing by the rules of Physical Review E.
We will assume that the growth of the cluster is a branching process, ignore the technicalities
of estimating the difference, and compute the answer. If we start with a given vertex x then
the number of neighbors (the first generation in the branching process) has distribution pj.
This is not true for the second generation. A first generation vertex with degree k is k times
as likely to be chosen as one with degree 1, so the distribution of the number of children of
a first generation vertex is for k ≥ 1

qk−1 =
kpk

µ
where µ =

∑
k

kpk
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The k− 1 on the left-hand side comes from the fact that we used up one edge connecting to
the vertex. Note that since we have assumed p has finite second moment, q has finite mean
ν =

∑
k k(k − 1)pk/µ.

For a concrete example, consider the Poisson distribution pk = e−λλk/k!, which is the
asymptotic degree distribution for ER(n, λ/n). In this case µ = λ, so

qk−1 = e−λkλ
k

k!λ
= e−λ λk−1

(k − 1)!

and q is again Poisson. Conversely if p = q we have pk = pk−1µ/k. Iterating gives pk =
p0µ

k/k!, so pk is Poisson with mean µ.
Having discovered that the growth of the cluster is a “two-phase” branching process in

which the first generation has distribution p, and the second and subsequent generations
have distribution q, it is now routine to compute the threshold for the existence of large
components and the size of such components. Let G0(z) =

∑
k pkz

k and G1(z) =
∑

k qkz
k

be the two generating functions. These are related:

G′
0(z)

µ
=

∞∑
k=1

kpk

µ
zk−1 =

∞∑
k=1

qk−1z
k−1 = G1(z)

Let Zn be the number of vertices in the nth generation. For n ≥ 1, EZn = µνn−1 so when
ν < 1

E

(
∞∑

n=0

Zn

)
= 1 +

∞∑
n=1

µνn−1 = 1 +
µ

1− ν

and we have the first part of

Theorem 3.1.3. The condition for the existence of a giant component is ν > 1. In this case
the fraction of vertices in the giant component is asymptotically 1 − G0(ρ1) where ρ1 is the
smallest fixed point of G1 in [0, 1].

We will prove this result in the next section. To explain the second claim: We know that ρ1 is
the extinction probability of the homogeneous branching process with offspring distribution
q. Breaking things down according to the number of offspring in the first generation, the
probability that the two phase branching process dies out is

∑∞
k=0 pkρ

k
1 = G0(ρ1), since each

of the k first generation families must die out and they are independent.
In the remainder of this section we will analyze the model as Newman, Strogatz, and

Watts did, which means that we will rely on generating functions. To compute the distri-
bution of the size of the non-giant components, we begin by considering the homogeneous
branching process with offspring distribution q. Let H1(z) be the generating function of the
total progeny in the homogeneous branching process. If there are k offspring in the first
generation then the total progeny = 1+Y1 + · · ·+Yk where the Yi are independent and have
the same distribution as the total progeny. From this it follows that for z < 1

H1(z) = z ·
∞∑

k=0

qk(H1(z))
k = zG1(H1(z)) (3.1.1)
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The condition z < 1 guarantees z∞ = 0. H1(0) = 0 reflecting the fact that the total progeny
is always at least one. We claim that H1(1) = ρ1. To check this, note that when z < 1,
G1(H1(z))/H1(z) = 1/z > 1 so H1(z) < ρ1, but limz→1H1(z) is a fixed point of G1 so the
limit must be ρ1. Similar reasoning shows that if H0(z) be the generating function of the
total progeny in the branching process then

H0(z) = z ·
∞∑

k=0

pk(H1(z))
k = zG0(H1(z)) (3.1.2)

Mean size of finite clusters. We begin with the homogeneous branching process.
Differentiating (3.1.1), setting z = 1 and recalling H1(1) = ρ1, G1(ρ1) = ρ1,

H ′
1(z) = G1(H1(z)) + zG′

1(H1(z))H
′
1(z)

H ′
1(1) = ρ1 +G′

1(ρ1)H
′
1(1)

Rearranging we have
H ′

1(1)

H1(1)
=

1

1−G′
1(ρ1)

(3.1.3)

When the branching process dies out, ρ1 = 1, G′
1(1) = ν and H1(1) = 1, and so this says that

the mean cluster size is 1/(1− ν). To check the result for ν > 1, recall that Theorem 2.1.8
implies that if the homogeneous branching process is supercritical and we condition it to
die out then the result is a branching process with offspring distribution that has generating
function G1(ρ1z)/ρ1. Differentiating and setting z = 1, we see that the mean of the offspring
distribution is G′

1(ρ1), so the expected total progeny will be
∑∞

n=0G
′
1(ρ1)

n = 1/(1−G′
1(ρ1)).

Turning to the two-phase branching process. Differentiating (3.1.2) and setting z = 1

H ′
0(z) = G0(H1(z)) + zG′

0(H1(z))H
′
1(z)

H ′
0(1) = H0(1) +G′

0(ρ1)H
′
1(1)

since H1(1) = ρ1 and G0(ρ1) = H0(1) is the extinction probability for the two phase process.
When the branching process dies out, H0(1) = 1, ρ1 = 1, G′

0(1) = µ, H1(1) = 1, and
H ′

1(1) = 1/(1− ν) so we have

H ′
0(1) = 1 +

µ

1− ν

as we have computed previously. To get a result for ν > 1, we divide each side by H0(1) and
use (3.1.3) to get

H ′
0(1)

H0(1)
= 1 +

G′
0(ρ1)H

′
1(1)

H0(1)
= 1 +

G′
0(ρ1)H1(1)

H0(1)(1−G′
1(ρ1))

(3.1.4)

To check this, note that in the two-phase branching process the probability Z1 = k given that
the process dies out is pkρ

k
1/G0(ρ1). (3.1.3) implies that the mean number of descendants of
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a first generation individual given the extinction of its family is 1/(1 − G′
1(ρ1)). Thus the

expected total progeny is

1 +
∞∑

k=1

pkρ
k
1

G0(ρ1)

k

1−G′
1(ρ1)

= 1 +
ρ1G

′
0(ρ1)

G0(ρ1)
· 1

1−G′
1(ρ1)

Since H1(1) = ρ1 and G0(ρ1) = H0(1) this agrees with the answer in (3.1.4).

Cluster size at the critical value. Taking w = H1(z) in (3.1.1) gives

z = H−1
1 (w) = w/G1(w)

In the critical case G1(1) = 1 and G′
1(1) = 1. Taking the derivative of the right hand side

and setting w = 1 is
G1(w)−G′

1(w)w

G1(w)2
= 0

Differentiating again and setting w = 1 gives

[G′
1(w)−G′′

1(w)w −G′
1(w)]G1(w)2 − 2G1(w)G′

1(w)[G1(w)−G′
1(w)w]

G1(w)4
= −G′′

1(1)

If q has a finite second moment then for some xε ∈ [1− ε, 1]

H−1
1 (1− ε) = 1− 1

2
G′′

1(xε)ε
2

G′′
1(xε) → G′′

1(1) as ε→ 0, so as δ → 0

1−H1(1− δ) ∼
√

2δ/G′′
1(1)

Combining this with (3.1.2) we have

1−H0(1− δ) = 1− (1− δ) + (1− δ)[G0(1)−G0(H1(1− δ))]

∼ G′
0(1)

√
2δ/G′′

1(1) (3.1.5)

Now the rate of convergence of H0(1 − δ) to 1 tells us about the rate of convergence
of
∑∞

k=K hk to 0. Tauberian theorems (see e.g., Feller volume II) are the machinery for
doing these results rigorously. Here we will be content to argue informally. Suppose that
hk ∼ Ck−α.

1−H0(1− δ) ∼
∑

k

Ck−α{1− (1− δ)k}

Letting x = kδ the above is∑
x:x/δ∈Z+

C(x/δ)−α{1− (1− δ)x/δ} ∼ δα−1 · δ
∑

x:x/δ∈Z+

Cx−α(1− e−x)
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∼ δα−1

∫ ∞

0

x−α(1− e−x) dx

Comparing with (3.1.5) suggests that α = 3/2.
While the calculations above have been for the branching process, they work remarkably

well for the random graph. In Section 1.6 we showed that in ER(n, 1/n) the expected number
of trees of size k is

∼ nk−5/2

√
2π

e−k3/3n2

Since a tree of size k contains k sites, this shows that the probability of belonging to a
component of size k is asymptotically Ck−3/2 while k << n2/3. When k = n2/3 this probability
is O(1/n) and there is an exponential cutoff.
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3.2 Proof of phase transition

Again, while the branching process picture is intuitive, in order to analyze the growth of a
cluster, it is more convenient to expose one vertex at a time. In the case of Erdös-Rényi
random graphs, the main difference between cluster growth and a random walk is that the
size of the unexplored set decreases over time. In our new setting there are two addition
differences. (i) For fixed n, the empirical sequence of degrees d1, . . . , dn is not the same as
the degree distribution. (ii) The set of available degrees changes as choices are made.

The first issue is not a problem. As n→∞ the empirical distribution of dm, 1 ≤ m ≤ n
converges to pk in distribution and in total variation norm. The strong law of large numbers
implies that the empirical mean of the degree distribution

µ̄n =
1

n

n∑
m=1

dm → µ =
∑

k

kpk

The size-biased empirical distribution has

q̄n
k−1 = k|{1 ≤ x ≤ n : dx = k}|/(nµ̄n)

and also converges to qk−1 in distribution and in total variation norm. Since we have supposed
pk has finite second moments, the empirical mean

ν̄n =
∑

k

kq̄n
k → ν

To deal with (ii), we will only look at cluster growth until a small fraction of the vertices
have been exposed, and argue that the distribution of choices has not been changed much.

The lower bound on the critical value is easy.

Theorem 3.2.1. Suppose ν =
∑

k k(k−1)pk/µ < 1. Then the distribution of the size of the
cluster containing 1 converges in distribution to a limit with mean 1 + µ/(1− ν).

Proof. Let An
0 be the set of neighbors of 1 and Sn

k = |An
k |. As long as Sn

k > 0 we pick an
element ink ∈ An

k , delete it from An
k+1 and add its neighbors to An

k+1 (some of which may
already be in An

k). Sn
k+1−Sn

k ≤ −1+ξn
k+1 where ξn

k+1 is the number of uninspected neighbors
of ink . The mean of ξn

k+1 is maximized when all of the k previously chosen elements added no
new vertices to A. In this case we have removed k vertices of degree 0 from the distribution,
so letting Fn

k be the σ-field generated by the first k choices, we have

E(ξn
k+1|Fn

k ) ≤ ν̄n
n

n− k
≡ ν̄n

k

To be precise, in taking this expected value we are supposing that d1, . . . , dn and hence µ̄n,
ν̄n are fixed numbers and we are taking expectations for the random graph conditioned on
their values.
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It follows from the last inequality that Sn
k −

∑k
j=1(ν̄

n
k − 1) is a supermartingale. Letting

Tn = inf{k : Sn
k = 0}, stopping at Tn ∧m, and noting that ν̄n

k is increasing in k, we have

ESn
0 ≥ E [Sn(Tn ∧m)− (ν̄n

m − 1)(Tn ∧m)]

Since Sn(Tn ∧m) ≥ 0 we have ESn
0 ≥ (1− ν̄n

m)E(Tn ∧m) and it follows that

P (Tn > m) ≤ ESn
0

m(1− ν̄n
m)

As n→∞, ESn
0 → µ and for each fixed m we have ν̄n

m → ν < 1,

lim sup
n→∞

P (Tn > m) ≤ µ

m(1− ν)

This shows that Tn is tight. Our stopping inequality implies

lim sup
n→∞

E(Tn ∧m) ≤ µ

(1− ν)

so if T is any subsequential limit of the Tn, ET ≤ µ/(1 − ν). It is easy to see that for any
fixed m the distribution of ξn

m converges to q and the successive steps are independent, so the
size of the cluster converges to the hitting time of 0 for the limiting random walk starting
from S0 with distribution p. This random variable has mean µ/(1 − ν), so using Fatou’s
Lemma now, we have

lim inf
n→∞

E(Tn) ≥ µ

(1− ν)

and the proof of the result for the subcritical regime is complete.

We come now to the more diificult proof of the upper bound on the critical value. The
overall strategy of the proof is the same as the argument for Erdös-Renyi random graphs
that was done in detail in Section 2.3. Because of this, we will content ourselves to explain
how to cope with the new difficulties that come from a fixed degree distribution. Readers
who want to see more details can consult the paper by Molloy and Reed (1995).

Theorem 3.2.2. Suppose
∑

k k(k − 1)pk/µ > 1. Then there is a giant component of size
∼ (1−G0(ρ1))n, and no other clusters of size larger than β log n.

Sketch of proof. As in Section 2.3, we expose the cluster one site at a time to obtain
something that can be approximated by a random walk. Rt is the set of removed sites, Ut

are the unexplored sites and At is the set of active sites. R0 = ∅, U0 = {2, 3, . . . , n}, and
A0 = {1}. At time τ = inf{t : At = ∅} the process stops. If At 6= ∅, we pick it from At

according to some rule that is measurable with respect to At, we remove it from At, add its
unexposed neighbors, and remove the added neighbors from Ut.

To estimate the change that occurs when some of the vertices have been exposed, let rk

be a distribution on the positive integers, and let Wr(ω) be an nondecreasing function of
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ω ∈ (0, 1) so that the Lebesgue measure |{ω : Wr(ω) = k}| = rk. If we remove an amount
of mass η from the distribution and renormalize to get a probability distribution then the
result will be larger in distribution than U = (W (ω)|ω < 1− η).

From the last observation and the convergence of the size-biased empirical distribution to
q in the total variation norm, we see that if n is large and the fraction of vertices exposed is
at most η, then the cluster growth process dominates a random walk process in which steps
(after the first one) have size −1 plus a random variable with distribution qη =d (Wq|Wq <
1− 2η).

�
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@
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�

�
�

�
�

@
@

@
@

•
•

•
•

◦

* ◦
◦
◦
◦

◦
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◦ active

* it

When we expose the neighbors of an active vertex, one of them might already be in the
active set, as shown above. We call such an event a collision. If a collision occurs in the
Erdos-Renyi growth process we are disappointed not to get another vertex. However, in the
current situation, we must remove it from the active set, since the collision has reduced its
degree to dx − 2. To show that this does not slow down the branching process too much,
we must bound the number of collisions. Note that qη is concentrated on {0, . . . , L} where
L = Wq(1 − 2η). Thus until δn vertices have been exposed, the number of edges with an
end in the active set is at most δnL. The probability of picking one of these edges in the
exposure of an active vertex is at most δnL/(t−δnL) ≡ γ, where t is the total number edges.
Let Z have distribution qη with mean µη. The change in the set of active sites, correcting
for collisions, is bounded by X = −1 + Z − 2 · Binomial(γ, Z). Therefore if δ < η is small,
EX = −1 + νη(1− 2γ) > 0.

Define a random walk St = S0 + X1 + · · · + Xt where S0 is the number of neighbors of
the first site chosen and X1, . . . , Xt are independent copies of our lower bounding variable,
X. Since EX > 0, the random walk has positive probability of not hitting 0, and there is
positive probability that the cluster growth persists until there are at least δn vertices. To
prove that we will get at least one such cluster with high probability, it is enough to show
that with each unsuccessful attempts will, with high probability, use up at most O(log n)
vertices. For this guarantees that we will get a large number of independent trails before
using a fraction δ of the vertices.

The random variable X is bounded so κ(θ) = EeθX < ∞ for all θ. κ(θ) is convex,
continuous and has κ′(0) = EX > 0, κ(θ) ≥ P (X = −1)e−θ → +∞ as θ → −∞, so there is
a unique λ > 0 so that κ(−λ) = 1. In this case E exp(−λSk) is a nonnegative martingale.
Let T = inf{k : Sk ≤ 0}. Due to the possible removal of active vertices, the random walk
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may jump down by more than 1, but its jumps are bounded, so exp(−λSk∧T ) is bounded,
and the optional stopping theorem implies that the probability of reaching ≤ 0 from S0 = x
is ≤ e−λx.

The last estimate implies that the probability that the set of active vertices grows to size
(2/λ) log n without generating a large cluster is ≤ n−2. Routine large deviations estimates
for sums of independent random variables show that if β is large, the probability that the
sum of β log n independent copies of X is ≤ (2/λ) log n is at most n−2, see Lemma 2.3.3 and
Step 2 in the proof of Theorem 2.3.2. Thus the probability of exposing more than β log n
vertices and not generating a large cluster is ≤ 2n−2.

At this point we can finish up as we did in in Section 2.3. Two clusters that reach
size β log n will with high probability grow to size n2/3 and hence intersect with probability
1− o(n−2), see Step 3. The results above show that size of the giant component is with high
probability the same as {x : |Cx| ≥ β log n}. As in Step 4, the growth of the cluster up to
size β log n can be approximated by the two-phase branching process, and these events are
almost independent, so computing second moments gives the final conclusion of the theorem.

What did Molloy and Reed do?

They used a different model in which one specifies vi(n), the number vertices of degree i.
They assumed

(i) vi(n) ≥ 0

(ii)
∑

i vi(n) = n

(iii) the degree sequence is feasible, i.e.,
∑

i ivi(n) is even

(iv) the degree sequence is smooth, i.e., limn→∞ vi(n)/n = pi

(v) the degree sequence is sparse, i.e.,
∑

i≥0 ivi(n) →
∑

i ipi.

Our random degree model has these properties with probability one. However, Molloy and
Reed’s approach is more refined since it deals with individual sequence of degree sequences.
Unfortunately it also needs more conditions on maximum degrees.

To state their main result (Theorem 1 on pages 164–165) recall that our condition for
criticality is 1 =

∑
(k − 1)kpk/µ. Multiplying each side by µ, recalling that µ =

∑
k kpk,

then subtracting gives

Q ≡
∑

k

k(k − 2)pk = 0

The final detail is that they use asymptotically almost surely (a.a.s) for “with probability
tending to 1 as n→∞”

Theorem 3.2.3. Suppose (i)-(v) hold, and that vi(n) = 0 for i > n1/4−ε.
a. If Q > 0 there are constants ζ1, ζ2 > 0 so that a.a.s. G has a component with at least ζ1n
vertices and ζ2n cycles.
b. Suppose Q < 0 and vi(n) = 0 for i ≥ wn where wn ≤ n1/8−ε. Then there is a β > 0 so
that a.a.s. there is no cluster with βw2

n log n vertices.
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Molloy and Reed (1995) did not get the exact size of the giant component since they used
their lower bound on the growth starting from one point until the cluster reached size δn.
In their 1998 article they found the exact size of the giant component and proved a ”duality
result” for small clusters in the supercritical regime. We will state the result and then sketch
its proof. Let µ =

∑
i ipi and define

χ(α) = µ− 2α−
∑
i≥1

ipi

(
1− 2α

µ

)i/2

Theorem 3.2.4. Let α∗ be the smallest positive solution of χ(α) = 0 in [0, µ/2]. The size
of the giant component is

ε∗ = 1−
∑
i≥1

pi

(
1− 2α∗

µ

)i/2

In the supercritical regime the finite clusters have the same distribution as a random graph
with (1− ε∗)n vertices and degree distribution

p′i =
pi

1− ε∗

(
1− 2α∗

µ

)i/2

Comparison with Heuristics. At first these formulas do not look much like the ones
in Section 3.1. However, rewriting χ(α∗) = 0(

1− 2α∗

µ

)1/2

=
∑
i≥1

ipi

µ

(
1− 2α∗

µ

)(i−1)/2

we see that ξ = (1−2α∗/µ)1/2 is a fixed point of G1 the generating function of qk−1 = kpk/µ,
and the expression for ε∗ is just 1−G0(ξ). For the third and final equation, note that the left
hand side gives the distribution of the first generation in the two-phase branching process,
when it is conditioned to die out.

Sketch of proof. Molloy and Reed (1998) expose the clusters one edge at a time. To begin
they form a set L consisting of i distinct copies of each of the vi(n) vertices with degree i. In
the construction that follows, the pairing of the vertices that define the graph are being done
as we proceed. At each step, a vertex, all of whose copies are in exposed pairs, is entirely
exposed. A vertex, with some but not all of its copies in exposed pairs, is partially exposed.
The copies of partially exposed vertices which are not in exposed pairs are open. All other
vertices are unexposed.

Repeat until L is empty.

• Expose a pair of vertices by first choosing any member of L, and then choosing its
partner at random. Remove them from L.
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• Repeat until there are no partially exposed vertices: choose an open copy of a partially
exposed vertex, and pair it with another randomly chosen member of L. Remove them
both from L.

Let M =
∑

i ivi(n). Let Xj be the number of open vertices and let vi,j be the number
of unexposed vertices of degree i when j pairs have been exposed. Let Fj be the σ-field
generated by the first j choices. If Xj > 0 then

E(vi,j+1 − vi,j|Fj) = − ivi,j

M − 2j − 1
(3.2.1)

The denominator gives the number of unused vertex copies when the choice at time j + 1 is
made. The relevance of Xj > 0 is that it guarantees that the first vertex chosen is partially
exposed. When Xj = 0 we have two opportunities to lose an unexposed vertex of degree
i. To get around this problem, Molloy and Reed show that for any function ω(n) → ∞
a.a.s. the giant component will be one of the first ω(n) components exposed. Since all non-
giant components have size O(log n), it follows that a.a.s. the (log2 n)th edge will lie in the
giant component. Because of this we can watch the process from time (log2 n) until the next
time Xj = 0 and not worry about the second case.

As n → ∞, M/n → µ. Thus (3.2.1) tells us that when j = αn the infinitesimal mean
change in vi,j/n converges to

i

µ− 2α
· vi,j

n

The infinitesimal variance of vi,j/n is ≤ 1/4n2 so as in Section 2.5, we can conclude that the
rescaled process has a deterministic limit. Readers who want more details about this step
can consult Theorem 1 in Wormald (1995).

Writing Zi(α) = limn→∞ vi,nα/n, we have

Z ′
i(α) = − iZi(α)

µ− 2α

The solution with initial condition Zi(0) = pi is

Zi(α) = pi

(
1− 2α

µ

)i/2

To check this note

Z ′
i(α) = pi

i

2

(
1− 2α

µ

)(i/2)−1(
− 2

µ

)
= −Zi(α) · i

2
· µ

µ− 2α
· 2

µ

It is clear from the definitions that Xj = M − 2j −
∑

i ivi,j. Taking limits

Xαn/n ≈ µ− 2α−
∑

i

ipi

(
1− 2α

µ

)i/2
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To justify the interchange of limit and the infinite sum, note that vi,j is decreasing in j, and
if we pick I large enough (1/n)

∑∞
i=I vi,0 ≤ ε and hence (1/n)

∑∞
i=I vi,j ≤ ε for all j.

Recall that all of our computations have been under the assumption Xj > 0, j ≤ αn. The
right-hand side hits zero at α = α∗ signaling the end of the exposure of the giant component.
When we are done exposing the giant component the number of vertices of degree i that
remain is

nZi(α
∗) = npi

(
1− 2α∗

µ

)i/2

≡ np′i

and the total number is n(1− ε∗) =
∑

i p
′
i.
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3.3 Subcritical estimates

In subcritical Erdös-Rényi random graphs the largest component is O(log n). This result is
false for graphs with arbitrary degree distributions. Suppose for example that pk ∼ ck−γ

where γ > 3 so that the variance is finite. The tail of the distribution
∑∞

k=K pk ∼ cK1−γ so
the largest degree present in a graph with n vertices is O(n1/(γ−1)). At first it might seem
that one can increase the power of n by looking at the size biased distribution qk−1 = kpk/µ
which is ∼ ck1−γ. However, the degrees are i.i.d. with distribution pk and the size biasing
can only change the probabilities of degrees that are present. Because of this we conjecture:

Conjecture 3.3.1. If pk ∼ ck−γ with γ > 3 and ν < 1 then the largest component is
O(n1/(γ−1)).

Chung and Lu have introduced a variant of the Molloy and Reed model that is easier to
study. Their model is specified by a collection of weights w = (w1, . . . , wn) that represent
the expected degree sequence. The probability of an edge between i to j is wiwj/

∑
k wk.

They allow loops from i to i so that the expected degree at i is∑
j

wiwj∑
k wk

= wi

Of course for this to make sense we need (maxiwi)
2 <

∑
k wk.

Let d = (1/n)
∑

k wk be the average degree. As in the Molloy and Reed model, if we
follow an edge from i, vertices are chosen proportional to their weights, i.e., j is chosen with
probability wj/

∑
k wk. Thus the relevant quantity for connectedness of the graph is the

second order average degree

d̄ =
∑

j

wj
wj∑
k wk

The Cauchy-Schwarz inequality implies(∑
k

wk

)2
≤
(∑

k

w2
k

)(∑
k

1
)

so d̄ ≥ d. It is not clear whether Chung and Lu (2000a) understood that d̄ > 1 is the correct
condition for the existence of a giant component, since they prove d > 1 is sufficient and
derive a number of bounds on the size of the giant component under this condition.

Chung and Lu (2002a) have proved a nice result about the subcritical phase. Note that
when γ > 3, 1/(γ − 1) < 1/2 so this result is consistent with our conjecture.

Theorem 3.3.2. Let vol(S) =
∑

i∈S wi. If d̄ < 1 then all components have volume at most
C
√
n with probability at least

1− dd̄2

C2(1− d̄)
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Proof. Let x be the probability that there is a component with volume > C
√
n. Pick two

vertices at random with probabilities proportional to their weights. If there is a “large
component” with volume ≥ C

√
n, then for each vertex, the probability it is in a large

component is ≥ C
√
nγ, where γ = 1/

∑
iwi. Therefore the probability a randomly chosen

pair of vertices is in the same component is at least

x(C
√
nγ)2 = C2xnγ2 (3.3.1)

On the other hand for a fixed pair of vertices u and v the probability pk(u, v) of u and v
being connected by a path of length k + 1 is a most

pk(u, v) ≤
∑

i1,i2,...ik

(wuwi1γ)(wi1wi2γ) · · · (wikwvγ) ≤ wuwvγ(d̄)
k

Summing over k ≥ 0 the probability u and v belong to the same component is at most

wuwvγ

1− d̄

The probabilities of u and v being selected are wuγ and wvγ. Summing over u and v the
probability a randomly chosen pair of vertices belong to the same component is at most

(d̄)2γ

1− d̄

Using this with (3.3.1)

C2xnγ2 ≤ (d̄)2γ

1− d̄

which implies

x ≤ (d̄)2

C2n(1− d̄)γ
=

d(d̄)2

C2(1− d̄)

since γ = 1/
∑

iwi and d = (1/n)
∑

iwi implies nγ = 1/d.
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3.4 Distances: finite variance

In this section we will consider the typical distance between vertices in the giant component of
a Newman-Strogatz-Watts random graph when the random degree D has P (D ≥ x) ≤ x−β+1

with β > 3, so that the distribution has finite variance. The results here follow van der
Hofstad, Hooghiemstra, and Van Mieghem (2004). Let µ = ED and let ν = E(D(D −
1))/ED be the mean of the size biased distribution. Let Zn be the two phase branching
process and let

W = lim
t→∞

Zt

µνt−1
(3.4.1)

Theorem 3.4.1. Suppose ν > 1. Let Hn be the distance between 1 and 2 in the random
graph on n vertices. For k ≥ 1, let a(k) = [logν k]− logν ∈ (−1, 0]. As n→∞

P (Hn − [logν n] = k|Hn <∞) = P (Ra(n) = k) + o(1)

If κ = µ(ν − 1)−1 then for a ∈ (−1, 0]

P (Ra > k) = E(exp(−κνa+kW1W2)|W1W2 > 0)

where W1 and W2 are independent copies of W defined in (3.4.1).

x = logν k has νx = k, i.e., x = log n/ log ν, so the answer has the same intuitive
explanation as the one in Theorem 2.4.1 for Erdös-Rényi random graph. The strength of
this result is that it shows that the fluctuations around the limit are O(1). The statement
is made complicated by the fact that Hn is always an integer so the support of Hn − logν n
changes with n.

The proof of Theorem 3.4.1 is done by a careful comparison of the growing cluster and
branching process. The proof is about 30 pages, so we will content ourselves to explain
where the formula for the distribution of Ra comes from and refer the reader to the original
paper for details. The total number of vertices is ∼ µn as n→∞, so for our sketch we will
suppose that it is always equal to µn. Taking turns growing each cluster by one branching
step,

P (Hn > k) ≈ E exp

(
−

k+1∑
i=2

Z1
di/2eZ

2
bi/2c

µn

)
Here, one needs to look closely at the indices. We round up in the first case, and down

in the second, so for i = 2, 3, 4, . . . we get (di/2e, bi/2c) = (1, 1), (2, 1), (2, 2) . . .. When k = 1
there is only one term in the sum: Z1

1Z
2
1/µn. This gives the expected number of the Z1

1

half-edges from 1 that are paired with one of the Z2
1 half-edges from 2. The distance is > 1

if and only if the number of such pairings is 0. Since the events are almost independent,
the number of pairings (conditional on the values of Z1

1 and Z2
1) is roughly Poisson and the

probability of 0 is E exp(−Z1
1Z

2
1/µn).
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Letting σn = [logν n] and writing n = ν logν n = νσn−an we have

P (Hn > σn + j) ≈ E exp

(
−µνan+k

σn+j+1∑
i=2

Z1
di/2eZ

2
bi/2c

µ2νσn+j

)

di/2e+ bi/2c = i so using (3.4.1)

Z1
d(σn+j+1)/2eZ

2
b(σn+j+1)/2c

µ2νσn+j−1
→ W 1W 2

and it follows that

σn+j+1∑
i=2

Z1
di/2eZ

2
bi/2c

µ2νσn+j
→ ν−1W1W2

∞∑
k=0

(1/ν)k =
1

ν − 1

Combining our results gives

P (Hn > σn + j|Hn <∞) ≈ E(exp(−κνan+jW1W2)|W1W2 > 0)

with κ = µ/(ν − 1).
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3.5 Epidemics

In this section we will consider the SIR (susceptible-infected-removed) epidemic model on
Newman-Strogatz-Watts random graphs, following Newman (2002). The closely related topic
of percolation on these random graphs was studied earlier by Calloway, Newman, Strogatz,
and Watts (2000). An infected individual stay infected for a random amount of time τ , and
during this time infects susceptible neighbors at rate r. At the end of the infected period
the individual becomes removed, i.e., no longer susceptible to the disease. To have a happier
story we will not think of a fatal disease but instead consider a disease like measles or a
particular strain of influenza, where upon recovery one has immunity to further infection.

The key to our study of the SIR model is that if we look at the neighbors that a given
individual will try to infect, we will obtain a new NSW random graph. Once this is es-
tablished, we can immediately compute the threshold, the fraction of individuals who will
become infected, etc. We begin with the case in which the infection time τ is constant, and
without loss of generality scale time to make the constant 1. Let pk be the degree distribu-
tion. If we start with one individual infected then the probability that j of its k neighbors
will become infected is

p̂j =
∞∑

k=j

pk

(
k

j

)
(1− e−r)je−(k−j)r

If µ is the mean of p then the mean of p̂ is µ̂ = µ(1− e−r).
Due to the construction of the social network as an NSW random graph, individuals

in the first and subsequent generations will have k neighbors (including their parent) with
probability qk = (k + 1)pk+1/µ for k ≥ 0. The probability that j of their neighbors will
become infected is

q̂j =
∞∑

k=j

qk

(
k

j

)
(1− e−r)je−(k−j)r

If ν is the mean of q then the mean of q̂ is ν̂ = ν(1− e−r), and the condition for the disease
to propagate is

ν(1− e−r) > 1 (3.5.1)

Newman writes things in terms of the transmission probability T , here 1−e−r, so this agrees
with his equation (23).

One can compute the probability that an epidemic occurs in the usual way using the
generating functions of q̂ and p̂. Writing T = 1− e−r

Ĝ0(z) =
∞∑

j=0

∞∑
k=j

pk

(
k

j

)
T j(1− T )k−jzj

=
∞∑

k=0

pk

k∑
j=0

(
k

j

)
(Tz)j(1− T )k−j = G0(Tz + (1− T ))

An almost identical calculation gives Ĝ1(z) = G1(Tz + (1− T )).
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Theorem 3.5.1. If Ĝ1(ξ) = ξ is the smallest fixed point in [0, 1] the probability the epidemic
does not die out is 1− Ĝ0(ξ).

We turn now to the case of random τ . The probability that an infected individual infects
a given neighbor is

T = 1−
∫ ∞

0

dt P (τ = t)e−rt

Again T is for transmissibility. In the discussion leading to (13), Newman claims that the
infection of different neighbors are independent events, but it is easy to see that this is false.
Suppose, for example, that the infection time is exponential with mean one, P (τ = t) = e−t.
In this case

1− T =

∫ ∞

0

dt e−te−rt =
1

r + 1

while the probability two neighbors both escape infection is∫ ∞

0

dt e−te−2rt =
1

2r + 1
>

1

r2 + 2r + 1
=

(
1

r + 1

)2

In general if τ is not constant, the events that neighbors x and y escape infection are positively
correlated since Jensen’s inequality implies

E(e−2rτ ) > (Ee−rτ )2

To compute the correct distribution of the number of neighbors that will become infected,
write rk in place of pk or qk. The generating function of the number of neighbors that will
become infected is

Ĝ(z) =

∫ ∞

0

dt P (τ = t)
∞∑

j=0

zj

∞∑
k=j

rk

(
k

j

)
(1− e−rt)je−r(k−j)t (3.5.2)

Interchanging the order of summation, putting zj with (1 − e−rt)j, and using the binomial
theorem we have

=

∫ ∞

0

dt P (τ = t)
∞∑

k=0

rk(e
−rt + z(1− e−rt))k

=

∫ ∞

0

dt P (τ = t)G(e−rt + z(1− e−rt))

= EG(e−rτ + z(1− e−rτ )) = EG(1 + (z − 1)(1− e−rτ ))

If r0 + r1 < 1, G is strictly convex, so recalling E(1− e−rτ ) = T , the above is

> G(1 + (z − 1)T ) ≡ G̃(z)

the result in Newman’s formulas (13) and (14).
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Although Newman’s formula for the generating function is not correct the threshold is,
since ν̂ = νT . Let Ĝ1 and Ĝ0 for the generating functions of q̂ and p̂ and let

G̃i = Gi(1 + (z − 1)T )

be Newman’s formulas. The extinction probability ξ̂ for Ĝ1 is larger than that for G̃1, call
it ξ̃, and hence Ĝ0(ξ̂) > G̃0(ξ̃). Given this inequality it is remarkable that the survival
probabilities for Newman’s simulations in his Figure 1 match his theoretical predictions
almost exactly. The next example makes this somewhat less surprising.

Concrete Example. To investigate the differences between Ĝ and G̃, we will consider
a concrete example. Suppose pk = 1/3 for k = 1, 2, 3. In this case µ = 2, q0 = 1/6, q1 = 2/6
and q2 = 3/6, so ν = 4/3. For simplicity, we will take a rather extreme infection time
distribution P (τ = ∞) = p and P (τ = 0) = 1− p. In this case, the epidemic process is site
percolation, while Newman’s version is bond percolation. Both versions have critical values
pc = 3/4, but as we will now compute have somewhat different percolation probabilities.

p = .75 .8 .85 .9 .95 1
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Comparison of percolation probabilities for site (circles) and bond (black dots) percolation.

Using (3.5.2)

Ĝ1(z) = 1− p+ p

(
1

6
+
z

3
+
z2

2

)
compared with

G̃1(z) = G1(1− p+ pz) =
1

6
+

1− p+ pz

3
+

(1− p+ pz)2

2

=

(
1

6
+

1− p

3
+

(1− p)2

2

)
+

1

3
pz + (1− p)pz +

1

2
p2z2

The generating functions are quadratic az2+bz+c and have 1 as a fixed point, so a+b+c = 1
and the fixed point equation az2 + (b− 1)z + c = 0 can be factored

(z − 1) · (az + b+ a− 1) = 0
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to conclude that the fixed point of interest is z = (1− a− b)/a. From this we conclude

ξ̂ =
1− 5p/6

p/2
ξ̃ =

1− p2/2− (1− p)p− p/3

p2/2

These formulas do not look much alike but when we plot 1− ξ̂ (black dots) and 1− ξ̃ (circles)
the numerical values are similar.
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.



Chapter 4

Power Laws

4.1 Barabási-Albert model

As we have noted, many real-world graphs have power law degree distributions. Barabási
and Albert (1999) introduced a simple model that produces such graphs. They start with a
graph with

a small number of vertices m0. At every time step, we add a new vertex with m
edges that link the new vertex to m different vertices already present in the system.
To incorporate preferential attachment, we assume that the probability Π that a new
vertex will be connected to a vertex i depends on the connectivity of that vertex,
so that Π(ki) = ki/

∑
j kj. After t steps the model leads to a random network with

t+m0 vertices and mt edges.

Bollobás, Riordan, Spencer, and Tusnády (2001) complain: “The description of the ran-
dom graph process quoted above is rather imprecise. First as the degrees are initially zero, it
is not clear how the process is supposed to get started. More seriously, the expected number
of edges linking a new vertex to earlier vertices is

∑
i Π(ki) = 1, rather than m. Also when

choosing in one go a set S of m earlier vertices as neighbors of v, the distribution is not
specified by giving the marginal probability that each vertex lies in S.”

As we will see below there are several ways to make the process precise and all of them
lead to the same asymptotic behavior. For the moment, we will suppose that the process
starts at time 1 with two vertices linked by m parallel edges, so that the total degree at any
time t is 2mt. When we add a new vertex we will add edges one a time, with the second and
subsequent edges doing preferential attachment using the updated degrees. This scheme has
the desirable property that a graph of size n for a general m can be obtained by running the
m = 1 model for nm steps and then collapsing vertices km, km− 1, . . . (k− 1)m+1 to make
vertex k.

Having settled on a definition we turn now to a discussion of the results. Barabási
and Albert (1999) did simulations that suggested a power law distribution with power γ =
2.9± 0.1 and gave the following argument for γ = 3. If we consider the degree of i, ki, to be

95
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a continuous variable then
∂ki

∂t
= m · ki∑

j kj

=
ki

2t

since
∑

j kj = 2mt. The solution to this differential equation is

ki(t) = m(t/ti)
1/2

where ti is the time the vertex was introduced. From this we see that

P (ki(t) > k) = P (ti < tm2/k2) = m2/k2

since vertices are added uniformly on [0, t]. Differentiating

P (ki(t) = k) = 2m2/k3

Dorogovstev, Mendes, and Samukhin (2000) took a different approach, using what they
call the “master equation,” which can be used to obtain rigorous asymptotics for the mean
number of vertices of degree k, N(k, t). By considering what happens on one step, in which
vertices of degree k can be created from those of degree k − 1 or lost by becoming degree
k + 1, we see that

N(k, t+ 1)−N(k, t) =
m(k − 1)

2mt
N(k − 1, t)− mk

2mt
N(k, t) + δk,m

Here we ignore the possibility of more than one edge being attached to one vertex, and the
updating of edges that occurs as the m edges are added. The last term takes care of the
fact that when k = m we add one vertex of degree m at each time. To make the equation
correct for k = m we suppose N(j, t) = 0 for j < m.

We will encounter equations like this several times below, so we will generalize to prepare
for future examples. When k = m we can write the equation as

N(m, t+ 1) = c+

(
1− b(t)

t

)
N(m, t)

where c = 1 and b(t) ≡ m/2.

Lemma 4.1.1. N(m, t)/t→ c/(1 + b)

Proof. We begin with case in which b(t) ≡ b is constant. Iterating our equation once gives

N(m, t+ 1) = c+

(
1− b

t

)
c+

(
1− b

t

)(
1− b

t− 1

)
N(m, t− 1)

and repeating we have

N(m, t+ 1) = c

t∑
s=1

t∏
r=s+1

(
1− b

r

)
+N(m, 1)

t∏
r=1

(
1− b

r

)
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The product is ≈ exp(−
∑t

r=s+1 b/r) ≈ exp(−b(log t− log s)) = (s/t)b so

N(m, t) ∼ ct−b

∫ t

0

sb ds = ct−b 1

b+ 1
tb+1 = ct/(1 + b)

which proves the desired result for constant b(t). To extend to the case in which b(t) → b,
note that the solution decreases when b(t) increases, so comparing with functions b̄(t) that
are constant for large t, and using the fact that the answer is a continuous function of the
limit b gives the result in general.

We abstract the equation for k > m as

N(k, t+ 1) =

(
1− b(t)

t

)
N(k, t) + g(t)

where b(t) → b and g(t) → g as t → ∞. In the current case b(t) ≡ k/2 and g(t) =
(k − 1)N(k − 1, t)/2t which has a limit by induction.

Lemma 4.1.2. N(k, t)/t→ g/(b+ 1)

Proof. By remarks at the end of the previous proof, it suffices to prove the result when b(t)
is constant. Iterating (4.1.2) we have

N(k, t+ 1) = g(t) +

(
1− b

t

)
g(t− 1) +

(
1− b

t

)(
1− b

t− 1

)
N(k, t− 1)

Using N(k, 1) = 0 for k > m leads to

N(k, t+ 1) =
t−1∑
i=0

g(t− i)
i−1∏
j=0

(
1− b

t− j

)

Changing variables s = t− i, r = t− j the above is

N(k, t+ 1) =
t∑

s=1

g(s)
t∏

r=s+1

(
1− b

r

)

Again the product is ∼ (s/t)b, so

N(k, t+ 1)/t ∼ t−(b+1)

∫ t

0

g(s)sb ds→ g/(b+ 1)

proving the result.
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Returning to the current situation and letting pk = limt→∞N(k, t)/t, Lemma 4.1.1 im-
plies that

pm = 2/(m+ 2)

while Lemma 4.1.2 tells us that for k > m

pk =
(k − 1)pk−1

2
· 2

k + 2
= pk−1

k − 1

k + 2

The solution to this recursion is

pk =
2m(m+ 1)

k(k + 1)(k + 2)
(4.1.1)

To check this, note that it works when k = m and if the formula is correct for k − 1 then it
is correct for k.

With the asymptotics for the mean in hand, the rest is easy thanks to the inequality of
Azuma (1967) and Hoeffding (1963).

Lemma 4.1.3. Let Xt be a martingale with |Xs −Xs−1| ≤ c for 1 ≤ s ≤ t. Then

P (|Xt −X0| > x) ≤ exp(−x2/2c2t)

Let Z(k, t) be the number of vertices of degree k at time t, and let Fs denote the σ-field
generated by the choices up to time s. We apply the result to Xs = E(Z(k, t)|Fs). We
claim that |Xs − Xs−1| ≤ 2m. To see this, first consider m = 1 and note that whether we
attach the vertex vs added at time s to v or v′ does not effect the degrees of w 6= v, v′, or
the probabilities they will be chosen later, so it follows that |Xs − Xs−1| ≤ 2. The results
for general m follows from its relationship to model with m = 1.

Since Z(k, 0) = E(Z(k, t)) taking x =
√
t log t we have

P (|Z(k, t)− E(Z(k, t))| >
√
t log t) ≤ t−1/8 → 0

and hence

Theorem 4.1.4. As t→∞, N(k, t) → pk in probability.

We learned this simple proof from Bollobás, Riordan, Spencer, and Tusndáy (2001).
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4.2 Related models

In the previous section we saw that the preferential attachment model of Barabási and Albert
produced a degree distribution pk ∼ Ck−β with β = 3. However, as we saw in Section 1.4,
there are many examples of powers between 2 and 3. Krapivsky, Redner, and Leyvraz
(2000,2001) approached this problem by modifying the rules so that attachment to a degree
k vertex is proportional to f(k), e.g., f(k) = kγ. Here, we will use the fact that graph with

n vertices and m edges are added at once, G
(m)
n can be obtained by collapsing vertices in

G
(1)
nm to reduce to the case in which one vertex and one edge are added at each step, and G1

is one edge connecting two vertices.

Let Nk(t) be the expected number of vertices of degree k at time t. If we consider the
model with f(k) = kγ and let Mf (t) =

∑
k f(k)Nk(t) then

Nk(t+ 1)−Nk(t) =
1

Mf (t)
[f(k − 1)Nk−1(t)− f(k)Nk(t)] + δk,1 (4.2.1)

where δk,1 = 1 if k = 1 and 0 otherwise, and we set N0(t) ≡ 0.

Case 1. 0 < γ < 1. When f(x) = xγ we write Mγ for Mf . It is easy to see that
M0(t) = t+ 1, M1(t) = 2t, and M0(t) ≤ Mγ(t) ≤ M1(t). With Mγ(t)/t ∈ [1, 2] for all t it is
reasonable to guess that

(A) As t→∞, Mγ(t)/t→ µ ∈ (1, 2).

Only a mathematician would be pessimistic enough to think that the bounded sequence
Mγ(t) might not converge, so following the three physicists, we will assume (A) for the rest
of our calculations. Let nk = limt→∞Nk(t)/t. Writing

N1(t+ 1) = 1 +

(
1− f(1)

Mf (t)

)
N1(t)

and using (A) with Lemma 4.1.1 and noting c = 1, b = f(1)/µ gives

n1 =
c

1 + b
=

µ

µ+ f(1)
(4.2.2)

When k > 1, (4.2.1) gives

Nk(t+ 1) =

(
1− f(k)

Mf (t)

)
Nk(t) +

f(k − 1)

Mf (t)
Nk−1(t)

Using Lemma 4.1.2 and noting g = nk−1f(k − 1)/µ and b = f(k)/µ gives

nk =
g

1 + b
=
f(k − 1)

µ+ f(k)
nk−1
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Iterating, then shifting the indexing of the numerator, recalling f(1) = 1 and n1 = µ/(µ +
f(1)), we have

nk =
k∏

j=2

f(j − 1)

µ+ f(j)
n1 =

µ

f(k)

k∏
j=1

f(j)

µ+ f(j)
=

µ

kγ

k∏
j=1

(
1 +

µ

jγ

)−1

(4.2.3)

To determine the asymptotic behavior of nk we note that since γ < 1

log
k∏

j=1

(1 + µ/jγ)−1 ∼ −
k∑

j=1

µ/jγ ∼ − µ

1− γ
k(1−γ)

Putting the pieces together we see that the limiting degree distribution is, for large k,

≈ µ

kγ
exp(−ck(1−γ))

which decays faster than any power but not exponentially fast.
To finish the computation of n1 we note that the value of µ can be determined from the

self-consistency equation: µ =
∑∞

k=1 knk which implies

1 =
∞∑

k=1

k∏
j=1

(
1 +

µ

jγ

)−1

(4.2.4)

Problem. Prove (A) by showing that any subsequential limit µ of Mγ(t)/t satisfies (4.2.4).

Case 2. γ > 2. Let a and b be the two vertices in G1. The probability the new edge
always attaches to a is

∞∏
m=1

mγ

m+mγ
=

∞∏
m=1

(
1 +

1

mγ−1

)−1

> 0

It seems natural to

Conjecture. There is an n0 so that for n ≥ n0 all new vertices attach to one vertex.

In any case, this does not seem to be a good model for sex in Sweden.

Case 3. 1 < γ ≤ 2. As in case 1, the key problem is to understand the asymptotics of
Mγ(t), and we aren’t quite able to prove what we need

(B) Mγ(t)/t
γ → 1 as t→∞.

It is easy to see, as Krapivsky, Redner, and Leyvraz (2000) show in their equation (11),

Mγ(t) =
∑

k

kγNk(t) ≤ tγ−1
∑

k

kNk(t) ≤ 2tγ

With a little work this can be improved to

Mγ(t) ≤ t+ tγ (4.2.5)
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Proof. We claim that the maximum of
∑

k kNk(t) subject to
∑

k Nk(t) = t+1 and
∑

k kNk(t) =
2t is achieved by N1(t) = t and Nt(t) = 1. To prove this, suppose that the maximum is
achieved by a configuration with

∑t−1
j=2Nj(t) > 0. In this case we must have Nt(t) = 0

or we would have
∑

k kNk(t) > 2t, and we must have
∑t

j=2Nj(t) ≥ 2 or we would have∑
k kNk(t) < 2t. We either have 1 < i < j < t with Ni(t) > 0 and Nj(t) > 0 or 1 < i = j < t

with Ni(t) ≥ 2. In either case when i ≤ j

iγ − (i− 1)γ =

∫ i

i−1

xγ+1

γ + 1
dx <

∫ j+1

j

xγ+1

γ + 1
dx = (j + 1)γ − jγ

Rearranging we have iγ +jγ < (i−1)γ +(j+1)γ or in words we can increase Mγ by spreading
i and j further apart, a contradiction that proves (4.2.5).

For a bound in the other direction we note that for k ≥ 2

Nk(k) =
(k − 1)γ

Mγ(k − 1)
Nk−1(k − 1) =

k−1∏
j=2

jγ

Mγ(j)
N2(2)

If Mγ(t)/t
γ → r < 1 then we would get a contradiction to Nk(k) ≤ 1. If you are a physicist

the proof of (B) is complete. Unfortunately, as a mathematician I cannot rule out the
paranoid delusion that lim supMγ(t)/t

γ = 1 and lim infMγ(t)/t
γ < 1, so I will regard (B)

as an assumption waiting to be proved.

Once one believes (B), the rest is easy.

N1(t)−N1(t− 1) = 1− N1(t− 1)

Mγ(t− 1)

Iterating, using N1(s) ≤ s for s ≥ 2, and the asymptotics for Mγ(t):

N1(t)−N1(2) ≥ t− 1−
t−1∑
s=2

s

Mγ(s)
∼ t

When k = 2 we have

N2(t+ 1)−N2(t) =
1

Mγ(t)
[N1(t)− 2γN2(t)] ≤

t

Mγ(t)

The right-hand side ∼ t1−γ so

lim sup
t→∞

t−(2−γ)N2(t) ≤ lim sup
t→∞

t−(2−γ)

t∑
s=1

s1−γ = 1/(2− γ)

This calculation shows that discarding 2γN2(t) from the previous equation had no affect on
the limit, and we have

N2(t)/t
2−γ → 1/(2− γ)
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Repeating the last argument for k > 2, we first get an upper bound on Nk(t) from

Nk(t+ 1)−Nk(t) ≤
(k − 1)Nk−1(t)

Mγ(t)

Then we use the upper bound to conclude

Nk(t+ 1)−Nk(t) ∼
(k − 1)Nk−1(t)

Mγ(t)

and it follows by induction that

Nk(t) ∼ ckt
1+(k−1)(1−γ)

Noting that the exponent is < 0 when k > γ/(γ − 1), it is natural to

Conjecture. If γ > 1 then there is one vertex with degree of order ∼ t. All of the others
have degrees O(1). There are only O(1) vertices with degree > γ/(γ − 1).

Oliveira and Spencer (2005) have proved this conjecture and in addition have results on the
geometry of the limiting graph.

Having found that powers change the behavior too much, we now consider

Case 4. Let f(j) = a + j where a > −1. The small change of adding an a will make a
significant change in the behavior. This time it is easy to find the asymptotics of

Mf (t) =
∑

j

f(j)Nj(t) = N1(t) + aN0(t) = 2t+ a(t+ 1)

so Mf (t)/t → µ = 2 + a. Let nk = limNk(t)/t. By calculations in Case 1, given in (4.2.2)
and (4.2.3), n1 = µ/(µ+ f(1)) and

nk =
k∏

j=2

f(j − 1)

µ+ f(j)
n1 =

µ

f(k)

k∏
j=1

f(j)

µ+ f(j)
=

µ

a+ k

k∏
j=1

(
1 +

µ

a+ j

)−1

To determine the asymptotic behavior of nk we note that

log
k∏

j=1

(
1 +

µ

a+ j

)−1

∼ −
k∑

j=1

µ

a+ j
∼ −µ log k

so the product is ∼ k−µ = k−(2+a). Recalling the µ/(a + k) out front the power is k−(3+a).
Since a > −1 this means we can achieve any power > 2.

The models in this section are new, but they have close relatives that are very old.

Yule (1924) was interested in understanding the distribution of the number of species
of a given genus. For this he introduced the following model:
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• A genus starts with a single species. New species in the genus arise according to the
Yule process in which individual gives birth at rate λ.

• Separately from within each genus a new genus appears at constant rate µ.

This is similar to the Case 4 model in that if we look at the embedded jump chain when there
are k genera and a total of ` species then a genus with j species will get a new species with
probability λj/(λ`+ µk), while a new genus will be added with probability µk/(λ`+ µk).

It is well-known that the number of individuals Zt in a Yule process at time t has a
geometric distribution

P (Zt = n) = e−λt(1− e−λt)n−1 for n ≥ 1

From the second assumption the number of genera will grow exponentially at rate µ, so
if we pick a random genus extant today, the time since its first appearance will have an
exponential(µ) distribution. Thus the distribution of the number N of species in a random
genus will be

p(n) =

∫ ∞

0

µe−µte−λt(1− e−λt)n−1 dt

letting α = µ/λ and recognizing this as a beta integral we have

p(n) = αΓ(1 + α) · Γ(n)

Γ(n+ 1 + α)

where Γ is the usual gamma function. From this it follows that p(n) ∼ Cn−1−α as n→∞.
Since α > 0 we can achieve any power > 1. For more on this see Aldous (2001).

Simon (1955) considered the following model of word usage in books, which he also
applied to scientific publications, city sizes, and income distribution. LetXi(t) be the number
of words that have appeared exactly i times in the first t words. He assumed that (i) there is
a constant probability α that the (t+1)-th word is a word that has not appeared in the first
t words, and (ii) if the (t+ 1)-the word is not new, the probability of a word is proportional
to the number of times it has been used. Writing Ni(t) = EXi(t) we have

N1(t+ 1)−N1(t) = α− 1− α

t
N1(t)

Nk(t+ 1)−Nk(t) =
1− α

t
[(k − 1)Nk(t)− kNk(t)] for k > 1

Let ni = limNi(t). Using Lemma 4.1.1 and noting c = α, b = 1− α gives

N1(t)/t→ c/(1 + b) = α/(2− α)

The second equation in this case is the same as the one in Case 1 with f(i) = (1− α)i and
µ = 1, so using (4.2.2) and (4.2.3), we have n1 = α and for k ≥ 2

nk =
α

(1− α)k

k∏
j=1

(1− α)j

1 + (1− α)j
=

α

(1− α)k

k∏
j=1

(
1 +

1

(1− α)j

)−1
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Now log
∏k

j=1 ∼ −
∑k

j=1 1/(1 − α)j ∼ −(log k)/(1 − α), so the product is ∼ i−1/(1−α).

Recalling the 1/(1−α)i out front the power, is i−(1+1/(1−α)). Since 0 < α < 1 this means we
can achieve any power > 2.

Back to the recent past. A number of researchers have modified the preferential
attachment model and achieved powers 6= 3. Kumar, Raghavan, Rajagopalan, Sivakumar,
Tomkins, and Upfal (2000) analyzed a “copying” model first introduced by Kleinberg, Ku-
mar, Raghavan, Rajagopalan, Sivakumar, and Tomkins (1999). At each step one new vertex
with out degree d is added. To decide where the out-links should go they first choose a pro-
totype vertex p uniformly at random from the current set of vertices. For 1 ≤ i ≤ d they use
independent biased coin flips to determine whether the destination will be chosen uniformly
at random with probability α or will be the end of the ith out link of p. Their Theorem 8
shows that the fraction of vertices of degree k converges to a limit pk with pk ∼ Ck−β and
β = (2− α)/(1− α) ∈ (2,∞).

Cooper and Frieze (2003) considered a very general model in which at each step there
is a probability α that an old node will generate edges and probability 1 − α that a new
node will be added. A new node generates i edges with probability pi. With probability
β terminal nodes are chosen uniformly at random, with probability 1 − β terminal vertices
are made according to degree. When an old node is chosen, with probability δ it is chosen
uniformly at random, and with probability 1− δ with probability proportional to its degree.
A old node generates i new edges with probability qi. With probability γ terminal nodes are
chosen uniformly at random, with probability 1− γ terminal vertices are made according to
degree. In most cases a power law results. See pages 315–316 for the necessary notation and
page 317 for the result itself. In section 6, Cooper and Frieze consider directed versions of
the model. Bollobás, Borgs, Chayes, and Riordan (2003) considered a more general model
where the in- and out-degree distributions have power laws with different exponents.

The references we have cited are just the tip of a rather large iceberg. More can be find
in the cited sources and in the nice survey article by Mitzenmacher (2004).
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4.3 Martingales and urns

In the first two sections we have concentrated on the fraction of vertices with a fixed degree
k. In this section we shift our attention to the other end of the spectrum and look at the
growth of the degrees of a fixed vertex j. As in the previous section we use the fact that
graph with n vertices and m edges are added at once, G

(m)
n can be obtained by collapsing

vertices in G
(1)
nm to reduce to the case with m = 1.

Mori’s martingales. Mori (2004) has studied the case 4 model from the previous section.
As above he starts with G1 consisting of two vertices, 0 and 1, connected by an edge, although
as the reader will see the proof generalizes easily to other initial configurations. In his
notation at the n-th step, a new vertex is added and connected to an existing vertex. A vertex
of degree k is chosen with probability (k + β)/Sn where β > −1 and Sn = 2n+ (n+ 1)β =
(2 + β)n+ β is the sum of the weights for the random tree with n edges and n+ 1 vertices.

Let X[n, j] be the weight (= degree +β) of vertex j after the n-th step, let ∆[n+ 1, j] =
X[n + 1, j] −X[n, j], and let Fn denote the σ-field generated by the first n steps. If j ≤ n
then

P (∆[n+ 1, j] = 1|Fn) = X[n, j]/Sn

From this, we get

E(X[n+ 1, j]|Fn) = X[n, j]

(
1 +

1

Sn

)
so cnX[n, j] will be a martingale if and only if cn/cn+1 = Sn/(1 + Sn).

Anticipating the definition of a larger collection of martingales we let

c[n, k] =
Γ(n+ β/(2 + β))

Γ(n+ (k + β)/(2 + β))
n ≥ 1, k ≥ 0

where Γ(r) =
∫∞

0
tr−1e−t dt. For fixed k

c[n, k] = n−k/(2+β)(1 + o(1)) as n→∞ (4.3.1)

Using the recursion Γ(r) = (r − 1)Γ(r − 1) we have

c[n+ 1, k]

c[n, k]
=

n+ β/(2 + β)

n+ (k + β)/(2 + β)
=

Sn

Sn + k
(4.3.2)

and it follows that c[n, 1]X[n, j] is a martingale for n ≥ j. Being a positive martingale it
will converge a.s. to a random variable ζj.

To study the joint distribution of the X[n, j] we need another martingale.

Lemma 4.3.1. Let r, k1, k2, . . . kr be positive integers, and 0 ≤ j1 < · · · < jr be nonnegative
integers. Then

Z[n,~j,~k] = c[n,
∑

i

ki]
r∏

i=1

(
X[n, ji] + ki − 1

ki

)
is a martingale for n ≥ max{jr, 1}.
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Proof. By considering two cases (no change or ∆[n, j] = 1) it is easy to check that(
X[n+ 1, j] + k − 1

k

)
=

(
X[n, j] + k − 1

k

)(
1 +

k∆[n, j]

X[n, j]

)
Since at most one X[n, j] can change this implies

r∏
i=1

(
X[n+ 1, ji] + ki − 1

ki

)
=

r∏
i=1

(
X[n, ji] + ki − 1

ki

)(
1 +

r∑
i=1

ki∆[n, ji]

X[n, ji]

)

Since P (∆[n + 1, j] = 1|Fn) = X[n, j]/Sn, using the definition of Z[n,~j,~k] and taking
expected value

E(Z[n+ 1,~j,~k]|Fn) = Z[n,~j,~k] · c[n+ 1,
∑

i ki]

c[n,
∑

i ki]

(
1 +

∑
i ki

Sn

)
= Z[n,~j,~k]

the last following from (4.3.2).

Being a nonnegative martingale Z[n,~j,~k] converges. From the form of the martingale,
the convergence result for the factors, and the asymptotics for the normalizing constants
in (4.3.1), the limit must be

∏r
i=1 ζ

ki
i /ki!. Our next step is to check that the martingale

converges in L1. To do this we begin by observing that (4.3.1) implies c[n,m]2/c[n, 2m] → 1
and we have(

x+ k − 1

k

)2

=

(
(x+ k − 1) · · ·x

k!

)2

≤ (x+ 2k − 1) · · ·x
2k!

·
(

2k

k

)
From this it follows that

Z[n,~j,~k]2 ≤ CkZ[n,~j, 2~k]

so our martingales are bounded in L2 and hence converge in L1. Taking r = 1 we have for
j ≥ 1

Eζk
j /k! = lim

n→∞
EZ[n, j, k] = EZ[j, j, k] = c[j, k]

(
k + β

k

)
while Eζk

0 = Eζk
1 .

Let Mn denote the maximal degree in our random tree after n steps, and for n ≥ j
let M [n, j] = max{Z[n, i, 1] : 0 ≤ i ≤ j}. Note that M [n, n] = c[n, 1](Mn + β). Define
µ(j) = max{ζi : 0 ≤ i ≤ j} and µ = supj≥0 ζj.

Theorem 4.3.2. With probability one, n−1/(2+β)Mn → µ.

Proof. Being a maximum of martingales, M [n, n] is a submartingale. Using a trivial inequal-
ity and the fact that Z[n, j, 1]k is a submartingale for k ≥ 1

EM [n, n]k ≤
n∑

j=0

EZ[n, j, 1]k ≤
∞∑

j=0

Eζk
j = k!

(
k + β

k

) ∞∑
j=0

c[j, k] <∞
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by (4.3.1) if k > (2 + β). Thus M [n, n] is bounded in Lk for every integer k > (2 + β), and
hence bounded and convergent in Lp for any p ≥ 1.

Let k > 2 + β be fixed. Then clearly

E(M [n, n]−M [n, j])k ≤
n∑

i=j+1

EZ[n, i, 1]k

The limit of the left hand side is

E
(

lim
n→∞

n−1/(2+β)Mn − µ(j)
)k

while the right-hand side increases to

∞∑
i=j+1

Eζk
i = k!

(
k + β

k

) ∞∑
i=j+1

c[i, k]

which is small if j is large. Hence limn→∞ n−1/(2+β)Mn = µ as claimed.

Urn schemes. Berger, Borgs, Chayes, and Saberi (2004) have a different approach to
preferential attachment models using Polya urns. We begin by considering the β = 0 version
of the model and start with G1 consisting of one vertex, 1, and a self-loop, which we think
of as an urn with two balls numbered 1. At each time k ≥ 2, we draw one ball from the urn,
then return it with a copy of the ball chosen and a new ball numbered k. In graph terms
we add a new vertex numbered k, pick another vertex j with probability proportional to its
degree and draw an edge from k to j.

At time k there are 2k balls in the urn. If we ignore balls with numbers m > k and only
increase time when a ball with number j ≤ k is drawn then we have Polya’s urn scheme. If
we consider balls numbered k to be red and those with j < k to be black then we start with
r = 1 red balls and b = 2k − 1 black balls. The probability that the first n1 draws are red
balls and the next n2 = n− n1 are black balls is

r(r + 1) · · · (r + n1 − 1) · b(b+ 1) · · · (b+ n2 − 1)

(r + b)(r + b+ 1) · · · (r + b+ n− 1)

A little thought reveals that if S is any subset of {1, 2, . . . n} with |S| = n1 then in the
probability that red balls are drawn at time S and black balls at {1, 2, . . . n} − S the same
terms appear in the numerator but in a different order. Since the answer depends on the
number of balls of each type drawn, but not on the order, then the sequence of draws is
exchangeable.

By de Finetti’s theorem, we know that the sequence of draws must be mixture of i.i.d. se-
quences. By the formula above, the probability of n1 red and n2 = n− n1 black in the first
n draws is

pn(n1) =
n!

n1!n2!
· (r + n1 − 1)!

(r − 1)!
· (b+ n2 − 1)!

(b− 1)!
· (r + b− 1)!

(r + b+ n− 1)!
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=
(b+ r − 1)!

(r − 1)!(b− 1)!
· (r + n1 − 1)!

n1!
· (b+ n2 − 1)!

n2!
· n!

(r + b+ n− 1)!

The product of the last three terms is

(n1 + r − 1)(n1 + r − 2) · · · (n1 + 1)(n2 + b− 1)(n2 + b− 2) · · · (n2 + 1)

(n+ r + b− 1)(n+ r + b− 2) · · · (n+ 1)

If n1/n → x then the last expression ∼ xr−1(1 − x)b−1/n since r and b are fixed and there
are (r− 1) + (b− 1) terms in the numerator versus r + b− 1 in the denominator. From this
it follows that

pn(n1) ∼
(b+ r − 1)!

(r − 1)!(b− 1)!
xr−1(1− x)b−1 · 1

n

so the mixing measure is beta(r, b).
One can also derive the last result by considering a Yule process in which each individual

gives birth at rate 1. If we consider the times at which the population increases by 1 then
the probability the new individual is of type j is proportional to the number of individuals
of type j so we recover the urn scheme. If we start the Yule process with one individual at
time 0 then the number at time t has a geometric distribution with mean et, i.e.,

P (Y (t) = n) = (1− e−t)n−1e−t for n ≥ 1

From this it follows that e−tY (t) → ξ where ξ is exponential with mean one. If we consider
the 2k initial balls to be founders of different families, then the limiting fraction of balls of
type k (i.e., members of family 2k) is

ξ2k

ξ1 + · · ·+ ξ2k

= beta(1, 2k − 1)

where the ξi are independent exponentials. For more details see Section 9.1 of Chapter V of
Athreya and Ney (1972).

Consider now the process with β > 0. Since the initial condition is a self-loop, the
sum of the weights is 2n + βn and we can reformulate the graph model as: when the new
vertex k is added the other endpoint is a vertex chosen uniformly at random with probability
α = β/(β + 2) and with probability 1− α = 2/(2 + β) vertices are chosen with probability
proportional to their degrees.

Again we will ignore balls with numbers m > k and only increase time when a vertex
with number j ≤ k is chosen for attachment. At time k the sum of the weights of the first
k vertices is 2k+ βk. Let T0 = k and let Tm be the mth time after time k at which a vertex
with degree j ≤ k is chosen for attachment. If dj(m) is the degree of j after the attachment
at time Tm then the probability k is chosen rather than some j < k is

dk(m− 1) + β

2k + (m− 1) + kβ
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Letting r = 1 and b = 2k − 1 as above, the probability that k is always chosen in the first
n1 draws and never in the next n2 = n− n1 are black balls is

(r + β) · · · (r + n1 − 1 + β) · (b+ β(k − 1)) · · · (b+ n2 − 1 + β(k − 1))

(r + b+ βk) · · · (r + b+ n− 1 + βk)

A little thought reveals that if S is any subset of {1, 2, . . . n} with |S| = n1 then in the
probability that k is chosen at Tm with m ∈ S and not when m ∈ {1, 2, . . . n} − S the same
terms appear in the numerator but in a different order. Since the answer depends on the
number of balls of each type drawn, but not on the order, then the sequence of draws is
again exchangeable.

By de Finetti’s theorem, we know that it must be mixture of i.i.d. sequences. The
probability of n1 red and n2 = n− n1 black in the first n draws is

n!

n1!n2!
· Γ(r + n1 + β)

Γ(r + β)
· Γ(b+ n2 + (k − 1)β)

Γ(b+ (k − 1)β)
· Γ(r + b+ kβ)

Γ(r + b+ n+ kβ)

=
Γ(r + b+ kβ)

Γ(r + β)Γ(b+ (k − 1)β)
· Γ(r + n1 + β)

n1!
· Γ(b+ n2 + (k − 1)β)

n2!
· n!

Γ(r + b+ n− 1)

Now Γ(n+ c)/n! ∼ nc−1 so if n1/n→ x then the expression above

∼ Γ(r + b+ kβ)

Γ(r + β)Γ(b+ (k − 1)β)
xr+β−1(1− x)b+(k−1)β−1 · 1

n

and the mixing measure is beta(r + β, b+ (k − 1)β), where r = 1 and b = 2k − 1.

None of this long winded discussion appears in BBCS(2004), who do not give a proof
of their Lemma 3.1, which gives the construction we are about to describe. Unfortunately
they have the parameters of the beta distribution wrong by a little bit. They define u by
α = u/(u + 1) in contrast to our α = β/(β + 2), and in the case m = 1 introduce ψk for
k ≥ 2 that are independent beta(1 + u, 2k + ku). Correcting their typo we will take these
variables to be beta(1 + β, (2k − 1) + (k − 1)β). Let ψ1 = 1 and for 1 ≤ k ≤ n let

φk = ψk

n∏
j=k+1

(1− ψj)

It is immediate from the definition that
∑n

k=1 φk = 1. For help with the definitions that are
about to come look at the following picture of n = 6.

0 1φ1 φ2 φ3 φn

`1 `2 `3 `4 `5
•
a
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Let `k =
∑k

j=1 φj. For a ∈ (0, 1) let κ(a) = min{k : `k ≥ a}. In words, κ(a) is the number
of the interval in which a falls. In the picture κ(a) = 4.

To construct the random graph G
(1)
n , we start with G

(1)
1 a self-loop. For k ≥ 2, let Uk be

independent random variables uniform on [0, 1]. When k is added we draw an edge to j =
κ(Uk`k−1). To see that this has the right distribution, note that (i) for fixed k if we condition
on (φ1/`k, φ2/`k, . . . , φk/`k) and only look at the times at which the degree of some vertex
j ≤ k is chosen then the choices are i.i.d., and (ii) the distribution of (φ1/`k, φ2/`k, . . . , φk/`k)
gives the mixing measure we need to produce the urn scheme that governs the growth of the
degrees.

Our main interest here has been to bring out the connection between preferential attach-
ment and Polya urns. To paraphrase BBCS, the Polya urn representation is a generalization
of Bollobás and Riordan’s random pairing representation (a.k.a. linearized chord diagrams
methioned at the begining of Section 4.6 but not discussed in this monograph), which ex-
tends it to the model in which vertices can choose their neighbors uniformly at random with
some probability. According to BBCS, it can be used to give a proof of the result on the
diameter of the preferential attachment graph to be discussed in Section 4.6. In addition, it
provides a proof of the “expanding neighborhood calculation” which is an ingredient of their
analysis of the contact process in Section 4.8.

We would like to thank Jason Schweinsberg for his help with the second half of this
section.
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4.4 Scale-free trees

The Barabási-Albert model with m = 1 was introduced in a different context and under a
different name by Szymanski (1987). A tree on {1, 2, . . . n} is recursive if each vertex other
than 1 is joined to exactly one earlier vertex. The simplest such tree is the uniform random
recursive tree grown one vertex at a time by joining the new vertex to an old vertex chosen
at random. A plane oriented recursive tree is one with a cyclic order on the edges meeting
each vertex. Suppose that a new vertex v is added to an existing vertex w with degree d.
Then there are d different ways in which the new vertex can be added, depending on where
it is inserted in the cycle. For example, in the picture below, there are three ways to connect
a vertex to 2.
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�

• • • • •

• • •

• • • •

1 2 4 7 10

12 3 6 9

8 5 11

∞

To explain the ∞, we start the process starts with a tree T1 that has one vertex with
an edge coming out of it connected to ∞, so that the degree of 1 is one initially. For
n ≥ 2, given Tn−1, vertex n is attached to vertex j with probability dn−1(j)/(2n− 3), where
dn−1(j) is the degree of j in Tn−1, so this is a version of the Barabási-Albert model with
m = 1. Szabo, Alava, and Kertesz (2002) were the first to study the shortest paths and
load scaling (the use of edges by shortest paths) in this model, using mean-field calculations
and simulation. Bollobás and Riordan (2004) proved rigorous results, which in some cases
corrected the earlier nonrigorous results. They based their calculations on a lemma that
generalizes Lemma 4.6.4 below, and gives the probability a graph S occurs as a subgraph of
Tn. (See Corollary 22 in Bollobás (2003).) Their calculations are somewhat lengthy, so in
this section, we will take a new approach to understanding the shape of the tree.

We begin with a study of the distances of the vertices from the root. Consider a branching
random walk on the positive integers in which particles do not die, each particle gives birth
at rate 1, and a particle at k gives birth to one offspring at k and to one at k + 1. To relate
this to the Barabási-Albert model, the number of particles at k, Zt(k) is the sum of the
degrees of the vertices at distance k from the root. When a change occurs, we pick a vertex
x with probability proportional to its degree and connect a new vertex y. If x is at distance
k from the root then y is at distance k+ 1, and we have added one to the total degrees at k
and k + 1.
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Let Zt be the total number of particles at time t. (d/dt)EZt = 2EZt so EZt = e2t. To
see how these particles are distributed in space, let m(k, t) = EZt(k). It is easy to see that
m(0, 0) = 1 with m(k, 0) = 0 otherwise, and

d

dt
m(k, t) = m(k − 1, t) +m(k, t)

To solve this let pt(x, y) be the transition probability of the random walk that jumps from
x to x + 1 at rate 1. To check that m(k, t) = e2tpt(0, k) is the solution to our equation, we
differentiate and use the Kolmogorov equation for the random walk to check

d

dt
e2tpt(0, k) = 2e2tpt(0, k) + e2t(pt(0, k − 1)− pt(0, k)) = e2t(pt(0, k − 1) + pt(0, k)) (4.4.1)

Since EZt = e2t and e−2tZt → W almost surely, we are interested in the behavior of
the system at time t = (1/2) log n when Zn = O(n). Let St be a Poisson random variable
with mean t. It is clear from the description of the random walk that pt(0, x) = P (St = x).
Taking x = 0, pt(0, 0) = e−t and EZt(0) = et. The particles at 0 are a branching process
so e−tZt(0) converges almost surely to a limit W (0). Taking t = (1/2) log n we see that the
degree of the root is O(n1/2) in agreement with the results in the previous section.

Since the Poisson has mean t and standard deviation
√
t, we expect that when the graph

has n vertices most vertices will be at distance approximately (1/2) log n from the root. Using
the local central limit theorem for the Poisson it follows that if k = (1/2) log n+x

√
(1/2) log n

then

EZ(1/2) log n(k) ∼ n√
π log n

e−x2/2 (4.4.2)

However, more is true. Results of Asmussen and Kaplan (1976) imply that

Z(1/2) log n(k)/EZ(1/2) log n(k) → W (4.4.3)

where W is the limit of e−2tZt.
To study the height of the tree, we use large deviations.

E exp(θSt) =
∞∑

k=0

e−t t
k

k!
eθt = exp(t(eθ − 1))

Markov’s inequality implies that if a > 1 and θ > 0 then

P (St > at) ≤ e−θat exp(t(eθ − 1)) = exp(t(−θa+ eθ − 1))

To optimize the right-hand side we differentiate the exponent with respect to θ and set
−a+ eθ = 0 to conclude that the best choice of θ = log a. In this case we get

P (St > at) ≤ exp(t[−a log a+ a− 1])
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so in the branching random walk

EZt(at,∞) = e2tP (St > at) ≤ exp(t[1− a log a+ a]) (4.4.4)

Changing variables a = 1/γ, the right-hand side is 1 when

1− 1

γ
log

(
1

γ

)
+

1

γ
= 0

Solving gives γ + 1 = log(1/γ) which means γeγ+1 = 1. Let a0 = 1/γ0 where γ0e
γ0+1 = 1.

If a > a0, EZt(at,∞) → 0 exponentially fast in t, so eventually the right-most particle is
≤ a0t. Biggins (1976) has shown that this upper bound is sharp, so the height of the tree
∼ a0t almost surely. This conclusion agrees with the result of Pittel (1994).

The large deviations result can be used to determine the size of EZt(at) for 0 < a < a0.
Following Biggins (1979), we define φ(θ) = exp(eθ − 1) and note that∑

k

eθkZt(k)/φ(θ)t

is a nonnegative martingale and hence converges to a limit W (θ). To see which θ to choose,
recall that θa = log a optimizes the upper bound. Results on pages 20 and 21 of Biggins
paper imply that for 0 < a < a0

Zt(at)/EZt(at) → W (θa) (4.4.5)

and show us that the number of vertices at different distances from the root, are up to a
constant factor given by the expected value. To compute the expected value, and to sharpen
we obtained earlier in (4.4.4), we use Stirling’s formula (at)! ∼ (at)ate−at

√
2πat to conclude

EZt(at) = e2te−t t
at

(at)!
∼ exp(t[1− a log a+ a])/

√
2πat (4.4.6)

Loads. Suppose that a vertex v has c(v) descendants. Then the component of Tn − {v}
containing the root has n − 1 − c(v) vertices so the number of shortest paths that use v is
c(v)[n − 1 − c(v)] + O(c(v)2) so if c(v) = o(n) then the load will be ≈ nc(v). To study the
distribution of c(v) we let Nn(c) be the number of vertices in Tn with c descendants and note
that λn,c = E(Nn(c)) satisfies for c ≥ 1

λn,c =

(
1− 2c+ 1

2n− 3

)
λn−1,c +

2c− 1

2n− 3
λn−1,c−1 (4.4.7)

To check this, note that if the number of descendants is c then v and its descendants are a
tree S with c+1 vertices and hence c edges. v is joined to its parent by a single edge, so the
sum of the degrees of vertices in S is 2c + 1, out of the total degree of 2n − 3 in Tn−1. For
c = 0 the only difference is that the new vertex always has 0 descendants so

λn,0 =

(
1− 1

2n− 3

)
λn−1,c + 1 (4.4.8)
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The last two equations have the form of those studied in Lemmas 4.1.1 with c = 1,
b = 1/2, and 4.1.2 with g = (2c− 1)/2 and b = (2c+ 1)/2, so we conclude that λn,c/n→ pc

where

p0 =
c

1 + b
=

1

1 + 1/2
= 2/3

pc = pc−1
g

1 + b
= pc−1

(2c− 1)/2

1 + (2c+ 1)/2
= pc−1

2c− 1

2c+ 3

Solving the recursion we have

pc =
2

(2c+ 1)(2c+ 3)

which agrees with the more precise result given in (2) of Bollobás and Riordan (2004):

λn,c =
2n− 1

(2c+ 1)(2c+ 3)
for c ≤ n− 2

and λn,n−1 = 1. To check this, note that λn−1,n−1 = 0 so taking c = n− 1 in (4.4.7) gives

λn,n−1 =
2(n− 1)− 1

2n− 3
λn−1,n−2 = λn−1,n−2

When 1 ≤ c ≤ n− 2, (4.4.7) says

λn,c =

(
1− 2c+ 1

2n− 3

)
2n− 3

(2c+ 1)(2c+ 3)
+

2c− 1

2n− 3
· 2n− 3

(2c− 1)(2c+ 1)

=
2n− 3

(2c+ 1)(2c+ 3)
− 1

2c+ 3
+

1

2c+ 1
=

2n− 1

(2c+ 1)(2c+ 3)

Finally when c = 0

λn,0 =
2n− 4

2n− 3
· 2n− 3

3
+ 1 =

2n− 1

3

Pairwise distances. If c ≥ εn then

λn,c ≤
2n

(2εn)2
=

1

2ε2n

so if we let B = {v : c(v) ≥ εn} then

E|B| =
n∑

c=εn

λn,c ≤
1

2ε2

and it follows from Chebyshev’s inequality that

P (|B| > ε−3) ≤ ε/2
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If v ∈ B then all of its ancestors are also in B, so B is connected subtree containing the
root, and all of the components of Tn − B have size ≤ εn. If we pick two vertices x and y
at random from Tn − B then with probability ≥ 1− 2ε they are in different components of
Tn − B. When this occurs the shortest path between these two vertices must pass through
B, and hence the length of that path is almost the sum of the distances of x and y from the
root. Using (4.4.3) and (4.4.2) we see that the individual distances are Poisson with mean
(1/2) log n. Since the vertices are chosen independently the sum is Poisson with mean log n,
which in turn is approximately normal with mean log n and variance log n.

The last conclusion matches (4) in Bollobás and Riordan (2004). Let Ek be the expected
number of shortest paths of length k in Tn. They have also calculated that if k/ log n = α is
bounded above and below by constants strictly between 0 and e

Ek = Θ
(
n1−α log α+α/

√
log n

)
There is a striking resemblance between the result we obtain by combining (4.4.5) and (4.4.6)
and setting t = (1/2) log n

Z(1/2) log n((a/2) log n) ∼ W (θa)n
(1/2)[1−a log a+a]/

√
πa log n

Comparing the two formulas suggests that may of the paths of length k come from connecting
two vertices that are at a distance k/2 from the root.

Remark. Goh, Kahng, and Kim (2001) and Goh, Oh, Jeong, Kahng, and Kim (2002) have
studied load and “betweenness centrality” on power law random graphs with 2 < γ < 3.
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4.5 Distances: power laws 2 < β < 3

Consider a Newman-Strogatz-Watts random graph with pk = k−β/ζ(β) where 2 < β < 3
and ζ(β) =

∑∞
k=1 k

−β is the constant need to make the sum 1. In this case, qk−1 = kpk/µ =
k1−β/ζ(β − 1), so the mean is infinite and the tail of the distribution

QK =
∞∑

k=K

qk ∼
1

ζ(β − 1)(β − 2)
k2−β (4.5.1)

To study the average distance between two randomly chosen points, we will first investi-
gate the behavior of the branching process in order to figure out what to guess. The power
0 < β − 2 < 1, and qk is concentrated on the nonnegative integers so qk is in the domain of
attraction of a one-sided stable law with index α = β − 2. To explain this let X1, X2, . . . be
i.i.d. with distribution qk, and let Sn = X1 + · · ·+Xn.

To understand how Sn behaves, for 0 < a < b <∞, let

Nn(a, b) = |{m ≤ n : Xm/n
1/α ∈ (a, b)}|

Let Bα = 1/{ζ(β − 1)(2− β)}. For each m the probability Xm ∈ (an1/α, bn1/α) is

∼ 1

n
Bα(a−α − b−α)

Since the Xm are independent, Nn(a, b) ⇒ N(a, b) has a Poisson distribution with mean

Bα(a−α − b−α) =

∫ b

a

αBα

xα+1
dx (4.5.2)

If we interpret N(a, b) as the number of points in (a, b) the limit is a Poisson process on
(0,∞) with intensity αBαx

−(α+1). There are finitely many points in (a,∞) for a > 0 but
infinitely many in (0,∞).

The last paragraph describes the limiting behavior of the random set

Xn = {Xm/n
1/α : 1 ≤ m ≤ n}

To describe the limit of Sn/n
1/α, we will “sum up the points.” Let ε > 0 and

In(ε) = {m ≤ n : Xm > εn1/α}
Ŝn(ε) =

∑
m∈In(ε)

Xm S̄n(ε) = Sn − Ŝn(ε)

In(ε) = the indices of the “big terms,” i.e., those > εn1/α in magnitude. Ŝn(ε) is the sum of
the big terms, and S̄n(ε) is the rest of the sum.
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The first thing we will do is show that the contribution of S̄n(ε) is small if ε is. To do
this we note that

E

(
Xm

n1/α
;Xm ≤ εn1/α

)
= Bα

εn1/α∑
k=1

k2−β

n1/α
∼ Bα

ε3−β(n1/α)2−β

3− β

Since β − 2 = α multiplying on each side by n gives

E(S̄n(ε)/n1/α) → Bαε
3−β/(3− β) (4.5.3)

If Z = Poisson(λ) then

E(exp(itaZ)) =
∞∑

k=0

e−λ e
itakλk

k!
= exp(λ(eita − 1))

Dividing (ε,∞) into small strips, using independence of the number of points in different
strips, and passing to the limit gives

E exp(itŜn(ε)/n1/α) → exp

(∫ ∞

ε

(eitx − 1)
αBα

xα+1
dx

)
(4.5.4)

Now eitx− 1 ∼ itx as t→ 0 and α < 1 so combining (4.5.3) and (4.5.4) and letting ε→ 0
slowly (see (7.6) in Chapter 2 of Durrett (2004) for more details) we have

E(exp(itSn/n
1/α) → exp

(∫ ∞

0

(eitx − 1)
αBα

xα+1
dx

)
This shows Sn/n

1/α has a limit. The limit is the one-sided stable law with index α, which
we will denote by Γα

Branching process. The next result and its proof come from Davies (1978).

Theorem 4.5.1. Consider a branching process with offspring distribution ξ with P (ξ > k) ∼
Bαk

−α where α = β − 2 ∈ (0, 1). As n → ∞, αn log(Zn + 1) → W with P (W = 0) = ρ the
extinction probability for the branching process.

Proof. Now if Zn > 0 then

Zn+1 =
Zn∑
i=1

ξn,i

where the ξn,i are independent and have the same distribution as ξ. We can write

log(Zn+1 + 1) =
1

α
log(Zn + 1) + log Yn

where Yn =

(
1 +

Zn∑
i=1

ξn,i

)/
(Zn + 1)1/α
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Multiplying each side by αn and iterating we have

αn log(Zn+1 + 1) = log(Z1 + 1) + αn log Yn + · · ·+ α log(Y1)

As n→∞, Yn converges to Γα. Straightforward but somewhat tedious estimates on the
tail of the distribution of Yn show that, see pages 474–477 of Davies (1978),

E

(
∞∑

m=1

αn log+ Yn <∞

)
and E

(
∞∑

m=1

αn log− Yn <∞

)

This shows that limn→∞ αn log(Zn+1 + 1) = W exists.
It remains to show that the limit W is nontrivial. Davies has a complicated proof that

involves getting upper and lower bounds on 1 − Gn(x) where Gn is the distribution of Zn

which allows him to conclude that if J(x) = P (W ≤ x) then

lim
x→∞

− log(1− J(x))

x
= 1

Problem. Find a simple proof that P (W > 0) > 0.

Once this is done it is reasonably straightforward to up grade the conclusion to J(0) = ρ,
where ρ is the extinction probability. To do this we use Theorem 2.1.9 to conclude that if
we condition on nonextinction and look only at the individuals that have an infinite line
of descent then the number of individuals in generation n, Z̃n is a branching process with
offspring generating function

φ̃(z) =
φ((1− ρ)z + ρ)− ρ

1− ρ

where ρ is the extinction probability, i.e., the smallest solution of φ(ρ) = ρ in [0, 1].
Recalling that the convergence of φ(z) → 1 as z → 1 gives information about the decay

of the tail of the underlying distribution, it is easy to check that the new law is also in the
domain of attraction of the stable law with index α. By the definition of the process n→ Z̃n

is nondecreasing. Wait until the time N = min{n : Z̃n > M}. In order for αn log(Z̃n+1) → 0
this must occur for each of the M families at time N . However we have already shown that
the probability of a positive limit is δ > 0, so the probability all M fail to produce a positive
limit is (1− δ)M → 0 as M →∞.

The double exponential growth of the branching process associated with the degree dis-
tribution pk = k−β/ζ(β) where 2 < β < 3 suggests that the average distance between two
members of the giant component will be O(log log n). To determine the constant we note
that our limit theorem says

log(Zt + 1) ≈ α−tW
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so Zt + 1 ≈ exp(α−tW ). Replacing Zt + 1 by n and solving gives log n = α−tW . Discarding
the W and writing α−t = exp(−t logα) we get

t ∼ log log n

log(1/α)
(4.5.5)

While our heuristics have been for the branching processes associated with the Newman-
Strogatz-Watts model, to prove a result about our power law graphs we will consider the
Chung-Lu model. In the power law model the probability of having degree k is pk = k−β/ζ(β)
where ζ(β) =

∑∞
k=1 k

−β. The probability of having degree ≥ K is ∼ BK−β+1 where 1/B =
(β − 1)ζ(β). Assuming the weights are decreasing we have

wi = K when i/n = BK−β+1

Solving gives
wi = (i/nB)−1/(β−1) (4.5.6)

Theorem 4.5.2. Consider Chung and Lu’s power law graphs with 2 < β < 3. Then the
distance between two randomly chosen vertices in the giant component, Hn is asymptotically
at most

(2 + o(1)) log log n/(− log(β − 2)).

Remarks. (i) Theorem 2.4.2 can be generalized to prove the existence of dangling ends, so
the diameter is at least O(log n).

(ii) Chung and Lu’s assumption that the average degree d > 1 is unnecessary. When
2 < β < 3, d̄ → ∞ so there is always a giant component. We use the first two steps of
their proof as given in Chung and Lu (2002b) p.15881 or (2003) p.98, with a small change
in the first step to sharpen the constant, but replace the last two with a branching process
comparison.

(iii) van der Hofstad, Hooghiemstra, and Znamenski (2005a) have shown that Theorem
4.5.2 this gives the correct asymptotics for the Newman-Strogatz-Watts model and have
shown fluctuations are O(1). Note that the correct asymptotics are twice the heuristic that
comes from growing one cluster to size n, but matches the guess that comes from growing
two clusters to size

√
n.

(iv) Cohen and Havlin (2003) have an interesting approach to the lower bound. Start
with the vertex of highest degree, which in this case is d1 = O(N1/(β−1)). Connect it to the
vertices that have the next d1 largest degrees and continue in the obvious way. The number
of vertices within distance k of the origin obviously grows as quickly as any graph with the
given degree sequence, but as Cohen and Havlin compute is diameter is at least O(log log n).

Proof. Let t = n1/
√

log log n. Note that t goes to ∞ slower than any power n and faster than
any power of log n. Consider the vertices H0 = {i : wi ≥ t}. Looking at (4.5.6), the number
of vertices in this class is asymptotically n′ = Bnt1−β. It is important to note that the
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expected degrees are assigned deterministically in the CL model, so the fraction of vertices
here and Vol(G) below are not random. Recalling that i is connected to j with probability
wiwj/(Vol(G)) and for this range of β, Vol(G) ∼ µn where µ is the average degree, we see
that two vertices in H are connected with probability p ∼ t2/µn. np→∞ faster than log n
so by Theorem 2.8.1 the probability H0 is connected tends to 1. Using Theorem 2.8.6 we
see that the diameter of H0 is

∼ log n′

log(n′p)
∼ log n

(3− β) log t
= O(

√
log log n)

To expand out from H0 we will use the following easy result:

Lemma 4.5.3. If S ∩ T = ∅ and Vol(S)Vol(T ) ≥ cVol(G) then the distance from S to T
satisfies P (d(S, T ) > 1) ≤ e−c.

Proof. Since 1− x ≤ e−x

P (d(S, T ) > 1) =
∏

i∈S,j∈T

1− wiwj

Vol(G)
≤ exp

(
−
∑

i∈S,j∈T

wiwj

Vol(G)

)
≤ e−c

The volume of {i : wi > r} is asymptotically∑
i≤Bnr1−β

(1/nB)−1/(β−1) ∼ (nB)1/(β−1)C(Bnr1−β)(β−2)/(β−1) = C ′nr2−β

Using this result with S a single vertex gives the following:

Lemma 4.5.4. Let 1 > α > β − 2, 0 < ε < α− (β − 2), and r ≥ (log n)1/ε. If wj ≥ rα and
T = {i : wi > r} then for large n

P (d({j}, T ) > 1) ≤ exp(−Crα+(2−β)/2µ) ≤ n−2

Let Hk = {i : wi > tα
k} and suppose tα

k ≥ (log n)1/ε. Using the previous lemma we see
that if j ∈ Hk+1 then with probability ≥ 1− n−2, j is connected to a point in Hk. Since H0

is connected it follows that each Hk with k ≤ ` ≡ inf{i : tα
i
< (log n)1/ε} is connected. Let

m = (log log n)/(− logα). This is chosen so that

αm log n√
log log n

< 1

and tα
m
< e, so ` ≤ m.

H0 has diameter O(
√

log log n), so at this point we have shown that H` is connected and
has diameter smaller than 2m + O(

√
log log n). To connect the remaining points we note
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that if n is large then T = H` has volume at least (Cn/2)(log n)(2−β)/ε, so if S has volume
≥ nα/ε then Lemma 4.5.3 implies

P (d(S, T ) > 1) ≤ exp(−C(log n)(α−(β−2))/ε/2µ) ≤ n−2

Thus the component of a site i will connect to H` if it reaches size (log n)α/ε. It is easy to
see that collisions in the growth of the cluster to size (log n)α/ε can be ignored, so for most
points this is almost the same the same as survival of the associated branching process, and
since the branching process grows doubly exponentially fast the amount of time required to
reach this size is O(log log log n).

Remark. When 1 < β < 2 the transformed distribution has infinite mean. In this case van
der Hofstad, R., Hooghiemstra, G., and Znamenski, D. (2004) have shown that

lim
n→∞

P (Hn = 2) = 1− lim
n→∞

P (Hn = 3) = p ∈ (0, 1)
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4.6 Diameter: Barabási-Albert model

Bollobás and Riordan (2004) have performed a rigorous analysis of the diameter of the graphs
produced by the Barabási-Albert model. They use a slight modification of the original model
because it is equivalent to “linearized chord diagrams” that are produced by random pairings
of {1, 2 . . . 2n}. First, consider the casem = 1. They inductively define a sequence of directed
random graphs Gt

1 on {i : 1 ≤ i ≤ t}. Start with G1
1 the graph with one vertex and one loop.

Given Gt−1
1 form Gt

1 by adding the vertex t together with a directed edge from t to I where
I is chosen randomly with

P (I = i) =

{
dt−1

i /(2t− 1) 1 ≤ i ≤ t− 1

1/(2t− 1) i = t
(4.6.1)

where dt−1
i = the degree of i in Gt−1

1 . In words, we consider the outgoing edge from t when
we consider where to attach the other end of the edge. Note that each vertex will have out
degree 1. To extend the definition to m > 1, use the definition above to define random
graphs Gmt

1 on {vi : 1 ≤ i ≤ mt} then combine the vertices v(k−1)m+1, . . . vkm to make vertex
k.

The main result to Bollobás and Riordan (2004b) is:

Theorem 4.6.1. Let m ≥ 2 and ε > 0. Then with probability tending to 1, Gn
m is connected

and
(1− ε) log n/(log log n)) ≤ diameter(Gn

m) ≤ (1 + ε) log n/(log log n))

The case m = 1 is excluded because the upper bound is false in this case. As we saw in
Section 4.4 the average pairwise distance is O(log n) in this case. Chung and Lu, see Theorem
4 on page 15880 in (2002) or Theorem 2.6 on page 95 in (2003), proved that for their graphs
with degree distribution ∼ Ck−3 the average distance is O(log n/(log log n)).

Here we will content ourselves to prove the lower bound. To do this, we will consider GN
1

with N = nm. The idea behind the proof is to compare GN
1 with a random graph in which

an edge from i to j is present with probability c/
√
ij. Let gj be the vertex to which j sends

an edge when it is added to the graph.

Lemma 4.6.2. (a) If 1 ≤ i < j then P (gj = i) ≤ C1(ij)
−1/2.

(b) If 1 ≤ i < j < k then P (gj = i, gk = i) ≤ C2i
−1(jk)−1/2.

Proof. Let dt,i be the degree of i in Gt
1. From the definition

P (gt = i|Gt−1
1 ) =

{
dt−1,i/(2t− 1) i < t

1/(2t− 1) i = t

so if t > i we have

E(dt,i|Gt−1
1 ) =

(
1 +

1

2t− 1

)
dt−1,i
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or taking expected value

Edt,i =

(
1 +

1

2t− 1

)
Edt−1,i (4.6.2)

Letting µt,i = Edt,i and noting µi,i = 1 + 1/(2i− 1) we have

µt,i =
t∏

s=i

(
1 +

1

2s− 1

)
Taking logarithms and using log(1 + x) ≤ x we have

log µt,i ≤
t∑

s=i

1

2s− 1∑t
s=i+1 1/(2s− 1) is an approximating sum for

∫ 2t

2i
dx/x in which subdivisions have width 2

and the function is evaluated at the midpoint. Since 1/x is convex, it follows that

t∑
s=i

1

2s− 1
≤ 1

2i− 1
+

1

2
(log t− log i) ≤ 1 +

1

2
log(t/i)

Since e ≤ 3,
µt,i ≤ 3

√
t/i (4.6.3)

and it follows that

P (gj = i) =
µj−1,i

2j − 1
≤ 3

√
j − 1

i

1

2j − 1
≤ 3

2
(ij)−1/2

For the last inequality note that
√
j2 − j ≤ (2j − 1)/2 (square both sides) implies

√
j − 1

2j − 1
≤ 1

2
√
j

(4.6.4)

For part (b) we need to consider second moments.

E(d2
t,i|Gt−1

i ) = d2
t−1,i

(
1− dt−1,i

2t− 1

)
+ (dt−1,i + 1)2 dt−1,i

2t− 1

Expanding out the square in the second term:

= d2
t−1,i

(
1 +

2

2t− 1

)
+

dt−1,i

2t− 1

Taking expected value

E(d2
t,i) = Ed2

t−1,i

(
1 +

2

2t− 1

)
+
Edt−1,i

2t− 1
(4.6.5)
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Adding (4.6.2) and (4.6.5) and writing µ
(2)
t,i for E(d2

t,i) + E(dt,i) we have

µ
(2)
t,i =

(
1 +

2

2t− 1

)
µ

(2)
t−1,i =

(
2t+ 1

2t− 1

)
µ

(2)
t−1,i

Iterating we have

µ
(2)
t,i =

t∏
s=i+1

2s+ 1

2s− 1
µ

(2)
i,i =

2t+ 1

2i+ 1
µ

(2)
i,i (4.6.6)

If i < j, dj,i = dj−1,i + 1{gj=i} so

E(dj,i1{gj=i}|Gj−1
1 ) = (dj−1,i + 1)

dj−1,i

2j − 1

Taking expected value and using (4.6.6) gives

E(dj,i1{gj=i}) =
µ

(2)
j−1,i

2j − 1
=

µ
(2)
i,i

2i+ 1

Conditioning on Gj
1 and arguing as in the proof of (4.6.3)

E(dt,i1{gj=i}) ≤ 3

√
t

j

µ
(2)
i,i

2i+ 1

Now if i < j < k

P (gj = i, gk = i|Gk−1
1 ) = 1{gj=i}

dk−1,i

2k − 1

Taking expected values gives

P (gj = i, gk = i) ≤ 3

2(2k − 1)

√
k − 1

j

µ
(2)
i,i

2i+ 1

Using (4.6.4) to show
√
k − 1/(2k − 1) ≤ 1/2

√
k and noting that µ

(2)
i,i = 2 + 3/(2i− 1) ≤ 5

the above is

≤ 15

4
i−1(jk)−1/2

which completes the proof of (b).

Lemma 4.6.3. Let E and E ′ be events of the form

E = ∩r
s=1{gjs = is} E ′ = ∩r′

s=1{gj′s = i′s}

where is < js and i′s < j′s for all s. If the sets {i1, . . . , ir} and {i′1, . . . , i′r′} are disjoint then
P (E ∩ E ′) ≤ P (E)P (E ′).
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Proof. To prove this we use a different description of the process. We consider Gt
1 as consist-

ing of 2t half-edges numbered 1, 2, . . . 2t, each attached to a vertex from 1, . . . t. Given Gt−1
1

we obtain Gt
1 by adding 2t− 1 to vertex t, picking ht uniformly on 1, 2, . . . 2t− 1, attaching

2t to the vertex j that has the half-edge ht, and drawing an edge from i to j. The next
picture should help explain the algorithm.
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The choices that generated the graph were h2 = 2, h3 = 3, h4 = 6, h5 = 5, h6 = 9, h7 = 10
and the resulting graph is

@
@

@
@

@
@

@
@

1 2 3 5 6

4 7

• • • • •

• •

Note that the odd number 2i− 1 always sits above vertex i. Because of this we have gj = i
if hj = 2i − 1. In the example, h3 = 3, so g3 = 2. When hj is even it takes more work to
figure out the value of gj. If for some j′ we have hj = 2j′ and hj′ = 2i − 1 then gj = i. In
the example, h7 = 10 and h5 = 5 so g7 = 3. In general gj = i if

∃s ≥ 0, k0 = j, k1, . . . ks s.t. hka = 2ka+1 for 0 ≤ a < s and hks = 2i− 1 (4.6.7)

Thus we can write E and E ′ as a disjoint unions of events Fk and F ′
` that are intersections

of events of the form (4.6.7). Now for each k and `, the events are independent if no ht occurs
in both, or inconsistent since the common ht’s must have the same value and so cannot form
a chain that leads to i and to i′ 6= i. In either case we have P (Fk ∩ F ′

`) ≤ P (Fk)P (F ′
`) and

summing gives the desired result.

Lemma 4.6.4. Let S be a graph on {1, 2, . . . N} in which each vertex is joined to at most
two later vertices. Let B = max{C1,

√
C2}. If E(S) denotes the edges in S then

P (S ⊂ GN
1 ) ≤ B|E(S)|

∏
ij∈E(S)

1√
ij
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Proof. The event S ⊂ GN
1 is the intersection of events Ek = {gj(k,1) = . . . gj(k,nk) = ik} where

the ik are distinct and each nk = 1, 2. By Lemma 4.6.2

P (Ek) ≤ Bnk

nk∏
`=1

(ikj(k, `))
−1/2

By Lemma (4.6.3) the events Ek and E1∩ . . .∩Ek−1 are negatively correlated, so the desired
result follows by induction.

Theorem 4.6.5. Let m ≥ 1 and let B be the constant in Lemma 4.6.4. Then with probability
tending to 1,

diameter(Gn
m) > log n/(log(3Bm2 log n)

Proof. We will show that with probability tending to 1 the distance between n and n− 1 is
greater than L = log n/(log(3Bm2 log n). Consider a self-avoiding path V = v0, v1, . . . v`. Re-
calling that Gn

m is obtained by identifying the vertices of Gmn
1 in groups ofm, this corresponds

to a graph S that consists of edges xtyt+1, t = 0, 1, . . . ` − 1 with dxt/me = dyt/me = vt,
where dxe rounds up to the next integer. Each vertex in S has degree at most two, so Lemma
4.6.4 implies S is present in Gmn

1 with probability at most

B`

`−1∏
t=0

1
√
xtyt+1

≤ B`

`−1∏
t=0

1
√
vtvt+1

=
B`

√
v0v`

`−1∏
t=1

1

vt

There are at most m2` graphs S that correspond to our path V so

P (V ⊂ Gn
m) ≤ (Bm2)`

√
v0v`

`−1∏
t=1

1

vt

The expected number of paths between v0 = n and v` = n− 1 is at most

≤ (Bm2)`√
n(n− 1)

∑
1≤v1,...v`−1≤n

`−1∏
t=1

1

vt

=
(Bm2)`√
n(n− 1)

(
n∑

v=1

1

v

)`−1

≤ (Bm2)`

n− 1
(1 + log n)`−1 ≤ (2Bm2)`

n
(log n)`−1 (4.6.8)

Now ` ≤ L = log n/ log(3Bm2 log n) implies (3Bm2 log n)` ≤ n so the above is

≤ (2/3)`(log n)−1

Summing over ` ≤ L we find that the expected number of paths of length at most L joining
the vertices n and n− 1 tends to 0, which completes the proof.

Problem. Can you derive Theorem 4.6.1 by considering the branching process with offspring
distribution qk−1 = k−2/ζ(2). There is a large literature on branching processes with infinite
mean, but it does not seem to be useful for concrete examples like this one. It is my guess
that log(1 + Zt)/t log t→ 1.



4.7. PERCOLATION, RESILIENCE 127

4.7 Percolation, resilience

One of the most cited properties of scale-free networks is that they are robust to random
damage, but vulnerable to malicious attack. These questions were studied by Albert, Jeong,
and Barbási (2000), Callaway, Newman, Strogatz, and Watts (2000), and Cohen, Erez,
ben-Avraham, and Havlin (2000, 2001). Here, for the nonrigorous results we mostly follow
Sections 11.3–11.5 of Dorogovstev and Mendes (2002).

Random damage is modeled as a random removal of a fraction f of the nodes. If we
recall our discussion of epidemics on networks with fixed degree distributions and identify
the fraction p = 1 − f edges that are retained with those that transmit the disease, (3.5.1)
implies that the condition for the existence of giant component is

νp > 1 (4.7.1)

where ν =
∑

k k(k − 1)pk/µ with µ =
∑

k kpk. In the scale-free case pk ∼ Ck−γ with
2 < γ ≤ 3, ν = ∞ and hence pc = 0.

Our next objective is to compute the size of the giant component as a function of p for
power laws with 2 < γ ≤ 3. According to Theorem 3.5.1 we want to find the smallest fixed
point Ĝ1(ξ) = ξ in [0, 1] where Ĝ1(z) = G1(1 − p + zp) and G1 is the generating function
of the size-biased distribution qk−1 = kpk/µ. To understand the behavior of the generating
function as z → 1, we will use the following Tauberian theorem, which is Theorem 5 in
Section XIII.5 of Feller, Volume 2. To state this result we need a definition: L(t) varies
slowly at infinity if for any 0 < x <∞, L(tx)/L(t) → 1. This obviously holds if L converges
to a positive limit. L(t) = (log t)a is a more interesting example.

Lemma 4.7.1. Let qn ≥ 0 and suppose that Q(s) =
∑∞

n=0 qns
n converges for 0 ≤ s < 1. If

L varies slowly at ∞ and 0 ≤ ρ < ∞ then each of the two following relations implies the
other

Q(s) ∼ (1− s)−ρL(1/(1− s)) as s ↑ 1

q0 + · · ·+ qn ∼ nρL(n)/Γ(ρ+ 1)

Note that the result only gives us conclusions for the sum of the q’s. To see that one cannot
hope to get a result for the q’s rather than their sums, define q̃2n = q2n−1 + q2n, q̃2n−1 = 0,
and note that

Q̃(s) ≤ Q(s) ≤ Q̃(s)/s

so the two generating functions have the same behavior at 0.
The Tauberian theorem requires that we work with quantities that diverge as s ↑ 1 so

we consider
G′

1(z) =
∑

k

k(k − 1)pkz
k−2/µ

If pk ∼ ck−γ with 2 < γ < 3 then
n∑

k=1

k(k − 1)pk/µ ∼ cn3−γ
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so our Tauberian theorem implies

G′
1(z) ∼ c(1− z)γ−3

Integrating gives

G1(1)−G1(1− x) ∼
∫ x

0

cuγ−3 du = c′xγ−2

To solve G1(1− p+ px) = x we write

1− x = G1(1)−G1(1− p+ xp) ∼ c(p(1− x))γ−2

Rearranging we have
(1− x) ∼ cp(γ−2)/(3−γ)

This gives the asymptotics for the survival probability 1− ξ for the homogeneous branching
process. Since G0 has finite mean

1−G0(ξ) ∼ G′
0(1)(1− ξ)

If pk ∼ ck−3 then
n∑

k=1

k(k − 1)pk/µ ∼ c log n

so our Tauberian theorem implies

G′
1(z) ∼ −c log(1− z)

Integrating gives

G1(1)−G1(1− x) ∼ −
∫ x

0

c log u du ∼ cx log(1/x)

To solve G1(1− p+ px) = x we write

1− x = G1(1)−G1(1− p+ xp) ∼ cp(1− x) log(1/p(1− x))

Rearranging we have 1/cp = log(1/p) + log(1/(1− x)). Since log(1/p) << 1/p we have

1− x = exp(−(1 + o(1))/cp)

This give the asymptotics for the survival probability 1− ξ for the homogeneous branching
process. Since G0 has finite mean

1−G0(ξ) ∼ G′
0(1)(1− ξ)

Combining our calculations and labeling the result to acknowledge it is a caclulation for the
branching process rather than the random graph itself, we have:
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Claim 4.7.2. Given a degree distribution with pk ∼ ck−γ with 2 < γ ≤ 3, the critical
percolation probability is 0. If 2 < γ < 3 the size of the giant component ∼ cp(γ−2)/(3−γ) as
p→ 0. If γ = 3 the size is exp(−(1 + o(1))/cp).

Bollobás and Riordan (2004c) have done a rigorous analysis of percolation on the Barabási-
Albert preferential attachment graph, which has β = 3.

Theorem 4.7.3. Let m ≥ 2 be fixed. For 0 < p ≤ 1 there is a function

exp(−C/p2) ≤ λ(p) ≤ exp(−c/p)

so that with probability 1−o(1) the size of largest component is (λ(p)+o(1))n and the second
largest is o(n).

The case m = 1 in which the world is a tree is not very interesting. For any p < 1 the largest
component is o(n).

Intentional damage. It would be difficult to identify the collection of vertices of a given
size that would do the most damage to the network, so in simulation studies, intentional
damage is usually modeled as removal of the vertices with degrees k > k0, where k0 is chosen
so that the desired fraction of vertices f is eliminated. The removal of the most connected
sites leads to the disappearance of the links attached to them. This is equivalent to the
removal of links chosen at random with probability

q =
∞∑

k=k0+1

kpk

/
µ

The truncated distribution has all moments finite so by (4.7.1) it will have a giant component
if ∑k0

k=1 k(k − 1)pk∑k0

k=1 kpk

(1− q) > 1

Rearranging gives the simple condition

k0∑
k=1

k(k − 1)pk >

∑k0

k=1 kpk

1− q
= µ

which is equation (3) of Dorogovstev and Mendes (2001). Callaway, Newman, Strogatz,
and Watts (2000) have computed threshold values for the distribution pk = k−γ/ζ(γ) when
γ = 2.4, 2.7, 3.0. The values of fc and the corresponding k0 are:

γ fc k0

2.4 0.023 9
2.7 0.010 10
3.0 0.002 14



130 CHAPTER 4. POWER LAWS

This shows that the network is fragile – the removal of a few percent of the nodes with
the largest degrees destroys the giant component. However in interpreting these results the
reader should keep in mind that pk = k−γ/ζ(γ) has no giant component for γ > 3.479. See
Aiello, Chung, and Lu (2000, 2001).

Again Bollobás and Riordan (2004c) have done a rigorous analysis for the preferential
atachment model. For them it is convenient to define intentional damage as removal of the
first nc nodes.

Theorem 4.7.4. Let m ≥ 2 and 0 < c < 1 be constant. If c ≥ (m − 1)/(m + 1) then with
probability 1 − o(1) the largest component is o(n). If c < (m − 1)/(m + 1) then there is
a constant θ(c) so that with probability 1 − o(1) the largest component is ∼ θ(c)n, and the
second largest is o(n).

It is difficult to compare this with the previous result since pk ∼ 2m(m + 1)k−3 as k →∞.
However the reader should note that even when m = 2 one can remove 1/3 of the nodes.
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4.8 SIS epidemic

In this section we will study the susceptible-infected-susceptible epidemic on scale-free net-
works. In this model infected individuals become healthy at rate 1 (and are again susceptible
to the disease) while susceptible individuals become infected at a rate λ times the number
of infected neighbors. In the probability literature this model is usually called the contact
process. Harris (1974) introduced this model. See Liggett (1999) for an account of most of
the results known for this model.

Pastor-Satorras and Vespigniani (2001a, 2001b, 2002) have made an extensive study of
this model using mean-field methods. See also Moreno, Pastor-Satorras, and Vespigniani
(2002). These authors define the model as what probabilists call the threshold contact
process: “each susceptible node is infected at rate λ if it is connected to one or more infected
nodes.” (see p.3200 in 2001a, page 2 of 2001b, bottom of page 1 in 2002). However, it is clear
from equation (4.8.1) below that infection occurs at a rate λ times the number of infected
neighbors. Indeed if they considered the threshold contact process, then the maximum birth
rate at a site is λ versus a death rate of 1, so λc ≥ 1, in contrast to the main result which
shows that when the tail of the degree distribution is large enough λc = 0.

Mean-field theory. Let ρk(t) denote the fraction of vertices of degree k that are infected
at time t, and θ(λ) be the probability that a given link points to an infected vertex. If we
make the mean-field assumption that there are no correlations then

dρk(t)

dt
= −ρk(t) + λk[1− ρk(t)]θ(λ)

so the equilibrium frequency ρk satisfies

0 = −ρk + λk[1− ρk]θ(λ) (4.8.1)

Solving we have

ρk =
kλθ

1 + kλθ
Suppose pk is the degree distribution in the graph. The probability that a given link points to
a vertex of degree k is qk = kpk/µ where µ =

∑
j jpj, so we have the following self-consistent

equation for θ:

θ =
∑

k

qkρk =
∑

k

qk
kλθ

1 + kλθ
(4.8.2)

In the Barabási-Albert model pk ∼ ck−3, or in the continuous approximation p(x) =
2m2/x3 for x ≥ m. The size biased distribution has q(x) = m/x2 for x ≥ m and (4.8.2)
becomes

θ =

∫ ∞

m

m

x

λθ

1 + λθx
dx = m

∫ ∞

m

λθ

x
− (λθ)2

1 + λθx
dx

The two parts of the integrand are not integrable separately, but if we replace the upper
limit of ∞ by M the integral is

mλθ{logM − logm} −mλθ{log(1 + λθM)− log(1 + λθm)}
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The first and third terms combine to −mλθ log(λθ+1/M) so letting M →∞ the integral is

−mλθ (logm+ log(λθ)− log(1 + λθm)) = mλθ log

(
1 +

1

mλθ

)
and the equation we want to solve is

1 = mλ log

(
1 +

1

mλθ

)
Dividing by mλ and exponentiating

e1/mλ = 1 +
1

mλθ

Solving for θ now we have

θ =
1

mλ(e1/mλ − 1)
=
e−1/mλ

mλ
(1− e−1/mλ)−1 (4.8.3)

in agreement with (12) in Pastor-Satorras and Vespigniani (2001b). The fraction of occupied
sites

ρ =
∑

k

pk
kλθ

1 + kλθ
∼ λθµ (4.8.4)

as λ, θ → 0 by the dominated convergence theorem.
In the formula for θ, m and λ appear as the product mλ. A little thought reveals that this

will always be the case if we work with continuous variables, so we will for simplicity restrict
our attention to the case m = 1. Turning to powers between 2 and 3, let p(x) = (1+γ)x−2−γ

for x ≥ 1 and assume 0 < γ < 1. In this case the size biased distribution is q(x) = γx−1−γ

and (4.8.2) becomes

1 =

∫ ∞

1

γ

xγ

λ

1 + λθx
dx

The right-hand side is a decreasing function of θ that is ∞ when θ = 0 and → 0 when θ →∞
so we know there is a unique solution. Changing variables x = u/λθ, dx = du/(λθ) we have

1 = λγθγ−1

∫ ∞

λθ

γu−γ 1

1 + u
du

Since γ < 1 the integral on the right has a limit cγ as λ, θ → 0. Rearranging we have

θ ∼ (cγλ
γ)1/(1−γ) (4.8.5)

in agreement with (22) in Pastor-Satorras and Vespigniani (2001b). Again, the fraction of
occupied sites

ρ =
∑

k

pk
kλθ

1 + kλθ
∼ λθµ (4.8.6)
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as λ, θ → 0 by the dominated convergence theorem.
Turning to powers larger than 3, let p(x) = (1 + γ)x−2−γ for x ≥ 1 and assume γ > 1.

Again the size biased distribution is q(x) = γx−1−γ and (4.8.2) is

1 =

∫ ∞

1

γ

xγ

λ

1 + λθx
dx (4.8.7)

However, now the integral converges when θ = 0, so for a solution to exist we must have

λ > λc = 1/

∫ ∞

1

γ

xγ
dx =

γ − 1

γ

Letting F (λ, θ) denote the right-hand side of (4.8.7), we want to solve F (λ, θ) = 1. If λ > λc,
F (λ, 0) = λ/λc > 1. To find the point where F (λ, θ) crosses 1 we note that

∂F

∂θ
= −

∫ ∞

1

γ

xγ

λ2x

(1 + λθx)2
dx

When γ < 2, ∂F/∂θ →∞ as θ → 0. Changing variables y = θx the above becomes

−
∫ ∞

θ

γθγ

yγ

λ2y/θ

(1 + λy)2

dy

θ
∼ −θγ−2

∫ ∞

0

γ

yγ−1

λ2

(1 + λy)2
dy

Writing cγ,λ for the integral (which is finite) and integrating

F (λ, θ)− F (λ, 0) ∼ −cγ,λθ
γ−1/(γ − 1)

Rearranging

θc ∼
(

(γ − 1)
F (λ, 0)− 1

cγ,λ

)1/(γ−1)

Recalling F (λ, 0) = λ/λc, it follows that

θ(λ) ∼ C(λ− λc)
1/(γ−1)

Thus the critical exponent β = 1/(γ − 1) > 1 when 1 < γ < 2. When γ > 2, ∂F/∂θ has a
finite limit as θ → 0 and β = 1.

The mean field calculations above will not accurately predict equilibrium densities or
critical values (when they are positive). However, they suggest the following conjectures
about the contact process on power law graph with degree distribution pk ∼ Ck−α.

• If α ≤ 3 then λc = 0

• If 3 < α < 4, λc > 0 but the critical exponent β > 1

• If α > 4 then λc = 0 and the equilibrium density ∼ C(λ− λc) as λ ↓ λc
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Rigorous results. Berger, Borgs, Chayes, and Saberi (2004) have considered the contact
on the Barabási-Albert preferential attachment graph. They have shown that λc = 0 and
more. Here Θ(f(λ)) indicates a quantity that is bounded above and below by a constant
times f(λ) as λ→ 0.

Theorem 4.8.1. For every λ > 0 there is an N so that for a typical sample of the scale-free
graph of size n > N , and a vertex v chosen at random:
(a) the probability that the infection starting from v will survive is

λΘ(1)

(b) with probability 1−O(λ2) the probability that the infection starting from v will survive is

λΘ(log(1/λ)/ log log(1/λ))

The main ideas that underlie the proof of this theorem are:

(i) if all degrees in a graph are significantly smaller than λ−1 then the disease will die out
very quickly

(ii) if the virus reaches a vertex with degree significantly larger than λ−2 then the disease is
likely to survive for a long time

(iii) for a typical vertex v, the largest degree of a vertex in a ball of radius k around v is,
with high probability (k!)Θ(1)

The first two conclusions imply that the survival of the disease boils down to whether it can
reach a vertex of degree λ−Θ(1), while the last conclusion implies that the closest vertex of
degree λ−Θ(1) is Θ(log(1/λ)/ log log(1/λ)).

The first conclusion is easy to see. If all the degrees are ≤ (1/2)λ−1 then the number of
infected sites can be bounded above by a branching process in which births occur at rate
1/2 and deaths occur at rate 1, so starting with a single infected site the expected number
of infected sites at time t is ≤ e−t/2. To establish the second conclusion, it is enough to
consider a star shaped graph in which a central vertex of degree Cλ−2 is connected to that
many leaves, i.e., vertices with degree 1. If the central vertex was always occupied then the
outlying vertices would be independently occupied with probability λ/(λ+ 1) ≈ λ, so there
would be an average of Cλ−1 occupied vertices, and if the central vertex becomes vacant
then the time until it becomes occupied again will be O(1).

The last calculation indicates why degree Cλ−2 is necessary for prolonged survival. To
prove it is sufficient we will use the following result which is a version of BCCS’s Lemma
5.3. We have added the assumption kλ2 →∞ which seems necessary for the conclusion.

Lemma 4.8.2. Let G be a star graph with center 0 and leaves 1, 2, . . . k. Let At be the
set of vertices infected in the contact process at time t when A0 = {0}. If kλ2 → ∞ then
P (Aexp(kλ2/10) 6= ∅) → 1.
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Proof. Write the state of the system as (m,n) where m is the number of infected leaves and
n = 1 if the center is infected and 0 otherwise. To reduce to a one dimensional chain we
will ignore the times at which the second coordinate is 0. When the state is (m, 0) with
m > 0, the probability that the next event will be the reinfection of the center is λ/(λ+ 1),
so the number of leaf infections N that will die while the center is 0 has a shifted geometric
distribution with success probability λ/(λ+ 1), i.e.,

P (N = j) =

(
1

λ+ 1

)j

· λ

λ+ 1
for j ≥ 0

There is of course the possibility that starting with m infected leaves, all of them will become
healthy before the center is reinfected but this will not occur if N < m.

The second step is to modify the chain so that the infection rate is 0 when this number
is L = λk/4 or greater. In this case the number of infected leaves ≥ Yt where

at rate
Yt → Yt − 1 λk/4
Yt → Yt + 1 3λk/4
Yt → Yt −N 1

To bound the survival time of this chain we will estimate the probability that starting from
L− 1 it will return to 0 before hitting 0. During this time Yt is random walk that jumps at
rate λk + 1 and with the following distribution

with probability
−1 (λk/4)/(λk + 1)
+1 (3λk/4)/(λk + 1)
−N 1/(λk + 1)

At this point we diverge from the BCCS proof and finish up using a martingale. If we
let X be a random variable with the distribution given above then

EeθX = eθ · 3

4
· λk

λk + 1
+ e−θ · 1

4
· λk

λk + 1

+
1

λk + 1

∞∑
j=0

e−θj

(
1

λ+ 1

)j

· λ

λ+ 1

If e−θ/(λ+ 1) < 1, the sum of the geometric series is

λ

λk + 1
· 1

1 + λ− e−θ

If we pick θ < 0 so that e−θ = 1 + λ/2 then

λk + 1

λk
EeθX =

1

1 + λ/2
· 3

4
− (1 + λ/2) · 1

4
+

2

λk
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If λ → 0 and λk → ∞ then the right-hand side converges to 1/2 and hence is eventually
positive.

To estimate the hitting probability we note that if φ(x) = exp(θx) then φ(Yt) is a mar-
tingale. Let q be the probability that Yt hits (−∞, 0] before returning to L. Since θ < 0, we
have φ(x) ≥ φ(0) for x ≤ 0 and the optional stopping theorem implies that

qφ(0) + (1− q)φ(L) ≤ φ(L− 1)

Solving and using the fact that φ(x) ≥ 0 is decreasing, we have

q ≤ φ(L− 1)− φ(L)

φ(0)− φ(L)
≤ φ(L)− 0

φ(0)− φ(L)
=

1

e−θL − 1

Recalling θ ∼ −λ/2 and L = λk/4 with λ2k →∞ we see that when λ2k is large

q ≤ (1/2)e−λ2k/8

At this point we have estimated the probability that the chain started at L − 1 will go
to L before hitting 0. When at L the time until the next jump to L− 1 is exponential with
mean 1/(L+1). At this point we have shown that with high probability the chain will return
from L − 1 to L, eλ2k/9 times before hitting 0. Using the law of large numbers we see that
with high probability that many returns from L to L − 1 will take at least eλ2k/9/2(L + 1)
units of time and the proof of the lemma is complete.



Chapter 5

Small Worlds

5.1 Watts and Strogatz model

As explained in more detail in Section 1.3, our next model was inspired by the popular
concept of “six degrees of separation,” which is based on the notion that every one in the
world is connected to everyone else through a chain of at most six mutual acquaintances.
Now an Erdös-Renyi random graph for n = 6 billion people in which each individual has an
average of µ = 42.62 friends would have average pairwise distance (log n)/(log µ) = 6, but
would have very few triangles, while in social networks if A and B are friends and A and C
are friends, then it is fairly likely that B and C are also friends.

To construct a network with small diameter and a positive density of triangles, Watts
and Strogatz (1998) started from a ring lattice with n vertices and k edges per vertex,
and then rewired each edge with probability p, connecting one end to a vertex chosen at
random. This construction interpolates between regularity (p = 0) and disorder (p = 1).
The disordered graph is not quite an Erdös-Rényi graph, since the degree of a node is the sum
of a Binomial(k,1/2) and an independent Poisson(k/2). Let L(p) be the distance between
two randomly chosen vertices. Define the clustering coefficient C(p) to be the fraction of
connections that exist between the

(
k
2

)
neighbors of a site.

Suppose that n >> k >> log n >> 1. Extrapolating from the results for Erdös-Renyi
graphs, we know that the middle condition implies that the graph will be connected with
high probability when p = 1 and the diameter will be asymptotically (log n)/(log k). Consid-
ering the first two steps in the cluster growth branching process tells us that the clustering
coefficient C(1) ∼ k/n. At the other extreme of perfect order, since we can move distance
k/2 in one step and the maximum distance is n/2, L(0) ∼ n/k.

Our next step is to show C(0) → 3/4. Suppose k = 2j. The pairs of points −j ≤ y <
x ≤ j form a triangle with vertices (j, j − 1), (−(j − 1),−j), and (j,−j). The points below
the line x− y > j are not neighbors, and this is asymptotically 1/4 of the triangle. The next
figure shows the situation when j = 5.

137
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The next illustration, which is a copy of Figure 2 in Watts and Strogatz (1998), considers
n = 1000 vertices and k = 10 neighbors, and shows that there is a broad interval of p over
which L(p) is almost as small as L(1), yet C(p) is far from 0. To see the reason for this,
note that when a fraction p = 0.01 of the edges have been rewired, C(p) has not changed by
much, but the short cuts have dramatically decreased the distance between sites.
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To look for the small world phenomenon in real graphs, Watts and Strogatz (1998)
computed L and C for three examples: the collaboration graph of actors in feature films, the
electrical power grid of the Western United States, and the neural network of the nematode
worm C. elegans. Results are given in the next table and are compared to the values Lr and
Cr for random graphs with the same number of vertices and average number of edges per
vertex. As these results show the distances are similar to the random graphs in the first two
cases, but 50% larger in the third. However, the clustering coefficients in the real graphs
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are significantly larger than in the random graphs, especially when the number of vertices is
large in the case of film actors.

L Lr C Cr

C. elegans 2.65 2.25 0.28 0.05
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.08 0.005

Bollobás and Chung small world. Watts and Strogatz (1998) were not the first to
notice that random long distance connections could drastically reduce the diameter. Bollobás
and Chung (1988) added a random matching to a ring of n vertices with nearest neighbor
connections and showed that the resulting graph had diameter ∼ log2 n. This graph, which
we will call the BC small world, is not a good model of a social network because (a) every
individual has exactly three friends including one long range neighbor, and (b) does not have
any triangles, so it is locally tree like. These weaknesses, particularly the second, make it
easier to study, so we will have a preference for this case throughout most of the chapter.
In the section on epidemics and the final section on the contact process, we will include
nonnearest neighbor connections. There, as in the other models considered in this chapter,
the qualitative behavior is the same but the proofs are more difficult.
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5.2 Path lengths

In this section we are concerned with estimating the average path length between two ran-
domly chosen sites in the small world, `(n, p) as a function of the number of nodes n, the
fraction of shortcuts p, and the range of interaction k. For this problem and the others
we will consider below, we will consider Newman and Watts (1999) version of the model in
which no edges are removed but one adds a Poisson number of shortcuts with mean pkn/2
and attaches then to randomly chosen sites.

To quote Albert and Barabási (2002), “it is now widely accepted that the characteristic
path length obeys the general scaling form

`(n, p) ∼ n

k
f(pkn)

where f(u) is a universal scaling function that obeys

f(u) =

{
1/4 if u << 1

ln(u)/u if u >> 1”

Newman, Moore, and Watts (2000) have taken a “mean-field approach” to computing
`(n, p). They write differential equations for the number of sites within distance r of a fixed
point and the number of clusters of occupied sites, assuming that gaps between clusters have
the sizes of a randomly broken stick, i.e., the result of putting that many i.i.d. uniforms in
the unit interval. They conclude that

f(u) =
1

2
√
u2 + 2u

tanh−1

(
u√

u2 + 4u

)
(5.2.1)

Simulations show that this formula agrees with simulations for small u or large u, but “as
expected, there is some disagreement when u ≈ 1. See Figure 3 in Newman (2000). Using
the identity

tanh−1 y =
1

2
log

(
1 + y

1− y

)
we have

tanh−1

(
u√

u2 + 4u

)
=

1

2
log

(
1 + u/

√
u2 + 2u

1− u/
√
u2 + 2u

)
Inside the logarithm the numerator → 2 as u→∞. The denominator

= 1− 1√
1 + 2/u

≈ 1− 1

1 + 1/u
≈ 1/u

combining our calculations

f(u) ∼ log(2u)

4u
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which matches (21) in Newman, Moore, and Watts (2000).
Barbour and Reinert (2001) have done a rigorous analysis of the average distance between

points in a continuum model in which there is a circle of circumference L and a Poisson
mean Lρ/2 number of random chords. The chords are the short cuts and have length 0. The
first step in their analysis is to consider an upper bound model that ignores intersections
of growing arcs and that assumes each arc sees independent Poisson processes of shortcut
endpoints. Let S(t) be size, i.e., the Lebesgue measure, of the set of points within distance
t of a chosen point and let M(t) be the number of intervals. Under our assumptions

S ′(t) = 2M(t)

while M(t) is a branching process in which there are no deaths and births occur at rate 2ρ.
M(t) is a Yule process with births at rate 2ρ so EM(t) = e2ρt and M(t) has a geometric

distribution
P (M(t) = k) = (1− e−2ρt)k−1e−2ρt (5.2.2)

Being a branching process e−2ρtM(t) → W almost surely. It follows from (5.2.2) that W has
an exponential distribution with mean 1. Integrating gives

ES(t) =

∫ t

0

2e2ρs ds =
1

ρ
(e2ρt − 1)

At time t = (2ρ)−1(1/2) log(Lρ), ES(t) = (L/ρ)1/2 − 1. Ignoring the −1 we see that if we
have two independent clusters run for this time then the expected number of connections
between them is √

L

ρ
· ρ ·

√
L/ρ

L
= 1

since the middle factor gives the expected number of shortcuts per unit distance and the last
one is the probability a short cut will hit the second cluster. The precise result is:

Theorem 5.2.1. Suppose Lρ→∞. Let O be a fixed point of the circle, choose P at random,
and let D be the distance from O to P . Then

P

[
D >

1

ρ

(
1

2
log(Lρ) + x

)]
→
∫ ∞

0

e−y

1 + 2e2xy
dy

Thus as in Theorem 3.4.1 the fluctuations are O(1). To make a connection between the two
results we note that the proof will show that the right-hand side is E exp(−2e2xWW ′) where
W and W ′ are independent exponentials.

Proof. To prove this we begin with a Poisson approximation result of Arratia, Goldstein and
Gordon (1990). Suppose Xα, α ∈ I are Bernoulli random variables with P (Xα = 1) = pα.
Let V =

∑
αXα, λ = EV , and Z be Poisson with mean λ. We are interested in conditions

that imply V and Z are close in distribution. For each α ∈ I let Bα ⊂ I be a set that
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contains α. Intuitively, Bα is the neighborhood of dependence of Xα. Variables outside the
neighborhood will be almost independent of Xα. Define

b1 =
∑
α∈I

∑
β∈Bα

pαpβ

b2 =
∑
α∈I

∑
β∈Bα,β 6=α

E(XαXβ)

b3 =
∑
α∈I

E|E(Xα − pα|Xγ, γ 6∈ Bα)|

Theorem 5.2.2. Let L(V ) be distribution of V . The total variation distance

‖L(V )− L(Z)‖ ≤ 2

(
(b1 + b2)

(
1− e−λ

λ

)
+ b3(1 ∧ 1.4λ−1/2)

)
≤ 2(b1 + b2 + b3)

To apply this suppose that we have intervals I1, . . . , Im with lengths s1, . . . , sm and in-
tervals J1, . . . , Jn with lengths u1, . . . , un that are scattered independently and uniformly
on a circle of circumference L. Let Xij be the indicator of the event Ii ∩ Jj 6= ∅ and
V =

∑m
i=1

∑n
j=1Xij.

pi,j ≡ P (Ii ∩ Jj 6= ∅) = (si + uj)/L

so if we let s = s1 + · · ·+ sm and u = u1 + · · ·+ un then

λ ≡ EV =
m∑

i=1

n∑
j=1

(si + uj)/L = (ns+mu)/L

We define Bi,j = {(i, k) : k 6= j} ∪ {(`, j) : ` 6= i} so that if (k, `) 6∈ Bi,j and (k, `) 6= (i, j)
then Xi,j and Xk,` are independent and hence b3 = 0. If we let

Zi,j =
∑

(k,`)∈Bi,j

Xk,`

then we have

b1 =
∑
i,j

pi,jEZi,j +
∑
i,j

p2
i,j

b2 =
∑
i,j

E(Xi,jZi,j) =
∑
i,j

pi,jEZi,j

since the Xi,j are pairwise independent. To see this note that if i 6= k and j 6= ` then Xi,j

and Xk,` are clearly independent. To complete the proof now, it suffices to consider the case
i = k and j 6= `. However, in this situation even if we condition on the location of Ii the two
events Ii ∩ Jj 6= ∅ and Ii ∩ J` 6= ∅ are independent.
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Let r = maxi si + maxj uj = Lmaxij pi,j. EXi,j ≤ r/L so EZi,j ≤ (m+ n− 2)r/L and∑
i,j

pi,jEZi,j ≤ λ(m+ n− 2)r/L

The final term
∑

i,j p
2
i,j ≤ (r/L)

∑
i,j pi,j = rλ/L so b1 + b2 ≤ 2λ(m+ n)r/L. Using the first

inequality in Theorem 5.2.2 with 1− e−λ ≤ 1, it follows that if Z is Poisson(λ)

‖L(V )− L(Z)‖ ≤ 4(m+ n)r/L (5.2.3)

Let τx = (2ρ)−1{(1/2) log(Lρ)+x}. Consider two independent copies of the upper bound
model starting from O and P and run until time τx. LetMx andNx be the number of intervals
in the two processes, let sx and ux be the Lebesgue measure of the sets of points, and let V̂x

be the number of intersections. From (5.2.3) and r ≤ 4τx it is immediate that

|P (V̂x = 0|Mx, Nx, sx, ux)− exp(−L−1(Nxsx +Mxux))| ≤ 16(Mx +Nx)τx/L (5.2.4)

Taking expected value, then putting the expected value inside the absolute value

|P (V̂x = 0)− E exp(−L−1(Nxsx +Mxux))| ≤
16τx
L

E(Mx +Nx) (5.2.5)

Our next step is to estimate the number of collisions between the growing intervals in the
upper bound process starting from O. Number the intervals Ij in the order in which they
were created. Let Yi,j = 1{Ii ∩ Ij 6= ∅} and Gi = {Yi,j = 0 for all j < i}. Each interval Ii
with i > 1 has a parent, P (i), which was the source of the chord that started it. Let H1 = 0
and

Hi =

{
0 on Gi ∩ {HP (i) = 0}
1 otherwise

Hi = 1 indicates an interval that is bad due to experiencing a collision or being a descendant
of a bad interval.

Lemma 5.2.3. If P (Yi,j = 1) ≤ p for all i, j then P (Hi = 1) ≤ 2(i− 1)p.

Proof. We prove the result by induction on i. The conclusion is clear for i = 1. Hi = 1 can
occur for two reasons. The first is P (Gc

i) ≤ (i− 1)p. The second is that k is an ancestor of
i and Hk = 0. Now since the intervals are numbered in order of their creation, their lengths
are a decreasing function of their indices, and hence the probability j is the parent of i is a
decreasing function on 1, . . . i − 1. Iterating we see that if we follow the ancestry of i back
until we first reach an interval j ≤ k then the probability we will end up at k is ≤ 1/k.
Using induction now

i−1∑
k=1

P (Hk = 0, k is an ancestor of i) ≤
i−1∑
k=1

(k − 1)p/k ≤ (i− 1)p

which completes the proof of the lemma.
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Let Vx be the number of intersections in the real process in which intervals stop growing
when they run into each other.

Lemma 5.2.4. With the notations above we have

P (V̂x 6= Vx) ≤
32τ 2

x

L2
E(Mx(Mx − 1)Nx)

Proof. Define Y ′
i,j = 1{Ji ∩ Jj 6= ∅} and H ′

i for the process starting at P as in Lemma 5.2.3

and recall that Xi,j = 1{Ii ∩ Jj 6= ∅}. Since Vx ≤ V̂x are integer valued

P (V̂x 6= Vx) ≤ E(V̂x − Vx) ≤ E

(
Mx∑
i=1

Nx∑
j=1

Xi,j(1{Hi = 1}+ 1{H ′
j = 1})

)

Conditioning on Mx = m, Nx = n and on the lengths of the intervals, using the trivial
observation that all intervals have length ≤ 2τx and applying Lemma 5.2.3 we conclude

E(Xi,j1{Hi = 1}|Mx = m,Nx = n, s1, . . . sm, u1, . . . un)
≤ (4τx/L)P (Hi = 1|Mx = m,Nx = n, s1, . . . sm, u1, . . . un)
≤ (4τx/L) · 2(i− 1)(4τx/L)

Noting
∑k

i=1 2(i− 1) = k(k− 1), combining this with a similar bound for Xi,j1{H ′
j = 1} and

using E(Nx(Nx − 1)Mx) = E(Mx(Mx − 1)Nx) gives the desired result.

Theorem 5.2.1 follows easily by combining (5.2.5) and Lemma 5.2.4. To do this we need
to recall that if G has a geometric distribution with success probability q then EG = 1/q and
E(G(G−1)) = (1−q)/q2 ≤ 1/q2. From this and the definition of τx = (2ρ)−1{(1/2) log(Lρ)+
x} we have EMx ∼ (Lρ)1/2ex and EMx(Mx−1) ≤ (Lρ)e2x. Using this with the cited results,
writing `x = (1/2) log(Lρ) + x and recalling τx = `x/(2ρ) we have

|P (Vx = 0)− E exp(−L−1(Nxsx +Mxux))|

≤ 16τx
L

2(Lρ)1/2ex +
32τ 2

x

L2
(Lρ)3/2e3x

≤ 16`x
(Lρ)1/2

ex +
8`x

(Lρ)1/2
e3x

which → 0 if x ≤ (1/7) log(Lρ).
To complete the proof we have to evaluate the expected value. Noting that

S(t)

M(t)
=

∫ t

0

M(r)

M(t)
dr →

∫ ∞

0

e−ρs ds = ρ−1

and recalling sx and ux are the total lengths of the intervals, we have

L−1(Nxsx +Mxux) ∼ 2(Lρ)−1MxNx → −2e2xWW ′
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where W and W ′ are independent exponential mean 1. The bounded convergence theorem
implies

E exp(−L−1(Nxsx +Mxux)) → E exp(−2e2xWW ′)

If we condition on the value of W and use the formula for the Laplace transform of the
exponential

E exp(−2e2xWW ′) = E

(
1

1 + 2e2xW

)
=

∫ ∞

0

1

1 + 2e2xy
e−y dy

which completes the proof of the theorem.
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5.3 Epidemics

In this section we will follow Moore and Newman (2000) and consider epidemic models on
the small world, which are essentially percolation processes. There are two extremes: in the
first all individuals are susceptible and there is a probability p that an infected individual
will transmit the infection to a neighbor, in the second only a fraction p of individuals are
susceptible but the disease is so contagious that if an individual gets infected all of their
susceptible neighbors will become infected. In percolation terms, the first model is bond
percolation while the second is site percolation. The qualitative properties of the model are
similar. We will concentrate on the site percolation version since in that case it is possible
to do the computations more explicitly.

To give our first nonrigorous derivation of the answer, we will introduce an infinite graph
associated with the small world, that we call the “Big World.” We begin with a copy of the
integers, Z. To each integer we attach a Poisson mean ρ long range bonds that lead to a
new copy of Z on which we repeat the previous construction. The first copy of Z we call
level zero. The levels of other copies are equal to the number of long range bonds we need to
traverse to get to them. This structure appeared in an implicit way in the previous section:
if we look at how the set of sites within distance n of 0 in the Big World grows then there
are no collisions and each interval encounters an independent set of long range connections.
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Site percolation. To analyze the growth of the process, let p0(n) be the probability 0 is
connected to n sites on Level 0. p0(0) = 1− p. The number of sites to the right of zero that
can reached has a geometric distribution with success probability (1 − p)k, since it takes k
consecutive closed sites to stop the percolation, and every time we can reach a new open site
we can forget about the states of sites behind it. (This is false for bond percolation when
k > 1 and makes the calculations in that case much more difficult.)
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Letting q = (1 − p)k, the probability of reaching j ≥ 0 sites on the right is (1 − q)jq.
Adding the sites reached on the left and noting that 0 has to be open to get the process
started we have

p0(n) =
n−1∑
j=0

p(1− q)jq · (1− q)n−1−jq = np(1− q)n−1q2

Noting that the geometrics start at 0, so their means are 1/q − 1, the mean number of sites
reached on level 0 is

ν ≡
∑

n

np0(n) = p · 2− q

q

Conditional on N = n sites being reached on level 0 the number of long range bonds M
to level one copies will be Poisson with mean nρ. Thus E(M |N) = ρN and EM = ρν. Each
level one copy reached starts an independent version of the original process. Thus if we let
Zk be the number of level k copies reached then Zk is a branching process. The critical value
for percolation occurs when ρν = 1.

Bond percolation, k = 1. This time 0 does not have to be open so

p0(n) =
n−1∑
j=0

pj(1− p) · pn−1−j(1− p) = npn−1(1− p)2

and the mean number of sites reached on level 0 is

ν = 1 + 2p/(1− p) = (1 + p)/(1− p)

This time the edges have to be open in order to reach the next level so E(M |N) = pρN and
EM = pρν. The critical value for percolation occurs when pcρν = 1 or

ρpc
1 + pc

1− pc

= 1

Solving we have ρp2
c + (ρ+ 1)pc − 1 = 0 or

pc =
−(ρ+ 1) +

√
(ρ+ 1)2 + 4ρ

2ρ

In order to check this result and to prepare for developments in the next section, we will
now give another (nonrigorous) derivation of the bond percolation critical value based on
the fact that, seen from a fixed vertex, the NW small world is locally tree like. Color vertices
blue if they are reached by a long range edge and red if they are reached by a short range
edge. Ignoring collisions the growth of the cluster is a two-type branching process with mean
matrix

B R
B ρ 2
R ρ 1
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The growth rate of this system is dictated by the largest eigenvalue of this matrix, which
solves

0 = (ρ− λ)(1− λ)− 2ρ = λ2 − (ρ+ 1)λ− ρ

Comparing with the previous quadratic equation we see that pc = 1/λ. This is exactly what
we should have expected since particles in generation n of the branching process are infected
in the epidemic with probability pn.

Rigorous proof of critical values. Rather than take our usual approach of showing
that the branching process accurately models the growth of the cluster, we will prove the
result by reducing to a model with a fixed degree distribution. The reduction is based on
the following picture
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If we only use the connections around the ring then we get connected components that have
a geometric distribution with success probability r where r = q for site percolation and
r = (1− p) for bond percolation. In the case of site percolation we are ignoring closed sites,
which are components of size 0. The distribution is a single geometric rather than the sum
of two since we scan from left to right to find the successive components.

Now each site in the cluster is connected to a Poisson mean λ = ρp number of edges. In
bond percolation this comes from the fact that the edge has to be open to count. In the
case of site percolation this comes from the fact that of the Poisson mean ρ edges, a fraction
(1− p) are connected to sites that are closed. Collapsing the components to single vertices,
they have degree SN = X1 + · · ·XN where the Xi are i.i.d. Poisson(λ) and N is geometric
with success probability r. Standard formulas for random sums tell us

ESN = EXEN = λ/r

var (SN) = EN · var (X) + (EX)2 · var (N)

=
1

r
· λ+ λ2 · 1− r

r2

To check the form of the two terms, consider the two cases N is constant and X is constant.
Using this we have

E(SN(SN − 1)) = var (SN) + (ESN)2 − ESN

=
1

r
· λ+ λ2 · 1− r

r2
+
λ2

r2
− λ

r
=
λ2

r2
(2− r)

so the mean of the size biased distribution

E(SN(SN − 1))

ESN

= λ
2− r

r
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It follows that the conditions for a giant component are

ρp(2− q)/q > 1 for site percolation
ρp(1 + p)/(1− p) > 1 for bond percolation

in agreement with our previous calculations. The main point of this calculation is that using
results in Section 3.2 for phase transitions in a graph with a fixed degree ditribution, it leads
to a rigorous proof. However, I find it comforting that the same critical values emerge from
two much different computations.

Critical Exponents. For the rest of their paper, Moore and Newman (2000) are con-
cerned with the values of various critical exponents associated with the percolation process.
Their computations are for the Big World graph where cluster growth is a branching process,
so they apply equally well to the Erdös-Rényi random graph.

Abstracting the calcluation to simplify it, suppose we have a one parameter family of
branching processes indexed by their mean µ. If µ < 1 then the total cluster size

∑∞
m=0 Zm

has expected value

E|C| = E(
∞∑

m=0

Zm) =
∞∑

m=0

µm =
1

1− µ

Thus as µ ↑ 1, E|C| ∼ (µc − µ)−1 and the critical exponent associated with the divergence
of the mean cluster size is γ = 1.

Suppose now that µ > 1 and consider the probability of no percolation ρ which is the
solution < 1 of g(x) = x. When µ is close to 1, ρ ≈ 1. Setting ρ = 1− a and expanding the
generating function to second order:

g(1− a) = g(1)− ag′(1) +
a2

2
g′′(b) for some b ∈ [a, 1]

Recalling g(1) = 1 and g′(1) = µ, we see that if g(1− a) = 1− a then

1− a = 1− µa+
a2

2
g′′(b)

or a = 2(µ − 1)/g′′(b). As µ ↓ 1, g′′(b) → µ2 =
∑

k k(k − 1)pk, so the critical exponent
associated with the survival probability is β = 1.

Moore and Newman also compute the critical exponent for the asymptotic behavior of
the cluster size distribution when µ = 1, but this is the same as the calculation at the end
of Section 3.1. The result is

P (|C| = k) ∼ bk−3/2

To understand this probabilistically, we allow only one individual to reproduce in the branch-
ing process at each time, reducing the process to a mean zero random walk in which the
time to hit 0 has the same distribution as |C|.

The values we have computed are the “mean-field critical values” which hold for percola-
tion on Zd when d is large enough, i.e., d > 6. Their appearance here indicates that the long
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range connections, make the small world very big. Indeed the fact that the diameter grows
like log n compared to n1/d in d-dimensional space, implies that the big and small worlds are
essentially infinite dimensional.

What have we just done? Our computations are rigorous results for the branching
process. In the random graph, the exponents only appear when we first let n → ∞ and
then let µ approach 1, or set µ = 1 and let k → ∞. For finite n, the expect values of the
average cluster size and the fraction of vertices in the largest component are smooth, and
the power law for P (|C| = k) will have an expoential cutoff for k = O(n2/3), see (2.7.4) for
the Erdös-Rényi case.
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5.4 Ising and Potts models

The results in this section were inspired by Häggström (2000), but for the details we mostly
follow Häggström (1998). In the Potts model, each vertex is assigned a spin σx which may
take one of q values. Given a finite graph G with vertices V and edges E, e.g., the small
world, the energy of a configuration is

H(σ) = 2
∑

x,y∈V,x∼y

1{σ(x) 6= σ(y)}

where x ∼ y means x is adjacent to y. Configurations are assigned probabilities exp(−βH(σ))
where β is a variable inversely proportional to temperature, and we define a probability
measure on {1, 2, . . . q}V by

ν(σ) = Z−1 exp(−βH(σ))

where Z is a normalizing constant that makes the ν(σ) sum to 1. When q = 2 this is the
Ising model, though in that case it is customary to replace {1, 2} by {−1, 1}, and write the
energy as

H2(σ) = −
∑

x,y∈V,x∼y

σ(x)σ(y)

This leads to the same definition of ν since every pair with σ(x) 6= σ(y) increases H2 by 2
from its minimum value in which all the spins are equal, so H − H2 is constant and after
normalization the measures are equal.

To study the Potts model on the small world we will use the random-cluster model.
This was introduced by Fortuin and Kastelyn (1972) but Aizenman, Chayes, Chayes, and
Newman (1988) were the first use this connection to prove rigorous results. See Grimmett
(1995) for a nice survey. The random-cluster model is a {0, 1}-valued process η on the edges
E of the graph:

µ(η) = Z−1

{∏
e∈E

pη(e)(1− p)1−η(e)

}
qχ(η)

where χ(η) is the number of connected components of η when we interpret 1-bonds as
occupied and 0-bonds as vacant, and Z is another normalizing constant. When q = 1 this is
just product measure

To relate the two models we introduce the following coupling on {1, 2, . . . , q}V × {0, 1}E

P (σ, η) = Z−1

{∏
e∈E

pη(e)(1− p)1−η(e)

}∏
x∼y

1{(σ(x)− σ(y))η(x, y) = 0}

In words, if η(x, y) = 1 then the spins at x and y must agree. It is easy to check, see Theorem
2.1 in Häggström (1998) for detailed proofs of this and the next three results, that

Lemma 5.4.1. If p = 1 − e−2β then the projection onto the {1, 2, . . . , q}V is ν and onto
{0, 1}E is µ.



152 CHAPTER 5. SMALL WORLDS

As a corollary of the coupling we see that

Lemma 5.4.2. If we pick a random edge configuration according to µ and then assign
random values to each connected component of edges the result is ν. Conversely if we generate
σ ∈ {1, 2, . . . , q}G and then independently assign each edge (x, y) the value 1 with probability
p if σ(x) = σ(y), and probability 0 if σ(x) 6= σ(y) then the result is µ.

To begin to analyze the Potts model, we need the following result that follows immediately
from the definition.

Lemma 5.4.3. Fix an edge e = (x, y) and let ηe be the values on E − {e}

µ(η(e) = 1|ηe) =

{
p if x and y are connected in ηe

p
p+q(1−p)

otherwise

The next ingredient is a result of Holley (1974), which we consider for the special case
of {0, 1}E. We say f : {0, 1}E → R is increasing if f(η) ≤ f(ζ) whenever η ≤ ζ, i.e.,
η(e) ≤ ζ(e) for all e ∈ E. Given two probability measures on {0, 1}E, we say that µ1 ≤ µ2

if
∫
f dµ1 ≤

∫
f dµ2 for all increasing f .

Lemma 5.4.4. Let µ1 and µ2 be two measures on {0, 1}E. Suppose that for every e ∈ E
and every η, ζ with ηe ≤ ζe

µ1(η(e) = 1|ηe) ≤ µ2(ζ(e) = 1|ζe)

then µ1 ≤ µ2,

For a proof see Theorem 3.2 in Häggström (1998).
Introducing the parameters of µ as subscripts, it follows from Lemmas 5.4.3 and 5.4.4

that if q > 1
µp,1 ≥ µp,q

and that if p′ ≥ p and p′/(p′ + q(1− p′) ≥ p then

µp,1 ≤ µp′,q

Theorem 5.4.5. Let pc be the critical value for the existence of components of O(n) for
percolation on the graph. If

p′ > pI =
qpc

1 + (q − 1)pc

(5.4.1)

then µp′,q also has large components.

Using Lemma 5.4.1 we see that if β > βI where β = −(1/2) log(1− pI) then in νβ,q there
is a large clusters of spins all of which have the same value. Turning to concrete examples:

BC small world. The BC small world looks locally like the tree in which each vertex has
degree 3. Thinking about the growth of a cluster from a fixed vertex it is easy to see that
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the critical value for percolation is pc = 1/2. Using Lemma 5.4.5, pI = 2/3. Lemma 5.4.1
gives βI = (1/2) log 3 = 0.5493. It is interesting to note that 1/βI = 1.820 while simulations
of Hong, Kim, and Choi (2002) give Tc ≈ 1.82. To lead into the next topic which will start
to explain this, we begin with some arithmetic that is general:

tanh(βI) =
1− e−2βI

1 + e−2βI
=

pI

2− pI

= pc

since pI = 2pc/(1 + pc).
To explain the significance of this simple calculation, consider the Ising model on a tree

with forward branching number b ≥ 2. b is the degree of vertices −1. Define βI , the critical
value for the Ising model, by tanh(βI) = 1/b. This is the critical value for the onset of
“spontaneous magnetization.” When β > βI if we impose +1 boundary conditions at sites a
distance n from the root and let n→∞ then in the resulting limit spins σ(x) have positive
expected value. When 0 ≤ β ≤ βI there is a unique limiting Gibbs state independent of the
boundary conditions. See e.g., Preston (1974).

NW small world, k = 1. At the end of the 1980s, Russ Lyons, using an idea of Furstenburg,
defined a notion of branching number b for trees that are not regular. We will not give the
general definition, since for us it is enough that in the case of a tree generated by a multitype
branching process, the branching number b = λ the growth rate for the process, see Lyons
(1990). Lyons (1989) showed that the critical value for percolation pc = 1/b while if we
convert his notation to ours by writing β = J/kT where T is the temperature and k is
Boltzmann’s constant then tanh(βI) = 1/b. See Lyons (2000) for a more recent survey.

The first result gives another derivation of the conclusion pc = 1/λ from the previous
section. The second allows us to prove of the upper bound in the next result. The Ising model
on small worlds has been studied by physicists, see Barrat and Weigt (2000), Gitterman
(2000), Pekalski (2001), and Hong, Kim, and Choi (2002). However, no one seems to have
noticed this simple exact result.

Theorem 5.4.6. For the BC small world or the nearest neighbor NW small world, the
critical value for the Ising model has tanh(βI) = pc.

Proof. The calculations above show that for β > βI there is long range order in the Ising
model in the sense that there are clusters of spins of equal value of size O(n). To prove
a result in the other direction we note that if β < βI then the Gibbs state on the tree is
unique. There is a c > 0 so that for most sites x in the graph if we look at the graph in a
neighborhood of radius c log n around x, we see a tree. If we put +1’s on the boundary of
this tree then what we see inside is larger than the Gibbs state on the small world, but if n
is large P (σ(x) = 1) ≈ 1/2.

Spin glass transition. Consider the Ising model on the tree with forward branching number
b. Define βSG

c , where the superscript SG is for spin glass, by tanh βSG
c = 1/

√
b. The second

transition concerns the behavior with free boundary conditions, i.e., we truncate the tree
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at distance n and throw away the sites outside. Bleher, Ruiz, and Zagrebnov (1995) and
Ioffe (1996) showed that the limiting state is ergodic when βF

c < β ≤ βSG
c , but not when

β > βSG
c . Here the phrase “spin-glass” refers a model on the tree analyzed by Chayes,

Chayes, Sethna, and Thouless (1986) and Carlson, Chayes, Chayes, Sethna, and Thouless
(1989) which provides the key ideas for the proofs in the two papers previously cited.

To see what this second phase transition means, we consider a model of “Broadcasting on
trees” considered by Evans, Kenyon, Peres, and Schulman (2000). Starting at the root, which
has some value, say +1, each vertex receives the state of its parent with probability 1 − 2ε
and a randomly chosen state ∈ {−1, 1} with probability 2ε. This description is supposed to
remind the reader of (5.4.3), which with (5.4.1) gives

1− 2ε =
p

2− p
=

1− e−2β

1 + e−2β
= tanh(β)

EKPS show that the probability of correctly reconstructing the spin at the root tends to a
limit > 1/2 if 1− 2ε > k−1/2 and to 1/2 if 1− 2ε < k−1/2.

Q. Does this transition have any meaning for the Ising model on the BC small world?
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5.5 Contact process

Durrett and Jung (2005) have considered the contact process (SIS epidemic) on a multi-
dimensional generalization of the BC small world. To make those results fit more easily
into the scheme of this chapter, we will for simplicity restrict our attention to the d = 1
case. Based on results for the Ising model in the previous section, we should expect that the
contact process on the small world should behave like the contact process on a tree, so we
begin with an account of those results.

In the contact process on any graph infected sites become healthy at rate 1, and become
infected at rate λ times the number of infected neighbors. Let T be a tree in which each
vertex has degree d > 2 and let 0 be a distinguished vertex (the origin) of the tree. Let A0

t

be the set of infected sites at time t on the tree starting from 0 occupied. We define two
critical values:

λ1 = inf{λ : P(|A0
t | = 0 eventually) < 1} (5.5.1)

λ2 = inf{λ : lim inf
t→∞

P(0 ∈ A0
t ) > 0}.

We call λ1 the weak survival critical value and λ2 the strong survival critical value. Pemantle
(1992) showed that for trees with d ≥ 4, λ1 < λ2. He and Liggett (1996) who extended the
result to trees with d = 3, did this by finding numerical bounds on the two critical values
which showed they were different. Later Stacey (1996) found a proof that did not rely on
numerical bounds.

To explain the reason for the two critical values, consider branching random walk, which
is a contact process without the restriction of one particle per site. In this process each
particle dies at rate 1, and for each neighbor gives birth at rate λ to a new particle at that
site. If Z0

t is the number of particles at time t starting from a single particle at time 0 then
EZ0

t = e(λd−1)t so λ1 = 1/d. If we let St be a random walk on the tree that jumps at rate
λd to a randomly chosen neighbor then the expected number of particles at 0 at time t has

EZ0
t (0) = e(λd−1)tP (St = 0)

For a detailed proof of a similar fact see (4.4.1).
Since the distance from the origin on the tree is a random walk that steps +1 with

probability (d− 1)/d and −1 with probability (except at 0 where all steps are +1) it is not
hard to show that

(1/t) logP (St = 0) → −ρd < 0

so λcd− 1− ρd = 0 or λ2 = (1 + ρd)/d. For more on the two phase transitions in branching
random walk see Madras and Schinazi (1992).

Our version of the BC small world, which we will call BCm, will be as follows. We start
with a ring Z mod L and connect each vertex to all other vertices within distance m. We
require L to be even so that we can partition the L vertices into L/2 pairs. Consider all
such partitions and then pick one at random. A new edge is then drawn between each pair
of vertices in the chosen partition. The reason for insisting that all individuals have exactly
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one long-range neighbor is that we can define an associated “big world” graph Bm that is
non-random. Algebraically, Bm consists of all vectors ±(z1, . . . , zn) with n ≥ 1 components
with zj ∈ Z and zj 6= 0 for j < n. Neighbors in the positive half-space are defined as follows:
a point +(z1, . . . , zn) is adjacent to +(z1, . . . , zn + y) for all y with 0 < |y| ≤ m (these are
the short-range neighbors of +(z1, . . . , zn)). The long-range neighbor is

+(z1, . . . , zn, 0) if zn 6= 0

+(z1, . . . , zn−1) if zn = 0, n > 1

−(0) if zn = 0, n = 1.
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We will consider the discrete-time contact process. On either the small world or the big
world, an infected individual lives for one unit of time. During its infected period it will
infect some of its neighbors. All infection events are independent, and each site that receives
at least one infection is occupied with an infected individual at the next time. A site infects
itself or its short-range neighbors with probability α/(2m + 1). It infects its long-range
neighbor with probability β. To have a one parameter family of models we think of fixing
r = α/β and varying λ = α+ β.

We will use Bt to denote the contact process on the big world and ξt for the contact
process on the small world. It is easy to see that if α+ β < 1 the infection on the big world
will die out. Our first result shows that this trivial necessary condition becomes exact when
the range m is large.

Theorem 5.5.1. If α + β > 1 then the contact process on the big world survives for large
m.
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The proofs of this and the other results are somewhat lengthy, so we refer the reader to
Durrett and Jung (2005) for details.

To obtain a lower bound λ2, we use the fact that strong survival of the contact pro-
cess on Bm implies strong survival of the branching random walk on Bm. Let λbrw

2 (m)
be the strong survival critical value of the branching random walk. To compute the limit
of λbrw

2 (m), we define the “comb” of degree m, Cm, by restricting Bm to vertices of the
form {+(z),+(z, 0),−(0)} and all edges between any of these vertices. As before, +(z) and
+(z, 0) are long-range neighbors as are +(0) and −(0). The short-range neighbors of +(z)
are +(z + y) for 0 < |y| ≤ m. The vertices +(z, 0) and −(0) have no short-range neighbors.
To see the reason for the name look at the picture

+(–3) +(–2) +(–1) +(0) +(1) +(2) +(3)

+(–3,0) +(–2,0) +(–1,0) –(0) +(1,0) +(2,0) +(3,0)

Viewing particles on the top row as type 1 and those on the bottom row as type 2, we
have a two type branching process with mean matrix:(

α β
β 0

)
Results for multitype branching processes imply that the branching random walk on the
comb survives if the largest eigenvalue of the matrix is larger than 1. Solving the quadratic
equation (α− λ)(−λ)− β2 = 0 the largest root is

α+
√
α2 − 4β2

2

A little algebra shows that this is larger than 1 exactly when α2−4β2 > (2−α)2 or α+β2 > 1.
This is an upper bound on the strong survival critical value of the branching process when
what we need is a lower bound but it motivates the following:

Theorem 5.5.2. If α+β2 < 1 then there is no strong survival in the contact process on the
big world for large m.

Comparing the above with Proposition 5.5.1 shows that for any r = α/β, λ1 < λ2 for large
m. When m = 1 and α = β the big world is a tree of degree 3 and we have λ1 < λ2 in that
case as well. It is reasonable to conjecture that for any range m and ratio r we have λ1 < λ2

but this seems difficult to prove.



158 CHAPTER 5. SMALL WORLDS

Since the small world is a finite graph, the infection will eventually die out. However,
by analogy with results for the d-dimensional contact process on a finite set, we expect that
if the process does not become extinct quickly, it will survive for a long time. Durrett and
Liu (1988) showed that the supercritical contact process on [0, L) survives for an amount
of time of order exp(cL) starting from all ones, while Mountford (1999) showed that the
supercritical contact process on [0, L)d survives for an amount of time of order exp(cLd).
At the moment we are only able to prove the last conclusion for the following modification
of the small world contact process: each infected site infects its short-range neighbors with
probability α/(2m+ 1) and its long-range neighbor with probability β, but now in addition,
it infects a random neighbor (chosen uniformly from the grid) with probability γ > 0.

From a modeling point of view, this mechanism is reasonable. In addition to long-range
connections with friends at school or work, one has random encounters with people one sits
next to on airplanes or meets while shopping in stores. In the language of physics, the model
with γ = 0 has a quenched (i.e., fixed) random environment, while the model with β = 0
has an annealed environment.

Our strategy for establishing prolonged survival is to show that if the number of infected
sites drops below ηL, it will with high probability rise to 2ηL before dying out. To do this we
use the random connections to spread the particles out so that they can grow independently.
Ideally we would use the long-range connections (instead of the random connections) to
achieve this; however, we have to deal with unlikely but annoying scenarios such as all
infected individuals being long-range neighbors of sites that are respectively short-range
neighbors of each other.

Theorem 5.5.3. Consider the modified small world model on Z mod L with random infec-
tions at rate γ > 0. If λ > λ1 and we start with all infected individuals then there is a
constant c > 0 so that the probability the infection persists to time exp(cL) tends to 1 as
L→∞.

This result shows that prolonged persistence occurs for λ > λ1. The next describes
a change in the qualitative behavior that occurs in the contact process at λ2. Let τB =
min{t : B0

t = ∅} be the extinction time of the contact process on the big world. Let
σB = min{t : B0

t = ∅ or 0 ∈ B0
t } be the first time that the infection either dies out or comes

back to the origin starting from one infection there at time 0. Let τS = min{t : ξ0
t = ∅} and

σS = min{t ≥ 1 : ξ0
t = ∅ or 0 ∈ ξ0

t } be the corresponding times for the contact process on
the small world.

Theorem 5.5.4. Writing ⇒ for convergence in distribution as L→∞ we have
(a) τS is stochastically bounded above by τB and τS ⇒ τB
(b) σS is stochastically bounded above by σB and σS ⇒ σB.

Intuitively, when λ1 < λ < λ2, the infection cannot spread without the help of the long range
so even if the infection starts at 0 and does not die out globally then it dies out locally and
takes a long time to return to 0.
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Open Problem. Consider the Ising model on BCm. Is tanh(βI) = pc the critical value for
percolation on the big world?
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Chapter 6

Random Walks

In this chapter we will study the mixing times of random walks on our random graphs. In
order to make our treatment self-contained, we will give an account of the Markov chain
results we use.

6.1 Spectral gap

Consider a Markov chain transition kernel K(i, j) on {1, 2, . . . n} with reversible stationary
distribution πi, i.e., πiK(i, j) = πjK(j, i). To measure convergence to equilibrium we will
use the relative pointwise distance

∆(t) = max
i,j

∣∣∣∣Kt(i, j)

πj

− 1

∣∣∣∣
which is larger than the total variation distance

∆(t) ≥ max
i

∑
j

∣∣∣∣Kt(i, j)

πj

− 1

∣∣∣∣ πj = max
i

∑
j

|Kt(i, j)− πj|

Let D be a diagonal matrix with entries π1, π2, . . . πn and a = D1/2KD−1/2. Since

a(i, j) = π
1/2
i K(i, j)π

−1/2
j = π

1/2
j K(j, i)π

−1/2
i = a(j, i)

matrix theory tells us that a(i, j) has real eigenvalues 1 = λ0 ≥ λ1 ≥ . . . λn−1 ≥ −1. Let
λmax = max{λ1, |λn−1|} be the eigenvalue with largest magnitude. The next result is from
Sinclair and Jerrum (1989), but similar results can be found in many other places.

Theorem 6.1.1. Let p be the transition matrix of an irreducible reversible Markov chain on
{1, 2, . . . n} with stationary distribution π and let πmin = minj πj. Then

∆(t) ≤ λt
max

πmin

161
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Proof. Since a is symmetric, we can select an orthonormal basis em, 0 ≤ m < n of eigenvec-
tors of a, and a has spectral decomposition:

a =
n−1∑
m=0

λmeme
T
m

The matrix Bm = eme
T
m has B2

m = Bm, and B`Bm = 0 if ` 6= m so

at(i, j) =
n−1∑
m=0

λt
mBm(i, j) =

n−1∑
m=0

λt
mem(i)em(j)

e0(i) = π
1/2
i so

Kt(i, j) = (D−1/2atD1/2)i,j = πj +

√
πj

πi

n−1∑
m=1

λt
mem(i)em(j)

From this it follows that

∆(t) = max
i,j

∣∣∑n−1
m=1 λ

t
mem(i)em(j)

∣∣
√
πiπj

≤ λt
max

maxi,j

∑n−1
m=1 |em(i)||em(j)|
πmin

The Cauchy-Schwarz inequality implies

n−1∑
m=1

|em(i)||em(j)| ≤

(
n−1∑
m=1

|em(i)|2
n−1∑
m=1

|em(j)|2
)1/2

To see that
∑n−1

m=1 |em(i)|2 ≤ 1 note that if δi is the vector with 1 in the ith place and 0
otherwise then expanding in the orthonormal basis δi =

∑n−1
m=0 em(i)em, so the desired result

follows by taking the L2 norm of both sides of the equation.

Given a reversible Markov transition kernel K(x, y) we define the Dirichlet form by

E(f, g) =
1

2

∑
x,y

(f(x)− f(y))(g(x)− g(y))π(x)K(x, y) (6.1.1)

Introducing the inner product < f, g >π=
∑

x f(x)g(x)π(x), a little algebra shows

E(f, f) =< f, (I −K)f >π

If we define the variance by varπ(f) = Eπ(f −Eπf)2 then the spectral gap can be computed
from the variational formula

1− λ1 = min{E(f, f) : varπ(f) = 1} (6.1.2)
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To see this note that E(f, f) is not affected by subtracting a constant from f so

1− λ1 = min{< f, f >π − < f,Kf >π: Eπf = 0, < f, f >π= 1}

and the result follows from the usual variational formula for λ1 for the nonnegative symmetric
matrix ai,j = π(i)K(i, j), i.e.,

λ1 = max

{∑
i

xiai,jxj :
∑

i

x2
i = 1

}

For some of our results we will consider continuous time chains. If jumps occur at rate
one then there are a Poisson mean t jumps by time t so the transition probability is

Ht(x, y) = e−t

∞∑
m=0

tm

m!
Km(x, y)

If λi is an eigenvalue of K then e−t(1−λi) is an eigenvalue of Ht. Thus there are no negative
eigenvalues to worry about and we have

Theorem 6.1.2. If β = 1− λ1 is the spectral gap of K then

max
x,y

∣∣∣∣Ht(x, y)

π(y)
− 1

∣∣∣∣ ≤ e−βt

πmin

Proof. Let Htg(x) =
∑

y Ht(x, y)g(y). Differentiating the series for Ht we have

∂

∂t
Htg = −Htg + e−t

∞∑
m=1

tm−1

(m− 1)!

∑
z,y

K(x, z)Km−1(z, y)g(y) = −(I −K)Htg

and it follows that

∂

∂t

∑
x

π(x)(Htg(x))
2 = −2 < Htg, (I −K)Htg >π= −2E(Htg,Htg)

Applying the last result to g(x) = f(x)−π(f) and letting u(t) =
∑

x π(x)(Htg(x))
2 = ‖Htg‖2

2

we have u′(t) = −2E(Htg,Htg) ≤ −2βu(t) by the variational characterization of the spectral
gap. Integrating the differential inequality

‖Htf − π(f)‖2
2 = u(t) ≤ e−2βtu(0) = e−2βtvarπf (6.1.3)

where varπf = ‖f − π(f)‖2
2 is the variance of f under π.

Define the dual transition probability by

Ĥt(x, y) =
π(y)Ht(y, x)

π(x)



164 CHAPTER 6. RANDOM WALKS

For a probabilist this is the time-reversed chain:

Ĥt(x, y) =
Pπ(X0 = y,X1 = x)

Pπ(X1 = x)
= Pπ(X0 = y|X1 = x)

For analysts this is the adjoint operator

< f,Htg >π =
∑
x,y

f(y)π(y)Ht(y, x)g(x)

=
∑
x,y

π(x)Ĥt(x, y)f(y)g(x) =< Ĥtf, g >

Letting hx
t (y) = Ht(x, y)/π(y) and

fx(z) =

{
1/π(x) z = x

0 otherwise

we have π(fx) = 1 and

Ĥtfx(y) =
∑

z

Ĥt(y, z)fx(z) =
Ĥt(y, x)

π(x)
=
Ht(x, y)

π(y)
= hx

t (y)

Since Ĥt is reversible with respect to π, (6.1.3) implies

‖hx
t − 1‖2

2 ≤ e−2βt 1− π(y)

π(y)
(6.1.4)

Using the Markov property, adding and subtracting 1, and using reversibility∣∣∣∣Ht(x, y)

π(y)
− 1

∣∣∣∣ =

∣∣∣∣∣∑
z

[
Ht/2(x, z)Ht/2(z, y)

π(z)π(y)
− 1

]
π(z)

∣∣∣∣∣
=

∣∣∣∣∣∑
z

(
Ht/2(x, z)

π(z)
− 1

)(
Ht/2(z, y)

π(y)
− 1

)
π(z)

∣∣∣∣∣
=

∣∣∣∣∣∑
z

(
Ht/2(x, z)

π(z)
− 1

)(
Ht/2(y, z)

π(z)
− 1

)
π(z)

∣∣∣∣∣
Using the Cauchy Schwarz inequality now and 6.1.4 the above

≤ ‖hx
t/2 − 1‖2 · ‖hy

t/2 − 1‖2 ≤ e−βt 1√
π(x)π(y)

from which the desired result follows.
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6.2 Conductance

Suppose for the moment that we have a general reversible transition probability, write
Q(x, y) = π(x)K(x, y), and define

h = min
π(S)≤1/2

Q(S, Sc)

π(S)

where Q(S, Sc) =
∑

x∈S,y∈Sc Q(x, y). Since this is the size of the boundary of S when edge
(x, y) is assigned weight Q(x, y), we will sometimes write this as |∂S|. Our next result is
Lemma 3.3.7 in Saloff-Coste (1996). His I = 2h so the constants are different. Saloff-Coste
attributes the result to Diaconis and Stroock (1991), who in turn named the result Cheeger’s
inequality in honor of the eigenvalue bound in differential geometry.

Theorem 6.2.1. The spectral gap has

h2

2
≤ 1− λ1 ≤ 2h

Proof. Taking f = 1S in the variational formula (6.1.2) we have

E(1S, 1S) = Q(S, Sc)

and var π(1S) = π(S)(1− π(S), so 1−λ1 ≤ Q(S, Sc)/π(S)(1− π(S)). The right-hand side is
the same for S and Sc, so we can restrict our attention to π(S) ≤ 1/2. Since 1−π(S) ≥ 1/2,
we have 1− λ1 ≤ 2h.

For the other direction, let Ft = {x : f(x) ≥ t} and let ft be the indicator function of
the set Ft. Since only differences f(x) − f(y) appear in E(f, f), defined in (6.1.1), we can
without loss of generality suppose that the median of f is 0, i.e., π(Ft) ≤ 1/2 for t > 0, and
π(F c

t ) ≤ 1/2 for t < 0. Our next step is to compute something that would be the Dirichlet
form if we had squared the increment.

1

2

∑
x,y

|f(x)− f(y)|Q(x, y) =
∑

f(x)>f(y)

(f(x)− f(y))Q(x, y)

=
∑
x,y

∫ ∞

−∞
1{f(y)<t<f(x)}Q(x, y) dt

=

∫ ∞

0

|∂Ft| dt+

∫ 0

−∞
|∂F c

t | dt

≥ h

(∫ ∞

0

π(Ft) dt+

∫ 0

−∞
π(F c

t ) dt

)
= hπ(|f |)

Continuing to suppose that the median of f is 0, let g = f 2sgn (f), where sgn (x) = 1 if
x > 0, sgn (x) = −1 if x < 0, and sgn (0) = 0. |g| = f 2 so the last inequality implies

2hπ(f 2) ≤
∑
x,y

|g(x)− g(y)|Q(x, y) ≤
∑
x,y

|f(x)− f(y)|(|f(x)|+ |f(y)|)Q(x, y)
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To check the last inequality, we can suppose without loss of generality that f(x) > 0 and
f(x) > f(y). If f(y) ≥ 0 we have an inequality, while if f(y) < 0 we have f 2(x) + f 2(y) <
(|f(x)|+ |f(y|)2. Using the Cauchy-Schwarz inequality now the above is

≤

(∑
x,y

(f(x)− f(y))2Q(x, y)

)1/2

·

(∑
x,y

(|f(x)|+ |f(y)|)2Q(x, y)

)1/2

≤ (2E(f, f))1/2(4π(f 2))1/2

Rearranging gives (2E(f, f))1/2 ≥ h(π(f 2))1/2. Squaring we have

E(f, f) ≥ h2

2
π(f 2) ≥ h2

2
Eπ(f − Eπf)2

which proves the desired result.

Let G be a finite connected graph, d(x) be the degree of x, and write x ∼ y if x and y are
neighbors. We can define a transition kernel by K(x, x) = 1/2, K(x, y) = 1/2d(x) if x ∼ y
and K(x, y) = 0 otherwise. The 1/2 probability of staying put means that we don’t have to
worry about periodicity or negative eigenvalues. Our K can be written (I + p)/2 where p is
another transition probability, so all of the eigenvalues of K are in [0, 1], and λmax = λ1.

π(x) = d(x)/D where D =
∑

y∈G d(y), defines a reversible stationary distribution since
π(x)K(x, y) = 1/2D = π(y)K(y, x). Letting e(S, Sc) is the number of edges between S and
Sc, and vol(S) be the sum of the degrees in S, we have

h =
1

2
min

π(S)≤1/2

e(S, Sc)

vol(S)

When d(x) ≡ d, h = ι/2d where

ι = min
|S|≤n/2

e(S, Sc)

|S|
is the edge isoperimetric constant.

To illustrate the use of Theorem 6.2.1 and to show that one cannot get rid of the power
2 from the lower bound, consider random walk on the circle Z mod n in which we stay
put with probability 1/2 and jump from x to x ± 1 with probability 1/4 each. Taking
S = {1, 2, . . . n/2} we see that

ι =
2

n/2
= 4/n

To bound the spectral gap, we let f(x) = sin(πx/n). Since sin(a+b) = sin a cos b+sin b cos a
we have

(I −K)f(x) = f(x)(1− cos(π/n))/2

and 1 − λ1 ≤ (1 − cos(π/n))/2 ∼ π2/4n2 as n → ∞. Using Theorem 6.1.1 gives an upper
bound on the convergence time of order O(n2 log n). However using the local central limit
theorem for random walk on Z it is easy to see that ∆(t) ≤ ε at a time Kεn

2.
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Mixing times and the conductance profile. Since we are lazy, we will suppose in
what follows that the chain is as well: i.e., K(x, x) ≥ 1/2 for all x, and we willnot give the
proofs of these more sophisticated results. Given an initial state i, it is possible to define
stopping times T so that XT has the the stationary distribution. Define H(i, π) the minimum
value of ET for all such stopping times and let H = maxiH(i, π). Define the mixing time

Tmix = max
i

min{t : dTV (Kt(i, ·), π) < 1/e}

The cutoff 1/e is somewhat arbitrary. The important thing is that it is small enough to allow
us to conclude that if t ≥ `Tmix then dTV (Kt(i, ·), π) < (2/e)`. Aldous (1988) has shown, see
also Aldous, Lovász, and Winkler (1997), that C1H ≤ Tmix ≤ C2H. Define the conductance
profile by

Φ(x) = min
S:0<π(s)≤x

Q(S, Sc)

π(S)π(Sc)

Lovasz and Kannan (1999) have shown that

H ≤ 32

∫ 1/2

πmin

dx

xΦ(x)2

Morris and Peres (2003) used their notion of evolving sets to sharpen this result to

If n ≥
∫ 4/ε

π(i)∧π(j)

4 dx

xΦ(x)2
then

∣∣∣∣Kn(i, j)

π(i)
− 1

∣∣∣∣ ≤ ε

These results are useful for improving rate of convergence results in some examples.
However in some of our favorite examples the worst conductance occurs for small sets, so we
will instead use a recent result of Fountolakis and Reed (2006).

Theorem 6.2.2. If Φ(x) be the minimum Q(S, Sc)/π(S)π(Sc) over all connected sets S with
x/2 ≤ π(s) ≤ x then

Tmix ≤ 32

∫ 1/2

πmin

dx

xΦ(x)2
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6.3 Fixed degree distribution

We begin by considering the random r-regular graph and define a random walk that stays
put with probability 1/2 and jumps to each of its r neighbors with probability 1/2r. To be
precise in the face of parallel edges and self-loops, we pick one of the r edges incident to
the current vertex and jump to the vertex at the other end. Since vertices have constant
degree, the uniform distribution π(x) = 1/n is stationary. As explained in Section 6.2, we
can bound the convergence time by bounding the isoperimetric number, ι. For this we can
use a very precise result due to Bollobás (1988).

Theorem 6.3.1. Let r ≥ 3 and 0 < η < 1 be such that

24/r < (1− η)1−η(1 + η)1+η

Then asymptotically almost surely a random r-regular graph has ι ≥ (1− η)r/2.

At first glance, it is hard to see for what values of η the right-hand side is bigger than
the left. For 0 < h < 1,

d

dh
[(1− h) log(1− h) + (1 + h) log(1 + h)] = log

(
1 + h

1− h

)
> 0

Using a calculator or computer, one can see that when r = 3 we need to take η = 0.878
and when r = 10, η = 0.514. Expanding the logarithms to first order we see that if r
is large η ≈ (2 log 2)/r → 0. To see that the constant cannot be better than r/2, let
S = {1, 2, . . . n/2}, and note that when the points in S pick their r neighbors, the probability
of picking a point in Sc is 1/2. The law of large numbers implies that e(S, Sc) ≈ rn/2. Of
course, some sets of size n/2 will not have this typical behavior. Estimating the large
deviations leads to a constant (1− η)r/2.

Here we will prove a more general result with a worse constant.

Theorem 6.3.2. Consider a random graph with a fixed degree distribution in which the
minimum degree is r ≥ 3. There is a constant α0 > 0 so that h ≥ α0.

From this it follows that the mixing time is O(log n). The condition r ≥ 3 is necessary since
if there is a positive density of vertices of degree 2 then there will be paths of length O(log n)
in which each vertex has degree 2 and if we start in the middle of the path then the mixing
time will be ≥ O(log2 n).

Proof of Theorem 6.3.2. We begin our computation by considering only the random r-regular
graph. Let f(m) be the number of ways of dividing m objects into pairs.

f(m) =
m!

(m/2)!2m/2
(6.3.1)
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Let P (u, s) be the probability that there is a set U with |U | = u and e(U,U c) = s.

P (u, s) ≤
(
n

u

)(
ru

s

)(
r(n− u)

s

)
s!f(ru− s)f(r(n− u)− s)

1

f(rn)
(6.3.2)

To see this recall that in the random configuration model we make r copies of each vertex
and then pair the rn mini-vertices at random, which can be done in f(rn) ways. We can
choose the set U in

(
n
u

)
ways. We can pick the left ends of the edges to connect U to U c

in
(

ru
s

)
ways, the right ends in

(
r(n−u)

s

)
ways, and then pair them in s! ways. There are

(ru − s)/2 edges that connect U to U and these can be attached in f(ru − s) ways. There
are (r(n − u) − s)/2 edges that connect U c to U c and these can be attached in f(ru − s)
ways.

Let s(u) be the largest integer less than (1 − η)ru/2. Bollobás “proves” his result by
asserting that if 0 ≤ s ≤ s′ ≤ s(u) then P (u, s) ≤ P (u, s′), so it is enough to show that
P (u, s(u)) = o(n−2). He then claims it is enough to prove the result for u = n/2 and in that
case “straightforward, though tedious calculations” give the result. Not being able to fill in
the details, I turned to Gkantsidis, Mihail, and Saberi (2003) for help. To make it easier to
compare with their argument we change values D = rn, k = ru, and s = αk. This converts
(6.3.2) into (

D/r

k/r

)(
k

αk

)(
D − k

αk

)
(αk)!f(D − αk)f(D − k − αk)

f(D)
(6.3.3)

Their formula (10) is this with s! = (αk)! replaced by the larger f(2αk). They also have a
factor αk to account for 1 ≤ s ≤ αk.

Before we start to work on (6.3.3) we observe that this formula is valid for a graph with
fixed degree distribution and minimum degree r. In this case D is the sum of the degrees in
the graph and k is the volume, i.e., the number of mini-vertices. This gives an upper bound
on the probability since the number of sets of vertices with volume k is at most

(
D/r
k/r

)
, the

maximum occuring when all of the vertices have degree r.
To bound the binomial coefficients, the following lemma is useful

Lemma 6.3.3. (
n

m

)
≤ nm

m!
≤ nm

mme−m

Proof. The first inequality follows from n(n − 1) · · · (n −m + 1) ≤ nm. For the second we
note that the series expansion of em has only positive terms so em > mm/m!.

From Lemma 6.3.3, we see that the three binomial coefficients in (6.3.3) are

≤
(
De

k

)k/r ( e
α

)2αk
(
D − k

k

)αk

(6.3.4)

Here, to prepare for a later step, we have transferred part of the bound for the third term
into the second.
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To bound the f ’s in (6.3.3) we use Stirling’s formula to conclude

f(m) =
m!

(m/2)!2m/2
∼ C

mm+1/2e−m

(m/2)m/2+1/2e−m/22m/2
= C(m/e)m/2

From this we see that the fraction in (6.3.3) is

≤ Ck1/2 (αk/e)αk(k(1− α)/e)k(1−α)/2((D − (1 + α)k)/e)(D−(1+α)k)/2

(D/e)D/2

= Ck1/2(αk)αkD−αk

(
k(1− α)

D

)k(1−α)/2(
1− (1 + α)k

D

)(D−(1+α)k)/2

(6.3.5)

since the exponents in the numerator sum to D/2.
Combining (6.3.4) and (6.3.5) gives an upper bound

≤ Ck1/2

(
De

k

)k/r (
e2

α

)αk (
D − k

D

)αk

·
(
k(1− α)

D

)k(1−α)/2(
1− (1 + α)k

D

)(D−(1+α)k)/2

Ignoring the Ck1/2’s, the first term is the first term from (6.3.4), the second and third terms
come from combining the second and third terms of (6.3.4) and with the first and second
terms of (6.3.5), while the remainder of the formula comes from (6.3.5). Using α > 0 and
D − k < D and rearranging we have

≤ Ck1/2ek/r

(
e2

α

)αk

·
(
k

D

)k(1−α)/2−k/r (
1− (1 + α)k

D

)(D−(1+α)k)/2

Setting β = e2/α and γ = (1− α)/2− 1/r we have

≤ Ck1/2ek/rβαk ·
(
k

D

)γk (
1− (1 + α)k

D

)(D−(1+α)k)/2

(6.3.6)

Comparing with formula (17) in Gkantsidis, Mihail, and Saberi (2003), we see that apart
from the differences that result from our use of (αk)! instead of f(2αk), they are missing the
ek/r and we have retained an extra term to compensate for the error.

Let

G(k) = ek/rβαk ·
(
k

D

)γk (
1− (1 + α)k

D

)(D−(1+α)k)/2

Ck1/2 ≤ Cn1/2 so we can show h ≥ α0 by showing that for 0 ≤ α ≤ α0

sup
1≤k≤D/2

G(k) = o(n−5/2)
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because then we can sum our estimate over k ≤ D/2 and s = αk with α ≤ α0 and end up
with a result that is o(1).

βαk = exp(ηk) where η = α log(e2/α) → 0 as α → 0. Ignoring this term, and setting
k = D/2, α = 0

G(D/2) = eD/2r(1/2)[1/2−1/r]D/2+D/4 =
(
e1/3(1/2)2/3

)D/2

when r = 3, the worst case. Since 4 > e, the quantity in parentheses is < 1 when α = 0 and
hence also when 0 ≤ α ≤ α0, if α0 is small.

To extend this result to other values of k, let

H(k) = logG(k) =
k

r
+ kα log β + kγ log(k/D) +

D − (1 + α)k

2
log

(
1− (1 + α)k

D

)
Since G(k) = exp(H(k)), differentiating gives G′(k) = G(k)H ′(k) where

H ′(k) =
1

r
+ α log β + γ log(k/D) + γ − (1 + α)

2
log

(
D − (1 + α)k

D

)
+
D − (1 + α)k

2
· D

D − (1 + α)k
·
(
−(1 + α)k

2

)
Differentiating again G′′(k) = G(k)(H ′(k)2 +H ′′(k)) where

H ′′(k) =
γ

k
− (1 + α)

2
· D

D − (1 + α)k
·
(
−(1 + α)

D

)
> 0

From the last calculation we see that G(k) is convex. We have control of the value for
k = D/2. It remains then to inspect the values for small k. Dropping the last factor which
is < 1

G(k) ≤ ek/rβkα

(
1

αD

)γk

When 0 ≤ α ≤ α0 ≤ 1/24, γ ≥ 7/48 and hence G(24) ≤ Cn−7/2. Since e(S, Sc) ≥ 1 there is
nothing to prove for k ≤ 1/α0 = 24 and the proof is complete.

By using a simple comparison with the 3-regular graph, we will now prove a result for
the random walk on the BC small world that stays put with probability 1/2 and jumps to
each of its 3 neighbors with probability 1/6. We learned this from Elchanan Mossel during
a meeting held at MSRI.

Theorem 6.3.4. The random walk on the BC small world mixes in time O(log n).

Proof. Suppose that our small world graph has 3n points. For reasons that will become clear
in Case 2, we will estimate the conductance associated with p3(x, y). Let A ⊂ {1, 2, . . . , 3n}
with |A| ≤ 3n/2, Ij = {3j − 2, 3j − 1, 3j} for 1 ≤ j ≤ n, J = {j : Ij ⊂ A}, K = {j 6∈ J :
Ij ∩ A 6= ∅}, and B = ∪j∈JIj.
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Case 1. If |J | ≤ |A|/6 then |B| ≤ |A|/2 so |K| ≥ |A|/4 and there are at least |A|/4 short
range edges connecting points in A to Ac. From this we conclude

Q(A,Ac)

π(A)
≥ (1/24)(|A|/4)

|A|

Case 2. Let S be the small world graph and let R be the random 3-regular graph in which
there is an edge from j to k for each edge from x ∈ Ij to y ∈ Ik. This is a random multigraph
which is the same as the random configuration model of Bollobás (1988). Since |J | ≤ n/2,
by a result in that paper there is a constant γ > 0 so that the number of edges connecting
J to J c satisfies e(J, J c) ≥ γ|J |. If there is an edge from j to k in R then there is an x ∈ Ij
that is at one end of the edge and a y ∈ Ik with y 6∈ A. p3(x, y) > 1/216 and |J | ≥ |A|/6 so

Q(A,Ac)

π(A)
≥ (1/216)e(J, J c)

|A|
≥ (1/216)γ/6

which completes the proof.

Both the random 3-regular graph and the BC small world look locally like a tree in which
each vertex has degree 3. The lazy random walk on the tree moves further from the root
with probability 2/6 and closer with probability 1/6, so the distance should increase like t/6.
Berestycki and Durrett have shown that on the random 3-regular graph the distance of the
random walk St from it starting point satisfies

d(0, Sc log2 n) ∼
( c

6
∧ 1
)

log2 n

as n → ∞ uniformly for c in compact sets. Since there are at most n1−ε points within
distance (1− ε) log2 n of the origin, this shows that the mixing time is ≥ 6 log2 n. Based on
this one might

Conjecture 6.3.5. The mixing time for the random walk on the random 3-regular graph is
asymptotically 6 log2 n.
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6.4 Preferential attachment graph

Consider the Barabási-Albert preferential attachment graph Gn,d, defined in Section 4.1,
in which each newly added edge makes d connections to existing vertices. Introduce the
lazy random walk on Gn,d that stays put with probability 1/2 and from x to each of its d(x)
neighbors with equal probability. The sum of the degrees of the graph is 2dn so the stationary
distribution of this walk is π(x) = d(x)/2dn. Our proof follows Mihail, Papadimitrou, and
Saberi (2004), but we need the following lemma to fix their proof.

Lemma 6.4.1. There is a constant a < 1 so that if n is large and π(S) ≤ 1/2 then with
high probability |S| ≤ an.

Proof. To prove this we note that Theorem 4.1.4 implies that the fraction of vertices of
degree k, Z(k, n)/n→ pk. Pick K so that

∑K
k=d kpk > d and set a =

∑K
k=d pk. To prove the

claim now, note that to make the largest set with π(S) ≤ 1/2 we should first take all of the
vertices of degree d, d+ 1, etc. until we have half of the volume.

To bound the conductance it is useful to think of the edges as directed and pointing away
from the vertex that was just added. From this we see that each vertex has out degree d, so

vol(S) ≤ 2d|S|+ e(S, Sc)

since each edge incident to a vertex in S must be one of the d|S| edges that come out from a
vertex in S in which case it contributes at most 2 to the volume or it comes out from a vertex
in Sc and is part of e(S, Sc). Combining this with the lemma and the fact that x/(2d + x)
is increasing gives

h ≥ ιa
2d+ ιa

where ιa = minS:|S|≤an e(S, S
c)/|S|. We will find a positive lower bound for ιa. It will then

follow that

Theorem 6.4.2. The mixing time of the lazy random walk on the Barabási-Albert preferen-
tial attachment graph is O(log n).

To begin to estimate ιa, recall that Gn,d is constructed by first building the tree Gnd,1

and then identifying the mini-vertices kd, kd − 1, . . . (k − 1)d + 1 to produce vertex k. Fix
a set S ⊂ {1, 2, . . . n} and suppose 1 6∈ S. For this part of the argument we do not suppose
|S| ≤ an, so 1 6∈ S can be achieved by relabeling S and Sc.

We start the construction with a single vertex 1 connected to itself, and count this self-
loop as degree 1 for later preferential attachments. For 2 ≤ t ≤ dn, define the father of t,
f(t) to be the vertex t′ to which t connects. We set f(1) = 1. We say t is associated with S
and write t→ S if it is part of a vertex in S. We say t is good if either t→ S and f(t) → Sc

or t→ Sc and f(t) → S. Note that 1 = f(1) so 1 is always bad. The key to the proof is the
following
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Lemma 6.4.3. Suppose |S| = k.

P ( the set of good mini-vertices is A) ≤
(
dk

|A|

)/(
dn− |A|
dk − |A|

)

Proof. Let A1 be the mini-vertices associated with S and A2 be the mini-vertices associated
with Sc. Let k1 = |A1| and k2 = |A2| and note that k1 + k2 = k.

Let x1 < x2 < . . . xdk−k1 be the mini-vertices associated with S that do not belong to A.
We may write xi = yi + zi + 1 where yi and zi are the total number of mini-vertices that
arrived prior to xi and belong to A or Ac respectively.

Let x̄1 < x̄2 < . . . x̄(dn−dk)−k1 be the mini-vertices associated with Sc that do not belong
to A. We may write x̄i = ȳi + z̄i + 1 where ȳi and z̄i are the total number of mini-vertices
that arrived prior to x̄i and belong to A or Ac respectively.

It follows from these definitions that

∪dk−k1
i=1 {zi} ∪ ∪(dn−dk)−k1

i=1 {z̄i} = {0, 1, 2, . . . dn− |A| − 1} (6.4.1)

The total volume of the graph when mini-vertex t arrives is 2(t − 1) − 1. If t = xi we can
write this as 2(zi + yi) − 1. When xi arrives the total volume of S is due to (a) the i − 1
bad mini-vertices that arrived before xi and are associated with S, each of which contribute
degree 2, and (b) the yi good mini-vertices that arrived before xi and are associated with
S, each of which contribute degree 1. Notice that yi ≥ 1 since 1 6∈ S implies that the first
mini-vertices in S belongs to A. Thus the total degree of S when xi arrives is 2(i− 1) + yi

and the probability xi attaches to S (and hence is bad) is

2(i− 1) + yi

2(zi + yi)− 1
≤ 2(i− 1) + yi

2zi + yi

≤ 2i+ 2|A|
2zi + 2 + 2|A|

=
i+ |A|

zi + 1 + |A|
(6.4.2)

Here we have subtracted yi − 1 ≥ 0 from the denominator, added −yi + 2 + 2|A| ≥ 0 to
numerator and denominator, and divided numerator and denominator by 2.

If t = x̄i we can write the total volume of the graph as 2(t−1)−1 = 2(zi +yi)−1. When
x̄i arrives the total volume of Sc is due to (a) the i− 1 bad mini-vertices that arrived before
x̄i and are associated with Sc, each of which contribute degree 2 except for mini-vertex 1
that contributes 1, and (b) the ȳi good mini-vertices that arrived before xi and are associated
with Sc, each of which contribute degree 1. Thus the total degree of Sc when x̄i arrives is
2(i− 1)− 1 + ȳi and the probability xi attaches to S (and hence is bad) is

2(i− 1)− 1 + ȳi

2(z̄i + ȳi)− 1
≤ 2(i− 1)− 1 + ȳi

2z̄i + ȳi − 1
≤ 2i+ 2|A|

2z̄i + 2 + 2|A|
=

i+ |A|
z̄i + 1 + |A|

(6.4.3)

Here we have subtracted ȳi ≥ 0 from the denominator, added −ȳi+3+2|A| ≥ 0 to numerator
and denominator, and divided numerator and denominator by 2.
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Now (6.4.2) and (6.4.3) imply the probability that all of the mini-vertices in Ac are bad
given that all of the mini-vertices in A are good is at most

dk−k1∏
i=1

i+ |A|
zi + 1 + |A|

(dn−dk)−k2∏
i=1

i+ |A|
z̄i + 1 + |A|

Using (6.4.1) the above is

=

dk−k1∏
i=1

i+ |A|
(dn−dk)−k2∏

i=1

i+ |A|

/
dn−|A|∏

i=1

i+ |A|

=
(dk − k1 + |A|)!(dn− dk)− k2 + |A|)!

|A|!(dn)!
=

(dk + k2)!(dn− dk + k1)!

|A|!(dn)!

where in the second step we have multiplied numerator and denominator by (|A|!)2 and in
the third we have used k1 + k2 = |A|. The above is

=
(dk)!(dn− dk)!

|A|!(dn− |A|)!
·

k2−1∏
i=0

dk + k2 − i

dn− i

k1−1∏
i=0

dn− dk + k1 − i

dn− k2 − i

The terms in the two products are ≤ 1. dk + k2 − i ≤ dn − i follows from the fact that
d|S|+ |A∩ Sc| ≤ dn, while dn− dk+ k1 − i ≤ dn− k2 − i follows from d|Sc|+ |A∩ S| ≤ dn.
Discarding the products the above is

≤ (dk)!(dn− dk)!

|A|!(dn− |A|)!
=

(dk − |A|)!(dn− dk)!

(dn− |A|)!
(dk)!

|A|!(dk − |A|)!
=

(
dk

|A|

)/(
dn− |A|
dk − |A|

)
which completes the proof.

With Lemma 6.4.3 in hand the rest is routine.

Lemma 6.4.4. Suppose d ≥ 2. There is a constant α > 0 so that if n is large, ιa ≥ α with
high probability.

Proof. There is nothing to prove for sets of size 1, so we suppose |S| ≥ 2. The numerator
on the right-hand side in Lemma 6.4.3 is an increasing function of |A| ≤ dk/2, while the
denominator =

(
dn−|A|
dn−dk

)
is a decreasing function, so if α < d/2,

P (ιa ≤ α) ≤
an∑

k=2

(
n

k

)
αk

(
dn

αk

) (
dk
αk

)(
dn−αk
dk−αk

)
The first factor gives the number of ways of picking S, the second takes account of the fact
that there are αk possible values of |A| to consider. The third term bounds the number of
ways of picking A, while the final term is the bound from Lemma 6.4.3.
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One way to pick dk−αk points from a set of size dn−αk is to pick k from a fixed subset
of size n and the other (d− 1)k − αk from the remaining (d− 1)n− αk so(

n

k

)(
(d− 1)n− αk

(d− 1)k − αk

)
≤
(
dn− αk

dk − αk

)
and it follows that our sum is

≤
an∑

k=2

αk

(
dn

αk

)(
dk

αk

)(
(d− 1)n− αk

(d− 1)k − αk

)−1

Using (n/k)k ≤
(

n
k

)
≤ c(en/k)k and the fact that if b > a > c then (a− c)/(b− c) ≤ a/b the

above is

≤
an∑

k=2

αk

(
edn

αk

)αk (
edk

αk

)αk (
(d− 1)k − αk

(d− 1)n− αk

)(d−1)k−αk

≤
an∑

k=2

αk
(n
k

)αk
(
ed

α

)2αk (
k

n

)(d−1)k−αk

=
an∑

k=2

G(k) where G(k) = αk

(
ed

α

)2αk (
k

n

)(d−1)k−2αk

Let H(k) = logG(k). G′(k) = G(k)H ′(k) where

H ′(k) =
α

k
+ 2α log

(
ed

α

)
+ (d− 1− 2α) log(k/n) + (d− 1− 2α)

Differentiating again we have G′′(k) = G(k)(H ′(k)2 +H ′′(k)) where

H ′′(k) = −α/k2 + (d− 1− 2α)/k > 0

as long as k ≥ 1 and α < (d− 1)/3. Here we need d ≥ 2.
Since G(k) is convex, max2≤k≤anG(k) ≤ max{G(2), G(an)}

H(an) = log(αan) + bn where b = 2αa log(ed/α) + (d− 1− 2α)a log(a)

The first term in b converges to 0 as α→ 0 while the second one tends to (d−1)a log(a) < 0.
Thus if we pick α > 0 small we have b < 0. At the other end

G(2) = 2α

(
ed

α

)4α(
2

n

)2(d−1−2α)

d ≥ 2 so if α < (d − 1)/4 the power in the last expression is > 1. Combining this with the
other conclusion we have max2≤k≤anG(k) = o(n−1) and it follows that P (ρa ≤ α) → 0.
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6.5 Connected Erdös-Rényi graphs

In this section we will consider random walk on ER(n, (c log n)/n) with c > 1, which Theorem
2.8.1 has shown is connected with high probability for large n. We define the lazy random
walk as in the previous sections. Let d(x) be the degree of x, write x ∼ y if x and y are
neighbors, and define a transition kernel by K(x, x) = 1/2, K(x, y) = 1/2d(x) if x ∼ y and
K(x, y) = 0 otherwise.

Theorem 6.5.1. Consider ER(n, (c log n)/n) with c > 1. The lazy random walk mixes in
time O(log n).

Proof. Our proof follows Cooper and Frieze (2003). We begin by estimating the maximum
and minimum degrees of vertices.

Lemma 6.5.2. There is a constant δ > 0 so that if n is large then

δc log n ≤ d(x) ≤ 4c log n for all x

Proof. By the large deviations result (2.8.5) if X = Binomial(n, p) then

P (X ≥ np(1 + y)) ≤ exp(−npy2/2(1 + y))

Taking p = (c log n)/n, and y = 3

P (X ≥ 4c log n) ≤ exp(−9(c log n)/8) = n−9c/8

so with probability that tends to one, the maximum degree in the graph is ≤ 4c log n.
To get a lower bound, we need the more precise result in (2.8.4). The function H defined

there has H(0) = − log(1−p), which is sensible since P (X = 0) = (1−p)n. When p = c log n

(1− (c log n)/n)n ≤ n−c

Taking a = (δc log n)/n, we have

H(a) =
δc log n

n
log δ +

(
1− δc log n

n

)
log

(
1− δc log n/n

1− c log n/n

)
The logarithm in the second term is

log

(
1 +

(1− δ)c log n/n

1− c log n/n

)
∼ (1− δ)c log n/n

as n→∞. As δ → 0, δ log δ → 0, so if δ is small enough then H(δ) ∼ (b log n)/n with b > 1
as n→∞ and we conclude that with probability that tends to one, the minimum degree in
the graph is ≥ δc log n.
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To prove the theorem we will estimate the conductance h. By considering the number of
edges we see that vol(G) is 2Binomial(

(
n
2

)
, c log n/n) which has mean ∼ cn log n and variance

∼ cn log n, so vol(G) ∼ cn log n. The maximum degree ≤ 4c log n with high probability for
large n, and hence no set with |S| ≥ 9n/10 will have π(S) ≤ 1/2.

Case 1. Consider B = {S : n/(c log n) ≤ |S| ≤ 9n/10} and let s = |S|. Using (2.8.4) with
n = s(n− s), p = p, and y = 1/2

P (∃S ∈ B : e(S, Sc) ≤ s(n− s)p/2) ≤
(
n

s

)
exp(−s(n− s)(c log n)/8n)

Using Lemma 6.3.3 and n− s ≥ n/10 the above is

≤ exp

(
−s
[
c log n

80
+ log(n/s) + 1

])
≤ exp

(
− n

c log n

[
c log n

80
+ log(c log n) + 1

])
which goes to 0 exponentially fast as n→∞. To finish up now we note that

s(n− s)p/2 = s(n− s)(c log n)/2n ≥ sc(log n)/20

while vol(S) ≤ 4sc log n, so for sets in B we have e(S, Sc)/vol(S) ≥ 1/80.

Case 2. A = {S : 1 ≤ |S| ≤ n/(c log n)}. In this case we upper bound e(S, S) in order to
conclude e(S, Sc) is large. E|e(S, S)| ≤ (s2/2)p ≤ s/2 so

P (∃S ∈ A : e(S, S) ≥ s log log n) ≤ C

(
n

s

)(
s2/2

s log log n

)
ps log log n

The right-hand side is the probability e(S, S) = s log log n, ignoring the fact that this may
not be an integer. However in this part of the tail, the probabilities decay exponentially fast.
Bounding the binomial coefficients using Lemma 6.3.3, and filling in the value of p

≤ C
(ne
s

)s (s2/2)s log log nps log log n

(s log log n)s log log ne−s log log n
= C

(ne
s

)s
(

s

2 log log n
· ec log n

n

)s log log n

Reorganizing we have

= C exp

(
s[log(ne)− log s] + s log log n

[
log s+ log

(
ec log n

2n log log n

)])
Differentiating the exponent with respect to s we have

log(ne)− log s− 1 + log log n[log s+ log(ec log n)− log(2n log log n)] + log log n
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When 1 ≤ s ≤ n/(c log n) this is negative, so the worst case is s = 1. In this case the
quantity of interest is

= exp (log(ne) + log log n[log(ec log n)− log(2n log log n)])

which tends to 0 as n→∞.
To bound e(S, Sc) we note that e(S, Sc) = d(S) − e(S, S) ≥ sδ log n − s log log n ≥

s(δ/2) log n when n is large. vol(S) ≤ 4s log n, so for sets in A we have e(S, Sc)/vol(S) ≥ δ/8.
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6.6 Small worlds

The BC small world was treated in Section 6.3. On the NW small world, the walker stays
put with probability 1/2 and with probability 1/2 jumps to a random chosen neighbor. This
leads to a stationary distribution cd(x) where d(x) is the degree of x. As in the previous
section, to bound the mixing time we will estimate the conductance.

Given a set S with cardinality |S| = s the number of shortcuts from S to Sc is Poisson
with mean ps(n− s)/n. Thus if we have an interval of length s = (1/p) log n the probability
of no shortcut is ≈ n−1, and we can expect to have one such interval in the small world. The
time to escape from this interval starting from the middle is O(log2 n) which gives a lower
bound of O(log2 n) on the mixing time.

When there is an interval of length s = (1/p) log n, h ≤ 2p/ log n. Our goal is to prove
that the conductance has

h ≥ C/ log n (6.6.1)

Combining this with our Markov chain results in Section 6.2 gives

Theorem 6.6.1. Random walk on the NW small world mixes in time at least O(log2 n) and
at most O(log3 n).

Proof. The proof is similar to the one for connected Erdös-Renyi graphs but there are new
problems arising from the fact that vol(S) may be as small as 2|S| or as large as m|S| where
m = log n/(log log n) is the maximum degree of vertices in the graph. To see the latter claim
note that using Stirling’s formula if Z = Poisson(p) then

P (Z = m) = e−ppm/m! = 1/n

when mm(ep)−mep/
√

2πm = n or roughly when m logm = log n, i.e., m ∼ log n/(log log n).

Case 1. Large sets. Suppose |S| ≥ n/ log n. By (6.3.3) the number of sets of size s = |S|
is (

n

s

)
≤
(ne
s

)s

= exp (s{log(n/s) + 1})

To bound the volume of S we will generate independent Poisson mean p random variables
ξx for each x ∈ S and then connect them to points chosen independently and uniformly at
random. This gives the right distribution for the number of long range connections `(S, Sc)
but produces a Poisson mean 2p/n number of connections between x, y ∈ S. However this is
not a problem when we are interested in upper bounds on the volume vol(S). To be precise
if L(S) =

∑
x∈s ξx then vol(S) ≤ 2|S|+ L(S)− `(S, Sc) in the sense of distribution.

By our large deviations result for the Poisson distribution, if Z = Poisson(µ) then

P (Z ≥ yµ) ≤ e−γ(y)s where γ(y) = y log y − y + 1

When y ≥ e2, γ(y) ≥ (y log y)/2, so taking µ = 2ps we have

P (vol(S) ≥ s log log n) ≤ exp(−ps log log n(log log log n))
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Since 1 + log(n/s) ≤ 2 log log n for n ≥ ee it follows that if s ≥ n/ log n then the probability
of a set of size s with vol(S) ≥ s log log n is

≤ exp(−ps log log n(log log log n− 2/p)) = o(n−1)

so with high probability we have vol(S) ≤ |S| log log n for all large sets.

Case 1a. Skinny large sets. Let b > 0. Orient the ring in some direction and define
the left endpoints of a set to be the boundary points where the orientation points into the
interval. If the number of left endpoints of S in the ring is ≥ s/(log n)b then

e(S, Sc)

vol(S)
≥ 2s/(log n)b

s log log n
=

2

(log n)b log log n

Case 1b. Fat large sets. Suppose now that the number of left endpoints, r ≤ s/(log n)b.
The number of sets of size s with this property is

≤
(
n

r

)(
s− 1

r − 1

)
where the second factor gives the number of ways of partitioning s into r pieces each of size
≥ 1. Note that in our clumsy counting we have done nothing to prevent the intervals from
touching or overlapping. Thus all configurations with r < s/(log n) intervals can be written
with r = s/(log n) intervals. Since(

s− 1

r − 1

)
=

(
s− 1

s− r

)
≤
(

s

s− r

)
=

(
s

r

)
Thus the number of sets is

≤
(ne
r

)r

·
(se
r

)r

= exp (r{log(n/s) + 2 log(s/r) + 2}) (6.6.2)

When r = s/(log n)b and s ≥ n/ log n this is

≤ exp

(
s

(log n)b
{(1 + 2b) log log n+ 2}

)
(6.6.3)

Note that if ε > 0 and n is large the last quantity is ≤ exp(εs), so it is enough to have large
deviations estimates ≤ exp(−γs) for some γ > 0. To begin we note that a generalization of
Lemma 6.4.1 implies that there is a constant a > 0 so that if n is large and π(S) ≤ 1/2 then
with high probability |S| ≤ (1− a)n. By the construction above, the distribution of `(S, Sc)
conditional on L(S) = L is larger than Binomial(L, a). Standard large deviations estimates
for the Poisson and Binomial imply

P (`(S, Sc) < (a/2)L|L(S) = L) ≤ exp(−c(a)L)
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P (L(S) ≤ p|S|/2) ≤ exp(−c(p)|S|)

At this point there are two cases to consider. If L(S) ≥ |S| then vol(S) ≤ 4L(S) and

e(S, Sc)

vol(S)
≥ `(S, Sc)

4L(S)
≥ a

8

If L(S) ≤ |S| then vol(S) ≤ 4|S| and

e(S, Sc)

vol(S)
≥ `(S, Sc)

4|S|
≥ ap

16

Combining the last two results gives a positive lower bound on the conductance for fat large
sets.

Case 2. Small sets. By our construction, the distribution of `(S, S) conditional on L(S) =
L is smaller than Binomial(L, p) where p = s/n. Using our Binomial large deviations result,

P (`(S, S) ≥ L/2|L(S) = L) ≤ exp(−H(1/2)L)

Using H(1/2) = (1/2) log(1/2p) + (1/2) log(1/2(1− p)) > (1/2) log(1/p) and 1/p = n/s.

P (`(S, S) ≥ L/2|L(S) = L) ≤ exp(−(L/2) log(n/s)) (6.6.4)

By (6.3.3), the number of sets of size s = |S| is(
n

s

)
≤
(ne
s

)s

= exp (s{log(n/s) + 1})

Combining the last two results, the probability of a set of size s with L(S) ≥ 4s and
`(S, Sc) ≤ 2s is

≤ exp (−s(log(n/s)− 1))

When s = 1 this is /1ne and for s ≥ 2 this is O(n−2), so for the rest of the proof we can
suppose L(S) ≤ 4s and hence vol(S) ≤ 6s. Since e(S, Sc) ≥ 2 when π(S) ≤ 1/2, there is
nothing to prove if |S| < M log n, so for the rest of the proof we can suppose |S| ≥M log n.

Case 2a. Skinny small sets. If vol(S) ≤ 6s and the number of left endpoints is ≥
s/K(log n) then

e(S, Sc)

vol(S)
≥ 2s/K(log n)

6s
=

1

3K log n

Case 2b. Fat small sets. By (6.6.2) the number of sets is smaller with left endpoints
r ≤ s/K(log n) is

≤ exp

(
s

K log n
{log(n/s) + 2 log(s/r) + 2}

)
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Using we have
P (`(S, S) ≥ L/2|L(S) = L) ≤ exp(−(L/2) log(n/s))

A standard large deviations estimate for the Poisson gives

P (L(S) ≤ ps/2) ≤ exp(−c(p)s)

If c(p)M > 1 then the last quantity is o(n−1). Combining the last two results gives a positive
lower bound on the conductance for fat small sets, and completes the proof.

Post mortem. For large sets we were able to show h ≥ 1/(log n)ε for any ε > 0. However for
small sets our bound was C/ log n. To see this cannot be improved note that the probability
of an interval of length pr log n with no long range connections is n−r so there will be
roughly n1−r intervals of this length and their union will be a set of size prn1−r log n with
e(S, Sc) = 2n1−r.
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6.7 Only degrees 2 and 3

In this section we will consider a model that is closely related to a NW small world in which
a fraction p of the sites in the ring have a long range neighbor, and to the fixed degree
distribution graphs with p3 = p and p − 2 = 1 − p but is easier to study. We start with
a random 3-regular graph H with pn vertices, and produce a new graph G by replacing
each edge by a path with a geometric number of edges with success probability r, i.e., with
probability (1− r)j−1r we have j edges. The number of vertices of degree 2 in one of these
paths has mean (1/r) − 1 so if we pick r so that 3p((1/r) − 1) = 1 − p, we asymptotically
have the desired degree distribution. This is different from the usual fixed degree distribution
since in that case the number of vertices of degree 2 is (1 − p)n + O(1), while in the new
model the number is (1− p)n+O(

√
n).

Our main result is that

Theorem 6.7.1. The mixing time of the lazy random walk on G is O(log2 n).

The lower bound follows as in the previous section from the fact that the longest path is
O(log n). To prove an upper bound, we will use the Fountoulakis and Reed result. I learned
this proof from Bruce Reed. Since we were drinking beer at the time, he should not be held
responsible for my accounting of the details.

Lemma 6.7.2. The number of connected subsets of H of size k containing a fixed vertex v0

is ≤ 33k.

Proof. Given a connected set V of vertices of H, define the setW = {(x, y) : x, y ∈ V, x 6= y}.
Note that if (x, y) ∈ W then (y, x) ∈ W and think of these as two oriented edges between x
and y. We will show that there is a Hamiltonian paths starting from v0 that traverses each
oriented edge at least once. The number of edges in W is at most 3k. At each stage we have
at most 3 choices so the number of such paths is ≤ 33k this proves the desired result.

To construct the path start at v0 and pick an outgoing edge. When we are at a vertex
v 6= v0 we have used one more incoming edge than outgoing edge so we have at least one way
out. This procedure may terminate by coming back to v0 at a time when there are no more
outgoing edges. If so, and we have not exhausted the graph, then ther is some vertex v1

on the current path with an outgoing edge. Repeat the construction starting from v1 using
edges not in the current path. We will eventually come back to v1. We can combine the two
paths by using the old path from v0 to the first visit to v1, using the new path to go from
v1 to v1, and then the old path to return from v1 to v0. Repeating this construction we will
eventually exhaust all of the edges.

Let B be a connected subset of G, and let A = B ∩ H. It is easy to see that A is a
connected subset of H. By the isoperimetric inequality for random regular graphs, there is
an α > 0 so that |∂A| ≥ α|A|, where ∂A is the set of edges (x, y) with x ∈ A and y 6∈ A.
From the construction of the graph it is easy to see that |∂B| = |∂A|.
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It remains to see how big |B|/|A| can be. When |A| = 1 we can have |B| = O(log n).
The key to the proof is to show that the ratio cannot be big when |A| is. Let Xi be i.i.d
with P (Xi = j) = (1− r)jr and let Sm = X1 + · · ·Xm.

Lemma 6.7.3. There are constants β and γ so that

P (Sm ≥ β log n+ γm) ≤ n−2(2/81)m

Proof. The moment generating function

ψ(θ) = EeθXi =
∞∑

j=0

(eθr)jr =
r

1− eθ(1− r)

when eθ(1 − r) < 1. If we pick θ > 0 so that eθ(1 − r) = 1 − r/2 then ψ(θ) = 2. Markov’s
inequality implies

P (Sm ≥ β log n+ γm) ≤ ψ(θ)m exp(−θ[β log n+ γm])

Letting β = 2/θ and γ = 81/θ the desired result follows.

If |A| = k then the number of edges adjacent to some point in A is ≥ k + 2, the value
for a tree and ≤ 3k. Since the number of connected sets of size k is ≤ n27k it follows that
with probability 1− O(n−1) we have |B| ≤ β log n+ 3γ|A| for connected sets B. From this
it follows that

|∂B| = |∂A| ≥ α|A| ≥ α

γ
(|B| − log n)

if |B| ≥ 2β log n then |∂B|/|B| ≥ c, while for |B| ≤ 2β log n, |∂B|/|B| ≥ 2/|B|.
To evaluate

∫ 1

1/3n
dx/(xΦ(x)2) up to a constant factor we note that∫ 1/2

2β log n/n

dx

x
= O(log n)

while changing variables y = nx, dy = n dx shows∫ 2β log n/n

1/3n

dx

x(2/xn)2
=

∫ 2β log n

1/3

(y/2) dy = O(log2 n)

and completes the proof.

Extension to other models. Consider the special case of the fixed degree distribution
graph in which there are ` vertices of degree 2 and m of degree 3, where m is even. If we call
this graph G`,m and look at the vertices of degree 3 in the graph and say that i ∼ j if they
are connected by a path in which all other vertices have degree 2 then we get a 3-regular
graph. H has 3m/2 edges. Recalling that there are b`,m =

(
`+3/2m−1
3m/2−1

)
ways of partitioning

` objects into 3m/2 groups of size ≥ 0, we see that each graph H can be generated by b`,m
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graphs G`,m, so H is a random 3-regular graph with m vertices. Starting from H and using
our procedure with geometric distributions, each G`,m has probability (1− r)`r3m/2, so if we
condition on L the total number of vertices inserted into edges, the result is uniform. If we
have m = np and pick r to make EL = n(1−p) then P (L = n(1−p)) = O(1/

√
n). Since the

error estimate in the proof above is O(n−1), the result holds conditional on L = `. Having
proved the result when there are ` vertices of degree 2 and m of degree 3, with `/n→ (1−p)
and m/n → p, it follows immediately that the result holds for a NSW grpah in which the
degerees di are i.i.d. with P (di = 2) = 1− p and P (di = 3) = p.

A similar argument applies to the NWp small world. First consider a ring in which an
even number m of randomly chosen vertices have long range neighbors. If we collapse the
paths of vertices of degree 2 into edges then we have a BC small world on m vertices.
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6.8 Hitting times

We begin with the random walk on the BC small world. Pick two starting points x1 and
x2 at random according to the stationary distribution π, which in this case is uniform, and
define independent continuous time random walks X1

t and X2
t that jump at rate one and

have X1
0 = x1 and X2

0 = x2. Let A = {(x, x)} and TA = inf{t ≥ 0 : X1
t = X2

t } be the
first hitting time of A by (X1

t , X
2
t ). Writing π (rather than π × π) for the initial condition

Pπ(X1
t = X2

t ) = 1/n, so we expect that TA is O(n). Indeed, if we notice that the expected
amount of time t ∈ [0, an] that X1

t = X2
t is a and if X1

t = X2
t for some t ≤ an − 1 we will

have X1
s = X2

s for s ∈ [t, t+ 1] with probability e−2 then

Pπ(TA ≤ an− 1) ≤ ae2 (6.8.1)

so if a > e−2 then Pπ(TA ≥ an− 1) is bounded away from 0.
For the random walks on the NW small world or the fixed degree distribution graph,

Pπ(X1
t = X2

t ) =
∑

x d(x)
2/D2 where D =

∑
x d(x) is the sum of the degrees, so if d(x) has

finite second moment then as n→∞

π(A) ∼ Ed(x)2/nEd(x)

and again we can conclude that TA takes a time at least O(n). In the preferential attachment
graph Ed(x)2 = ∞ so we will not consider that graph here. Finally in the connected Erdös-
Renyi graphs the d(x) are Poisson with mean c log n, so

∑
x d(x)

2/D2 ∼ 1/n.
Proposition 23 of Aldous and Fill (2002) implies

sup
t
|Pπ(TA > t)− exp(−t/EπTA)| ≤ τ2/EπTA (6.8.2)

where τ2 is the relaxation time, which they define (see p. 19) to be 1 over the spectral gap.
In all of our examples τ2 ≤ C log2 n and as we will see

EπTA ∼ cn (6.8.3)

so the hitting time is approximately exponential.
The proof of (6.8.2) is based on a result of Mark Brown (1983) for IMRL (increasing

mean residual life) distributions. If one is willing to give up on the explicit error bound, it
is fairly easy to give a proof based on the idea that since convergence to equilibrium occurs
much faster than the two particles hitting, then subsequential limits of TA/EπTA must have
the lack of memory property, and hence the sequence converges to a mean 1 exponential.

Theorem 6.8.1. The mixing times of our chains tn = o(n), nπ(A) → b, and Eπ(TA) ∼ cn,
so under Pπ, TA/n converges weakly to an exponential with mean c.

Proof. Let εn → 0 with nεn/tn →∞. By the argument for (6.8.1)

Pπ(TA ∈ [rn, (r + εn)n]) ≤ e2(εnn+ 1)π(A) → 0
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Using this result with r = s+ t and writing Xt = (X1
t , X

2
t ), x = (x1, x2)

Pπ(TA > (s+ t)n) = Pπ(TA > (s+ t+ εn)n) + o(1)

=
∑
x,y

Pπ(TA > sn,Xsn = x)Px(Xεnn = y)Py(TA > tn)

Subtracting π(y) from Px(Xεnn = y) and adding π(y) gives two terms. The second is∑
x,y

Pπ(TA > sn,Xsn = x)π(y)Py(TA > tn) = Pπ(TA > sn)Pπ(TA > tn)

The absolute value of the first term is bounded by

Pπ(TA > sn) sup
x

∑
y

|Px(Xεnn = y)− π(y)| ≤ ∆(εnn) → 0

Since EπTA ∼ cn, the sequence TA/n is tight. Let F denote a subsequential limit. From
the calculation above we see that if s, t, and s+ t are continuity points then

1− F (s+ t) = (1− F (s))(1− F (t))

F can have at most countably many discontinuity points, so there is a θ > 0 so that F is
continuous at all points m/(θ2n) where m and n are positive integers. Define λ by e−λ =
1−F (1/θ). It follows from the equation that if t = m/(θ2n) then 1−F (t) = e−λt. To conclude
that λ is independent of the subsequential limit, note that for large n, P (TA > 3cn) ≤ 1/2,
so using the calculation above we see that if ε > 0 and n is large

P (TA > (k + 1)(3cn)) ≤ P (TA > k(3cn))(ε+ P (TA > 3cn)

This gives an exponential bound on the tail of the distribution, which enables us to conclude
that every subsequential limit has mean c, i.e., the constant λ is always 1/c and the proof is
complete.

Proof of 6.8.3. We use a version of Aldous’ Poisson clumping heuristic. Consider the discrete
time version X̄n of the two particle chain in which at each step we pick a particle at random
and let it jump. Writing PA for Pπ(·|X0 ∈ A), a theorem of Kac implies that

EA(TA) = 1/π(A)

Starting from the diagonal, the two particles may hit in a time that is O(tn). The expected
value on this event makes a contribution that is o(n) to the expected value. When the two
particles don’t hit in O(tn) the chain is close to equilibrium, so

1/π(A) ≈ PA(TA >> tn)Eπ(TA)
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and we have

Eπ(TA) =
1

π(A)
· 1

PA(TA >> tn)

To connect with the clumping heuristic, we note that the naive guess for the waiting time is
1/π(A) but this must be corrected for by multiplying by the clump size, i.e., the expected
number of hits that occur soon after the first one. In nice cases, e.g., the BC small world,
the number of hits is a geometric with mean 1/PA(TA >> tn).

The value of PA(TA >> tn) depends on the example but in each case, it comes from
thinking about what the graph looks like locally.

BC random walk. Locally the BC small world looks like a tree in which each vertex has
degree 3. The probability that two random walkers that start from the origin will hit after
they separate is the same as the probability that a single random walk will return to the
origin, which is 1/2.

NW small world. The first step is to describe what the space looks like locally. To do this
we use the two type branching process from Section 5.3 with red and blue particles that
correspond to short and long distance neighbors. The process starts with one blue particle.
All particles have a Poisson mean p number of blue offspring. Blue particles always have
two red offspring, while red particles always have one. Having built the graph, we start
both particles and let e(ω) be the probability that the two particles never hit after they
separate. Recalling that Pπ(X1

0 = X2
0 ) =

∑
x d(x)

2/D2, we see that the desired constant
is the expected value of e(ω) under biased measure in which the root has degree k with
probability proportional to k2P (Z = k) where Z is 2 plus a Poisson mean p.

The fixed degree distribution is similar to the NW small world and is left as an exercise for
the reader.

In the Connected Erdös-Renyi graphs the degrees tend to infinity so PA(TA >> tn) → 1.

In our four examples EπTA ∼ cn. Kac’s result implies that EATA = 1/π(A) and we have
computed that

π(A) =
∑

x

d(x)2/D2 where D =
∑

x

d(x)

When the degree distribution has infinite variance π(A) will go more slowly than 1/n. Con-
sider random graphs with a fixed degree distribution pk ∼ Ck−ν . When ν > 3 the distribu-
tion has finite variance. For 2 ≤ ν ≤ 3 results of Sood and Redner (2005) for the consensus
time of the voter model, which we will consider in the next section, suggest that

EπTA ∼


n/ log n ν = 3

n2ν−4)/(ν−1) 2 < ν < 3

(log n)2 ν = 2

We leave it to the reader to check that the right hand side gives the behavior of 1/π(A).
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6.9 Voter models

The voter model was introduced independently by Clifford and Sudbury (1973) and Holley
and Liggett (1975) on the d-dimensional integer lattice. It is a very simple model for the
spread of an opinion and has been investigated in great detail, see Liggett (1999) for a survey.
On any of our random graphs it can be defined as follows. Each site x has an opinion ξt(x)
and at the times T x

n , n ≥ 1 of a rate 1 Poisson process decides to change its opinion. To do
this it picks a neighbor yx

n at random, and at time t = T x
n we set ξt(x) = ξt(yn,x).

To analyze this process we use a “dual process” that works backwards in time to determine
the source of the opinion at x at time t. To define this process we place a dot at x at time
T x

n and draw an arrow from (x, T x
n ) to (yn,x, T

x
n ). To define ζx,t

s we start with ζx,t
0 = x.

The process stays at x until the first time s that there is a dot at x. If this occurs at time
t− s = T x

n then ζx,t
s = yn,x and we continue to work our way down until we encounter a dot.

This definition guarantees that the opinion of x at time t is the same as that of ζx,t
s at time

t− s.

0 0 0 1 0 1 0

1 1 1 1 1 1 0

0

t

•<
•<

•<

•<

• >
• >

• >
• >

For fixed x and t, ζx,t
s is a random walk that jumps at rate 1 and to a neighbor chosen

at random. It should be clear from the definition that if ζx,t
s = ζy,t

s for some s then the two
random walks will stay together at later times. For these reason the ζx,t

s are called coalescing
random walks. If we consider the voter model on Zd with the usual nearest neighbors then
as Holley and Liggett (1975) have shown the recurrence of random walks in d ≤ 2 and
transience in d > 3 implies

Theorem 6.9.1. In d ≤ 2 the voter model approaches complete consensus, i.e., P (ξt(x) =
ξt(y)) → 1. In d ≥ 3 if we start from product measure with density p (i.e., we assign opinions
1 and 0 independently to sites with probabilities p and 1− p) then as t→∞, ξp

t converges in
distribution to ξp

∞, a stationary distribution in which a fraction p of the sites have opinion
1.
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On a finite set the voter model will eventually reach an absorbing state in which all voters
have the same opinion. Cox (1989) studied the voter model on a finite torus (Z mod N)d

and showed:

Theorem 6.9.2. Let ξp
t denote the voter model starting from product measure with density

p ∈ (0, 1). The time to reach consensus τN satisfies

τN = O(sN) where sN =


N2 d = 1

N2 logN d = 2

Nd d ≥ 3

and EτN ∼ cd[−p log p − (1 − p) log(1 − p)]sN , where cd is a constant that depends on the
dimension. In d ≥ 3 the finite system looks like the stationary distribution for the infinite
system at times that are large but o(sN).

As the next result shows, the voter model on many of our random graphs has the d ≥ 3
behavior.

Theorem 6.9.3. In the voter model on any of the random graphs considered in the previous
section, the consensus time for ξp

t , p ∈ (0, 1) is asymptotically at least cpn where cp > 0 and
n is the number of vertices in the graph.

Proof. By Theorem 6.8.1 the hitting time of two randomly chosen points is O(n). When these
two random walks have not coalesced, their starting sites will be different with probability
2p(1− p).

It is natural to conjecture that the consensus time will be asymptotically cGn where cG is
a constant that depends on the random graph. However, in order to prove this we would have
to understand the behavior of the coalescing random walk starting from all sites occupied.
The next result is a first step in that direction. For simplicity, we consider only the easiest
model.

Theorem 6.9.4. Consider the BC small world and sample m points at random. The number
of particles in the coalescing random walk at time nt converges to Kingman’s coalescent in
which transitions from k to k − 1 occur at rate

(
k
2

)
.

Proof. The proof requires a number of messy details, so we will be content to describe the
ideas. Let W i

t be independent random walks. Let

Ai,j,k,` = {|W i
t −W j

t | and |W k
t −W `

t | ≤ (1/10) log2 n}
Bi,j,k = {|W i

t −W j
t | and |W i

t −W k
t | ≤ (1/10) log2 n}

where all the indices are distinct. Using π for the initial state in which m particles are
scattered at random on the graph,

Pπ(Ai,j,k,`) ≤ n · n1/10 · n · n1/10/n4 = n−1.8
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Pπ(Bi,j,k) ≤ n · n1/10 · n1/10/n3 = n−1.8

so with high probability at all times ≤ n log n there are never two pairs that are closer than
(1/10) log2 n.

Suppose that at some point, two particles are separated by (1/10) log2 n. We know that
with high probability the graph seen in a neighborhood of radius (1/3) log2 n around any
point has at most one edge that deviates from the tree with degree 3. For simplicity we
will ignore this annoying detail and suppose that the graph looks exactly like the tree with
degree 3. In this case the distance d between the two points increases by 1 with probability
2/3 and decreases by 1 with probability 1/3. 2−d is a harmonic function for this random
walk, so a simple application of the optional stopping theorem shows that with probability
≤ n−1/10 the distance will hit 0 before it increases to (3/10) log2 n. At this point it is likely
that each particle will have moved about (1/10) log2 n from its starting point so both are
still in the original viewing window, and our tree assumption is still valid.

The last argument shows that if two particles are at distance (1/10) log2 n then with
probability ≥ 1 − n−2/10 they will separate to distance (3/10) log2 n before they hit. The
separation takes time≥ (1/10) log2 n with high probability (the expected time is (3/20) log2 n
since each particle is moving away at rate 1/3. This shows that with high probability the
hitting of these two particles will take time at least n1/10, at which time the positions of the
particles have again randomized.

The last argument shows that the successive hitting times are roughly independent. The
final step is to argue that when there are k particles, the hitting of the various pairs are
roughly independent so the coalescence rate is

(
k
2

)
. The calculation follows the approach

introduced by Cox and Griffeath (1986) and used by Cox (1989). Let τ be the time of the
first coalescence, and τij be the hitting time of particles i and j. Let Ht(i, j) = {τij ≤ nt},
Ft(i, j) = {τ = τij ≤ nt}, and q(t) = P (τ ≤ nt).

P (Ht(i, j)) = P (Ft(i, j)) +
∑

{k,`}6={i,j}

∫ nt

0

P (τ = τk` = s, τij ≤ t) ds

where the quantity being integrated on the right is the density of the hitting time. To
evaluate the k, ` term in the sum we break things down according to the locations X i

s and
Xj

s . By our first observation we can ignore the possibility that |X i
s − Xj

s | < (1/10) log2 n.
When the distance is ≥ (1/10) log2 n our argument shows that the positions will become
randomized before they hit so the hitting time will be in the limit as n→∞ exponentially
distributed with mean n. Writing εn for a quantity that goes to 0 as n→∞∫ nt

0

P (τ = τk` = s, τij ≤ t) ds =

∫ nt

0

P (τ = τk` = s)(1− exp(−t+ (s/n))) du+ εn

Integrating by parts and then changing variables, the above is

=

∫ nt

0

1

n
exp(−t+ (s/n))P (τ = τk` ≤ s) ds+ εn
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=

∫ t

0

exp(−(t− u))P (τ = τk` ≤ un) ds+ εn

Using this in our initial decomposition, with the convergence of the hitting time of i and j
to the exponential distribution

1− e−t = P (Ft(i, j)) +
∑

{k,`}6={i,j}

e−t

∫ t

0

esP (Fs(k, `)) ds+ εn (6.9.1)

Summing over all
(

k
2

)
pairs(

k

2

)
(1− e−t) = q(t) +

[(
k

2

)
− 1

]
e−t

∫ t

0

esq(s) ds+ εn

It follows [see page 365 of Cox and Griffeath (1986) for details] that as n→∞, q(t) converges
to u(t) the solution of(

k

2

)
(1− e−t) = u(t) +

[(
k

2

)
− 1

]
e−t

∫ t

0

esu(s) ds

Multiplying both sides by et and rearranging we have

etu(t)−
(
k

2

)
(et − 1) = −

[(
k

2

)
− 1

] ∫ t

0

esu(s) ds

Differentiating we have

etu(t) + etu′(t)−
(
k

2

)
et = −

[(
k

2

)
− 1

]
etu(t)

Dividing by et and rearranging gives(
k

2

)
(1− u(t)) = u′(t) = − d

dt
(1− u(t))

which has solution 1− u(t) = exp(−t
(

k
2

)
).

The final detail is to show that all
(

k
2

)
pairs have equal probability to be the next to

coalesce. To do this we go back to (6.9.1) and add and subtract P (Fs(i, j)) inside the
integral to get

1− e−t = P (Ft(i, j))− e−t

∫ t

0

esP (Fs(i, j)) ds+ e−t

∫ t

0

esq(s) ds+ εn

It follows that P (Ft(i, j)) converges to the solution of

= v(t)− e−t

∫ t

0

esv(s) ds = 1− e−t − e−t

∫ t

0

esu(s) ds

Since the limit is independent of i, j we must have v(t) = u(t)/
(

k
2

)
, which completes the

proof.
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A special voter model. Consider the voter model defined by picking an edge at random
from the graph, flipping a coin to decide on an orientation (x, y), and then telling the voter
at y to imitate the voter at x. This version of the voter model has a uniform stationary
distribution and in the words of Suchecki, Eguúıluz and Miguel (2005): “conservation of the
global magnetization.” In terms more familiar to probabilists, the number of voters with
a given opinion is a time change of simple random walk and hence is a martingale. If we
consider the biased voter model in which changes from 0 to 1 are always accepted but changes
from 1 to 0 occur with probability λ < 1, then the last argument shows that the number of
voters with a given opinion is a time change of a biased simple random walk and hence the
fixation probability for a single 1 introduced in a sea of 0’s does not depend on the structure
of the graph. This is the small world version of a result of Maruyama (1970) and Slatkin
(1981), which has been generalized by Lieberman, Hauert, and Nowak (2005).

To use our Markov chain results, we need a discrete time chain. Let M = max d(x) and
define p(x, x) = 1 − d(x)/M and p(x, y) = 1/M when y is a neighbor of x. This is the
embedded chain - at times of a rate M Poisson process, our walk takes a jump according to
p. We will follow Lieberman, Hauert, and Nowak (2005) and call this the isothermal random
walk. Since for each pair of neighbors p(x, y) = 1/M , the stationary distribution is uniform
and the conductance is

h = min
S:|S|≤n/2

e(S, Sc)/M

|S|
It follows from (6.6.1) that

Theorem 6.9.5. The isothermal random walk on the NW small world mixes in time at least
O(log2 n) and at most O(log4 n/ log log n).

Proof. The conductance is ≥ C/(M log n) so the spectral gap is ≥ C/(M log n)2 and the
convergence time for the discrete chain is ≤ C/(M2 log3 n). The continuous time chain runs
at M times the rate of the discrete time chain so its convergence time is ≤ C/(M log3 n).
As we observed at the beginning of Section 6.6, M ∼ log n/(log log n).

Remark. Suchecki, Eguúıluz and Miguel (2005) have investigated the voter model on the
Baraási-Albert scale free network. They report that the time to consensus for the usual
voter model, with node updates, scales as n0.88, while for the isothermal voter model with
edge updates the consensus time scales as n.
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CHKNS model

7.1 Heuristic arguments

Inspired by Barabási and Albert (1999), Callaway, Hopcroft, Kleinberg, Newman, and Stro-
gatz (2001) introduced the following simple version of a randomly grown graph. Start with
G1 = {1} with no edges. At each time n ≥ 2, we add one vertex and with probability δ add
one edge between two randomly chosen vertices. Note that the newly added vertex is not
necessarily an endpoint of the added edge and when n is large, it is likely not to be.

The CHKNS analysis of their model begins by examining Nk(t) = the expected number
of components of size k at time t. Ignoring terms of O(1/t2), which come from picking the
same cluster twice:

N1(t+ 1) = N1(t) + 1− 2δ
N1(t)

t

Nk(t+ 1) = Nk(t)− 2δ
kNk(t)

t
+ δ

k−1∑
j=1

jNj(t)

t
· (k − j)Nk−j(t)

t

To explain the first equation, note that at each discrete time t one new vertex is added,
and a given isolated vertex becomes the endpoint of an added edge with probability ≈ 2δ/t.
For the second equation, note that the probability an edge connects to a given cluster of
size is ≈ 2δk/t, while the second term corresponds to mergers of clusters of size j and k− j.
There is no factor of 2 in the last term since we sum from 1 to k − 1.

Theorem 7.1.1. As t→∞, Nk(t)/t→ ak where a1 = 1/(1 + 2δ) and for k ≥ 2

ak =
δ

1 + 2δk

k−1∑
j=1

jaj · (k − j)ak−j

Proof. The first equation has the form in Lemma 4.1.1 with c = 1 and b = 2δ. The kth
equation has the form in Lemma 4.1.2 with b = 2δk and

g(t) = δ
k−1∑
j=1

jNj(t)

t
· (k − j)Nk−j(t)

t

195
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which has a limit by induction.

To solve for the ak, which gives the limiting number of clusters of size k per site, CHKNS
used generating functions. Let h(x) =

∑∞
k=1 x

kak and g(x) =
∑∞

k=1 x
kkak. Multiplying the

equations in Theorem 7.1.1 by (1 + 2δk)xk, recalling k = 1 is different from the others, and
summing gives

h(x) + 2δg(x) = x+ δg2(x)

Since h′(x) = g(x)/x differentiation gives g(x)/x + 2δg′(x) = 1 + 2δg(x)g′(x). Rearranging
we have 2δg′(x)(1− g(x)) = 1− g(x)/x

(?) g′(x) =
1

2δx
· x− g(x)

1− g(x)

Let bk = kak be the fraction of vertices that belong to clusters of size k. g(1) =
∑∞

k=1 bk
gives the fraction of vertices that belong to finite components. 1 − g(1) gives the fraction
of sites that belong to clusters whose size grows in time. Even though it is not known that
the missing mass in the limit belongs to a single cluster, it is common to call 1 − g(1) the
fraction of sites that belong to the giant component. The next result gives the mean size of
finite components.

Lemma 7.1.2. (i) If g(1) < 1 then
∞∑

k=1

kbk = g′(1) = 1/2δ.

(ii) If g(1) = 1 then g′(1) = (1−
√

1− 8δ)/4δ.

Proof. The first conclusion is immediate from (?). If g(1) = 1, L’Hôpital’s rule implies

2δg′(1) = lim
x→1

x− g(x)

1− g(x)
= lim

x→1

1− g′(x)

−g′(x)

which gives 2δ(g′(1))2 − g′(1) + 1 = 0. This solution of this quadratic equation indicated in
(ii) is the one that tends to 1 as δ → 0.

Theorem 7.1.3. The critical value δc = sup{δ : g(1) = 1} = 1/8 and hence∑
k

kbk =

{
(1−

√
1− 8δ)/4δ δ ≤ 1/8

1/2δ δ > 1/8

Note that this implies that the mean cluster size g′(1) is always finite, but is discontinuous
at δ = 1/8, since the value there is 2 but the limit for δ ↓ 1/8 is 4.

Physicist’s proof. The formula for the derivative of the real valued function g becomes com-
plex for δ > 1/8, so we must have δc ≤ 1/8, or Lemma 7.1.2 would give a contradiction. This
conclusion is rigorous, but to argue the other direction, CHKNS note that mean cluster size
g′(1) is in general non-analytic only at the critical value, and (1 −

√
1− 8δ)/4δ is analytic

for δ < 1/8. If you are curious about their exact words, see the paragraph above (17) in
their paper.
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To investigate the size of the infinite component, CHKNS integrated the differential
equation (?) near δ = 1/8. Letting S(δ) = 1 − g(1) the fraction of vertices in the infinite
component they plotted log(− logS)) vs log(δ − 1/8) and concluded that

S(δ) ∼ exp(−α(δ − 1/8)−β)

where α = 1.132±0.008 and β = 0.499±0.001. Based on this they conjectured that β = 1/2.
Inspired by their conjecture Dorogovstev, Mendes, and Samukhin (2001) calculated that

as δ ↓ 1/8,
S ≡ 1− g(1) ≈ c exp(−π/

√
8δ − 1) (7.1.1)

This result shows β = 1/2 and α = π/
√

8 = 1.1107. Note that this implies that the
percolation probability S is infinitely differentiable at the critical value, in contrast to the
situation for the Erdős–Rényi model and for percolation on the small world in which S ∼
(δ − δc) as δ ↓ δc.

Semi-rigorous proof. To derive this result DMS change variables u(ξ) = 1− g(1− ξ) in (?)
to get

u′(ξ) =
1

2δ(1− ξ)
· u(ξ)− ξ

u(ξ)

They discard the 1 − ξ in the denominator (without any justification or apparent guilt at
doing so) and note that the solution to the differential equation is the solution of the following
transcendental equation

− 1√
8δ − 1

arctan

(
4δ[u(ξ)/ξ]− 1√

8δ − 1

)
− ln

√
ξ2 − u(ξ)ξ + 2δu2(ξ)

= − π/2√
8δ − 1

− ln
√

2δ − lnS

This formula is not easy (for me at least) to guess, although others more skilled with differ-
ential equations tell me it is routine. In any case with patience it is not hard to verify. Once
this is done, the remainder of the proof is fairly routine asymptotic analysis of the behavior
of the formula above as ξ → 1. This could be cleaned up with some effort. The real mystery
is why can one drop the 1− ξ?
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7.2 Proof of the phase transition

In the original CHKNS model the number of edges added at each step is 1 with probability
δ, and 0 otherwise. To obtain a model that we can analyze rigorously, we will study the
situation in which a Poisson mean δ number of vertices are added at each step. We prefer
this version since in the Poisson case if we let Ai,j,k be the event no (i, j) edge is added at
time k then P (Ai,j,k) = exp

(
−δ/

(
k
2

))
for i < j ≤ k and these events are independent.

P (∩n
k=jAi,j,k) =

n∏
k=j

exp

(
− 2δ

k(k − 1)

)
= exp

(
−2δ

(
1

j − 1
− 1

n

))
≥ 1− 2δ

(
1

j − 1
− 1

n

)
#1

The last formula is not simple, so we will also consider two approximations

≈ 1− 2δ

(
1

j
− 1

n

)
#2

≈ 1− 2δ

j
#3

We will refer to these three models by their numbers, and the original CHKNS model as
#0. The approximation that leads to #3 is not as innocent as it looks. If we let En be the
number of edges, then using the definition of the model EEn ∼ δn in models #0, #1 and
#2 but EEn ∼ 2δn in model #3. It turns out, however, that despite having twice as many
edges, the connectivity properties of model #3 is almost the same as that of models #1 and
#2.

Theorem 7.2.1. In models #1, #2, or #3, the critical value δc = 1/8.

In contrast to the situation with ordinary percolation on the square lattice where Kesten
(1980) proved the physicists’ answer was correct nearly twenty year after they had guessed
it, this time the rigorous answer predates the question by more than 10 years. We begin
by describing earlier work on the random graph model on {1, 2, 3, . . .} with pi,j = λ/(i ∨ j).
Kalikow and Weiss (1988) showed that the probability G is connected (ALL vertices in
ONE component) is either 0 or 1, and that 1/4 ≤ λc ≤ 1. They conjectured λc = 1 but
Shepp (1989) proved λc = 1/4. To connect with the answer in Theorem 7.2.1, note that
λ = 2δ. Durrett and Kesten (1990) proved a result for a general class of pi,j = h(i, j) that
are homogeneous of degree −1, i.e., h(ci, cj) = c−1h(i, j). It is their methods that we will
use to prove the result.

Proof of δc ≥ 1/8. We prove the upper bound for the largest model, #3. An easy comparison
shows that the mean size of the cluster containing a given point i is bounded above by the
expected value of the total progeny of a discrete time multi-type branching process in which
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a particle of type j gives birth to one offspring of type k with probability pj,k (with pj,j = 0)
and the different types of births are independent.

To explain why we expect this comparison to be accurate, we note that in the Erdös–
Rényi random graph with pj,k = λ/n, the upper bound is an ordinary branching process
with a Poisson mean λ offspring distribution, so we get the correct lower bound λc ≥ 1.
When pj,k = 2δ/(j ∨ k), the mean of the total progeny starting from one individual of type
i is

∑∞
m=0

∑
j p

m
i,j, which will be finite if and only if the spectral radius ρ(pi,j) < 1. By the

Perron–Frobenius theory of positive matrices, ρ is an eigenvalue with positive eigenvector.
Following Shepp (1989) we now make a good guess at this eigenvector.

∑
1≤j≤n,j 6=i

1

i ∨ j
· 1

j1/2
=

1

i

i−1∑
j=1

1

j1/2
+

n∑
j=i+1

1

j3/2
≤ 1

i

(∫ i

0

1

x1/2
dx

)
+

∫ n

i

1

x3/2
dx

=
1

i
(2i1/2) + 2(i−1/2 − n−1/2) ≤ 4

i1/2

This implies
∑

j i
1/2pi,jj

−1/2 ≤ 8δ, so if we let bn,k be the expected fraction of vertices in
clusters of size k in the model on n vertices, and |Ci| be the size of the cluster Ci that contains
i,

∑
k

kbn,k =
1

n

n∑
i=1

E|Ci| ≤
1

n

∞∑
m=0

∑
i,j

pm
i,j

≤ 2

n

∞∑
m=0

∑
i≥j

i1/2pm
i,jj

−1/2 ≤ 2
∞∑

m=0

(8δ)m ≤ 2

1− 8δ

which completes the proof of the lower bound.

Proof of δc ≤ 1/8. In this case we need to consider the smallest model, so we set:

Q(i, j) =
1

i ∨ j
− 1

n
when K < i, j ≤ n

For those who might expect to see some −1’s in the denominator, we observe that they can
be eliminated by shifting our index set. By the variational characterization of the largest
eigenvalue, for any vector v

ρ(Q) ≥

(
n∑

i=K+1

v2
j

)−1

vTQv

Again we take vj = 1/
√
j for j > K.

vTQv > 2
n∑

i=K+1

n∑
j=i+1

1

i1/2

1

j3/2
− 1

n

(
n∑

j=K+1

1

j1/2

)2
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∑n
j=K+1 1/j1/2 ≤

∫ n

K
x−1/2 dx ≤ 2n1/2 so the second term is ≥ −4.

n∑
j=i+1

j−3/2 ≥
∫ n

i+1

x−3/2 dx = 2(i+ 1)−1/2 − 2n−1/2

so the first sum is

≥ 2
n∑

i=K+1

2(i+ 1)−1 − 2i−1/2n−1/2 ≥ 4
n∑

i=K+1

(i+ 1)−1 − 8

where in the second step we have reused a step in the bound derived for the second term.
Combining our results

ρ(Q) ≥ 4
∑n

i=K(i+ 1)−1 − 12∑n
i=K i−1

Letting q(i, j) = 2δ
(

1
i∨j

− 1
n

)
for K < i, j ≤ KN ≤ n and using

KN∑
i=K+1

i−1 ≤ logN
KN∑

i=K+1

(i+ 1)−1 ≥
KN−1∑
i=K

i−1 − 2/K ≥ logN − 1

so we have ρ(q) ≥ 8δ(logN − 4)/ logN . If 8δ = (1 + ε)4 > 1 and N = e4+(4/ε) we have

ρ(q) ≥ (1 + ε)4 4/ε

4 + 4/ε
= (1 + ε)3

for all K ≥ 1 and the desired result will follow from

(2.16) in Durrett and Kesten (1990). Consider the q random graph in (K,NK]. There
are positive constants γ and β so that if K ≥ K0 then with probability at least β, K belongs
to a component with at least γNK vertices.

Proof of (2.16). Let M = 1 + (1/ε), L = K/M and subdivide (K,KN ] into intervals
Im = (K + (m− 1)L,K +mL] for 1 ≤ m ≤MN . Now if x < x′ ∈ Im then x′/x < 1 + ε. If
x ∈ Im and y ∈ In let

p̄(x, y) =
2δ

(K +mL) ∨ (K + nL)

The multitype branching process in which an individual of type x gives birth to one of type y
with probability p̄(x, y) has spectral radius of the mean matrix ≥ (1+ ε)2 if K is large. Since
the birth rates are constant on each Im, we can reduce this multitype branching process to
one with MN states. N = e3+(3/ε) and M = 1 + (1/ε) are large but fixed, so we can use the
theory of multitype branching processes to conclude that the MN state branching process
is supercritical. Now until some interval has more than a fraction ε of its sites occupied,
the percolation process dominates a branching process with spectral radius 1 + ε, so the
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percolation process will be terminated by this condition with probability ≥ β > 0. When
this occurs we have at least εL = εKN/(MN) occupied sites proving the result with

γ = ε/MN = Cε2e−4/ε

This is a very tiny bound on the fraction of vertices in the large component, however, recall
the DMS result that

1− g(1) ≈ c exp(−π/
√

8ε)
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7.3 Subcritical estimates

To investigate more refined properties, we will confine our attention for most of the rest of the
section to model #3 in which an edge from x to y is open with probability h(x, y) = c/(x∨y).
Let Vi,j be the expected number of self-avoiding paths from i to j in the random graph.

Lemma 7.3.1. Suppose c < 1/4 and let r =
√

1− 4c/2. If 1 ≤ i < j

P (i→ j) ≤ EVi,j ≤
c

2ri1/2−rj1/2+r

Proof. Considering all of the self-avoiding paths we have

EVi,j =
∞∑

m=0

∑
∗

h(i, z1)h(z1, z2) · · ·h(zm−1, zm)h(zm, j)

where the starred sum is over all sequences z1, . . . zm of integers in {1, . . . n} so that i, z1, . . . zm, j
are distinct. To begin to bound the sum we note that since h(x, y) is decreasing in each vari-
able

EVi,j ≤
∞∑

m=0

∫ n

0

dx1 · · ·
∫ n

0

dxm h(i, x1)h(x1, x2) · · ·h(xm−1, xm)h(xm, j)

Changing variables xi = eyi , dxi = eyi dyi the above

≤
∞∑

m=0

∫ log n

−∞
dy1 · · ·

∫ log n

−∞
dym h(i, e

y1)ey1h(ey1 , ey2)ey2 · · ·h(eym−1 , eym)eymh(eym , j)

The last formula motivates the introduction of

p(x, y) =

{
1
4
e(x−y)/2 x ≤ y

1
4
e(y−x)/2 x ≥ y

which is the transition probability of a random walk with a bilateral exponential jump
distribution, and has

ex/2h(ex, ey)ey/2 = 4cp(x, y)

i.e., on each step the walk is killed with probability 1− 4c. Using this notation we have

EVi,j ≤
∞∑

m=0

∫ log n

−∞
dy1 · · ·

∫ log n

−∞
dym

(4c)m+1

√
i

p(log i, y1)p(y1, y2) · · · p(ym, log j)
1√
j

≤ 1√
ij

∞∑
n=1

(4c)npn(log i, log j)

To evaluate the last sum we begin by changing variables x = y/λ and using a charac-
teristic function identity from my favorite graduate probability book, Durrett (2004), see
p. 97. ∫

eitxλ

2
e−λ|x| dx =

∫
eity/λ 1

2
e−|y| dy =

1

1 + t2/λ2
(7.3.1)



7.3. SUBCRITICAL ESTIMATES 203

Using this with λ = 1/2, it follows that∫
eitx

∞∑
n=1

(4c)npn(0, x) dx =
∞∑

n=1

(
4c

1 + 4t2

)n

=
4c/(1 + 4t2)

1− 4c/(1 + 4t2)

=
4c

1− 4c+ 4t2
=

4c

1− 4c
· 1

1 + 4t2/(1− 4c)

Using (7.3.1) again with λ =
√

1− 4c/2 we conclude that

∞∑
n=1

(4c)npn(0, x) =
4c

1− 4c
·
√

1− 4c

4
e−|x|

√
1−4c/2

an it follows that if i < j

EVi,j ≤
1√
ij

c√
1− 4c

e−(log j−log i)
√

1−4c/2 =
c√

1− 4c
· 1

i1/2−rj1/2+r

which is the desired result.

Theorem 7.3.1 is the result we need for the next section, so the reader who is eager to
see that proof can go there now. Our next topic is the size of a component containing a
randomly chosen site. Dorogovstev, Mendes, and Samukhin (2001) studied the preferential
attachment model in which one new vertex and an average of δ edges were added at each
time and the probability of an edge from i to j is proportional to (di + a)(dj + a) where dk

is the degree of k. The CHKNS model arises as the limit a → ∞. Taking this limit of the
DMS results suggests that the probability a randomly chosen vertex belongs to a cluster of
size k has

bk ∼
2

k2 log k
if δ = 1/8. (7.3.2)

In the subcritical regime one has (see their (B16) and (B17) and not (21) which is wrong)

bk ∼ Cδk
−2/(1−

√
1−8δ) if δ < 1/8. (7.3.3)

As the next result shows, once again the physicists are right.

Theorem 7.3.2. The formulas for bk hold for model #0 and #1.

The choice of model here is dictated by the fact that we will use the generating function
equation.

Proof. As in the first steps of the proof of (7.1.1), we let u(y) = 1− g(1− y) and define v(y)
by u(y) = y(u′(0)− v(y))

u′(y) =
1

2δ(1− y)
·
(

1− y

u(y)

)



204 CHAPTER 7. CHKNS MODEL

Differentiating the definition of v(y) gives

u′(y) = u′(0)− v(y)− yv′(y)

Rearranging and using u(y)/y = u′(0)− v(y) we have

v′(y) =
u′(0)− v(y)

y
− 1

2δy(1− y)
· u

′(0)− v(y)− 1

u′(0)− v(y)

Combining the two fractions over a common denominator

v′(y) =
2δ(1− y)[u′(0)− v(y)]2 − (u′(0)− v(y)− 1)

2δy(1− y)(u′(0)− v(y))

Using 2δu′(0)2 − u′(0) + 1 = 0 from Lemma 7.1.2 we have

v′(y) =
1− 4δ(1− y)u′(0)

2δ(1− y)(u′(0)− v(y))
· v(y)
y

− v(y)2

(u′(0)− v(y))y
− u′(0)2

(1− y)(u′(0)− v(y))

Shifting part of the first term to the last

v′(y) =
1− 4δu′(0)

2δ(1− y)(u′(0)− v(y))
· v(y)
y

− v(y)2

(u′(0)− v(y))y
− 2δu′(0)2 − v(y)

2δ(1− y)(u′(0)− v(y))

If δ = 1/8, u′(0) = 1/4δ and the first term vanishes. If we let w(y) = u′(0)/(− log y) then

w′(y) =
u′(0)

(log y)2
· −1

y
=
w(y)2

yu′(0)

As y → 0 the third term converges to u′(0), so it is easy to argue that

v(y) ∼ u′(0)

− log y

To recover the asymptotics for bk from this we use a result of Flajolet and Odlyzko (1990)

Theorem 7.3.3. If the singular part of the generating function f(z) =
∑

n fnz
n has

f(z) ∼ C(1− z)α (log(1/(1− z))) as z → 1

then the coefficients

fn ∼ C
n−1−α

Γ(−α)
(log n)γ as n→∞
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Applying this to g we have α = 1 and γ = 1 so we get bk ∼ C/k2 log k in agreement with
(7.3.2).

If δ < 1/8 then as long as v(y) = o(y) the first term is dominant. If a = (1 −
4δu′(0))/(2δu′(0)) then

v′(y) =
av(y)

y

is solved by v(y) = Cya. Noting that (log v(y))′ = v′(y)/v(y) it is not hard to show that
if a < 1 then log v(y)/ log y → a as y → 0. We leave it to the reader to improve this to
v(y) ∼ Cya. Now a < 1 exactly when

1

6δ
< u′(0) =

1−
√

1− 8δ

4δ

which translates into δ > 1/9. Using Theorem 7.3.3 we have α = a + 1, so bk ∼ Ck−(a+2)

with
a+ 2 = 1/2δu′(0) = 2/(1−

√
1− 8δ)

which agrees with (7.3.3).
When δ ≤ 1/9, u has two continuous derivatives, so we have taken away more smooth

terms to find the singular part. In general if k < 1
2δu′(0)

− 1 ≤ k + 1 we can write (recall

u(y) = 1− g(1− y))

u(y) = −
k∑

i=1

ci(−y)i + (−y)kv(y)

and analyze v(y) as before. The details are tedious and are omitted.
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7.4 Kosterlitz-Thouless transition

Let Gn(c) be the random graph with connection probabilities pi,jc/(i∨ j). In this section we
will prove an upper bound on the size of the giant component due to Bollobás, Janson, and
Riordan (2005) which shows that its size is infinitely differentiable at the critical value.

Theorem 7.4.1. If η > 0 then for small ε the expected size of the largest component is
≤ exp(−(1− η)/2

√
ε).

Proof. Let ε > 0. Their first step is to write the random graph Gn(1/4+ε) as an edge disjoint
sum of G1 = Gn(1/4− ε) and G2 = Gn(2ε). To do this, we first construct Gn(1/4 + ε), and
then flip a coin for each edge with probability (1/4− ε)/(1/4 + ε) of heads and 2ε/(1/4 + ε)
of tails, to decide whether to put the edge in graph 1 or graph 2. The presence of edge i, j
in G1 is obviously not independent of its presence in G2, but is independent of the presence
of other edges i′, j′ in either graph.

Let η > 0 and set ρ = exp(−(1− η/2)/
√
ε). We will consider vertices with index i ≤ ρn

early and the others late. Let f(ε) > 0 be arbitrary but independent of n. The first step is to
argue that Gn is unlikely to contain a component with f(ε)n vertices that does not contain
any early vertices. Each early vertex has probability ≥ 1/4n of being directly connected to
each late vertex. The probability no early vertex makes a connection is

≤
(

1− 1

4n

)ρn·f(ε)n

≤ e−ρf(ε)n/4

Our task now is to estimate the probability a late vertex is connected to an early vertex.
If we can conclude that the expected number is ≤ Cρ1/2n, then the giant component has
size smaller than 2Cρ1/2n and the proof is complete. If c = 1/4− ε then the constant from
Lemma 7.3.1 r =

√
1− 4c/2 =

√
ε, while if c = 2ε, r =

√
1/4− 2ε. To have neater formulas

below, we let δ =
√
ε, and γ = 1/2 −

√
1/4− 2ε ≈ 2ε. Letting Ni(i, j) be the expected

number of self-avoiding paths from i to j and using Lemma 7.3.1 we have for i < j

N1(i, j) ≤ (1/8 + o(1))δ−1i−1/2+δj−1/2−δ

N2(i, j) ≤ (2 + o(1))δ2i−γj−1+γ (7.4.1)

where o(1) depends on δ only. If we observe that i−1/2+aj−1/2−a = i−1/2j−1/2(i/j)a then using
a = δ in the first case and a = 1/2− γ in the second we have for small δ and i < j

N1(i, j) +N2(i, j) ≤
1

4δ
√
ij

(7.4.2)

For i < j, we want to bound N12(i, j) the number of i − j paths in G consisting of an
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i−m path in G1 followed by a m− j path in G2. From (7.4.1) we have

N12(i, j) ≤ (1/4 + o(1))δ

( ∑
0<m<i

m−1/2+δi−1/2−δm−γj−1+γ

+
∑

i<m<j

i−1/2+δm−1/2−δm−γj−1+γ

+
∑
j<m

i−1/2+δm−1/2−δj−γm−1+γ

)
Bounding by integrals, the above is

≤ (1/4 + o(1))δ

(
i−1/2−δj−1+γ

∫ i

0

u−1/2+δ−γ du

+ i−1/2+δj−1+γ

∫ j

i

u−1/2−δ−γ du

+ i−1/2+δj−γ

∫ ∞

j

u−3/2−δ+γ du

)
Evaluating the integrals gives

≤ (1/4 + o(1))δ

(
i−γj−1+γ/(1/2 + δ − γ)

+ (i−1/2+δj−1/2−δ − i−γj−1+γ)/(1/2− δ − γ)

+ i−1/2+δj−1/2−δ/(1/2 + δ − γ)

)
Combining the second and fourth terms and the first and third, and recalling δ and γ are
o(1), the above is

= (1 + o(1))δi−1/2+δj−1/2−δ − (2 + o(1))δ2i−γj−1+γ

≤ (1 + o(1))δi−1/2+δj−1/2−δ ≤ (1 + o(1))δi−1/2j−1/2 (7.4.3)

since (i/j)δ ≤ 1. A similar calculation gives N21(i, j) ≤ (1 + o(1))δi−1/2j−1/2. Note that our
upper bounds on N12 and N21 are the same and symmetric in i and j.

We will now fix a late vertex a and estimate the probability that a is joined to some early
vertex. If it is there is a path x0 = a, x1, . . . xr, in which all xi with i < r are late vertices
then there is some subsequence a = y0, y1, . . . ys = xr such that G1 contains a y2i−y2i+1 path
for each i, and G1 contains a y2i+1 − y2i+2 path, or vice versa. If s is even then the expected
number of paths from a that end with the early vertex b is

≤ 2
∑

ρn<y2,y4,...y2s−2≤n

s/2−1∏
i=0

(1 + o(1))δ
√
y2iy2i+2
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=
2√
ab
{(1 + o(1))δ}s/2

∑
ρn<y2,y4,...y2s−2≤n

s/2−1∏
i=1

y−1
2i

=
2√
ab
{(1 + o(1))δ}s/2

( ∑
ρn<z≤n

z−1

)s/2−1

≤ (2 + o(1))δ√
ab

{(1 + o(1))δ log(1/ρ)}s/2−1

Notice that when s = 2 this is a little worse than (7.4.3).
For odd s there is an extra Ni at the end. Since N1 +N2 bounded by (7.4.2) so we get

≤
∑

ρn<y2,y4,...y2s−1≤n

(s−3)/2∏
i=0

(1 + o(1))δ
√
y2iy2i+2

1

4δ
√
ys−1ys

≤ 1

4δ
√
ab
{(1 + o(1))δ}(s−1)/2

( ∑
ρn<z≤n

z−1

)(s−1)/2

≤ 1

4δ
√
ab
{(1 + o(1))δ log(1/ρ)}(s−1)/2

Note that when s = 1 this is a little worse than (7.4.2).
Our choice of ρ = exp(−(1− η/2)/δ) implies that

(1 + o(1))δ log(1/ρ) = (1 + o(1))(1− η/2) ≤ (1− η/3)

for small δ. Hence when we sum the last two bounds we obtain for small δ

≤ (2 + o(1))δ√
ab

3η−1 +
1

4δ
√
ab

3η−1 ≤ 1

δη
√
ab

Summing over b, and comparing with an integral, the probability that a is connected to some
early vertex is

≤
ρn∑
b=1

1

δη
√
ab

≤ 2

δη

√
ρn

a

Summing over a the expected number of later vertices joined to early vertices is

≤
n∑

a=ρn+1

2

δη

√
ρn

a
≤ 4ρ1/2

δη
n

Adding in the ρn early vertices the upper bound on the expected size of the largest component
is

≤ 4ρ1/2

δη
n+ ρn ≤ 5ρ1/2

δη
n

=
5

δη
exp(−(1− η/2)/2δ) ≤ exp(−(1− η)/2

√
ε)

when δ =
√
ε is small enough.
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7.5 Results at the critical value

We turn now to an analysis of model #3 at the critical value. Yu Zhang (1991) studied
the percolation process with pi,j = (1/4)/(i ∨ j) on {1, 2, . . .} in his Ph.D. thesis at Cornell
written under the direction of Harry Kesten, and proved:

Theorem 7.5.1. If i < j and i ≥ log6+δ j then

c1 log(i+ 1)√
ij

≤ P (i→ j) ≤ c2 log(i+ 1)√
ij

By adapting Zhang’s method we can prove similar results for model #3. The upper
bound is clean and simple.

Theorem 7.5.2. If i < j then

P (i→ j) ≤ 3

8
Γn

i,j where Γn
i,j =

(log i+ 2)(log n− log j + 2)

(log n+ 4)
.

From the upper bound in Theorem 7.5.2 and some routine summation it follows that

1

n

n∑
i=1

E|Ci| ≤ 2
∑
i<j

P (i→ j) ≤ 6

This shows that the expected cluster size is finite at the critical value. This upper bound
is only 3 times the exact value of 2 given in Claim 7.1.3. Durrett (2003) has an ugly lower
bound. It is an interesting question whether one can prove cΓn

i,j as a lower bound.

Proof. The expected number of self-avoiding paths from i to j is

EVi,j =
∞∑

m=0

∑
∗

h(i, z1)h(z1, z2) · · ·h(zm, j)

where h(x, y) = (1/4)/(x ∨ y) and the starred sum is over all self-avoiding paths. The sum
restricted to paths with all zi ≥ 2 has

Σ2
i,j ≤

∞∑
m=0

∫ n

1

dx1 · · ·
∫ n

1

dxmh(i, x1)h(x1, x2) · · ·h(xm, j)

Introducing

π(u, v) = eu/2h(eu, ev)ev/2 =

{
(1/4)e(u−v)/2 u ≤ v
(1/4)e(v−u)/2 u ≥ v

and setting log xi = yi, dxi = eyi dyi we have

Σ2
i,j ≤

1√
ij
G0,log n(log i, log j)
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where G is the Green’s function for the bilateral exponential random walk killed when it
exits [0, log n].

Suppose the jump distribution is (λ/2)e−λ|z|. Since boundary overshoots are exponential,
a standard martingale calculation applied at the exit time from (u, v) shows

Px(T(−∞,u] < T[v,∞)) =
(v + 1/λ)− x

(v + 1/λ)− (u− 1/λ)

the exit probability for Brownian motion from the interval (u − 1/λ, v + 1/λ). Using this
formula and standard reasoning about hitting times, one can show that for the case λ = 1/2.

GK,L(x, z) =

{
1
4
· (L−x+2)(z−K+2)

L−K+4
z ≤ x

1
4
· (L−z+2)(x−K+2)

L−K+4
z ≥ x

To see this is reasonable, note that if we discard the +2’s and +4’s this is exactly the formula
for the Green’s function of

√
8Bt.

Taking x = log i, z = log j, K = 0, and L = log n we have for i < j

Σ2
i,j ≤

1

4

(log i+ 2)(log n− log j + 2)

log n+ 4

To bound the paths that visit 1 we use

Σ1
i,j ≤ Σ2

i,1 · Σ2
1,j ≤ 1

16
· 2(log n− log i+ 2)

log n+ 4
· 2(log n− log j + 2)

log n+ 4

≤ 1

8
· 1 · (2 + log i)(log n− log j + 2)

log n+ 4

the upper bound follows.
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Martin-Löf, A. (1986) Symmetric sampling procedures, general epidemic processes and their
threshold limit theorems. J. Appl. Prob. 23, 265–282
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Flour XXVI. Springer Lecture Notes in Math, Volume 1665

Shepp, L.A. (1989) Connectedness of certain random graphs. Israel J. Math. 67, 23–33

Simon, H.A. (1995) On a class of skew distribution functions. Biometrika 42, 425–440

Sinclair, A., and Jerrum, M. (1989) Approximate counting, uniform generation and rapidly
mixing Markov chains. Information and Computation. 82, 93–133

Slatkin, M. (1981) Fixation probabilities and fixation times in a subdivided population.
Evolution. 35, 477–488

Sood, V., and Redner, S. (2005) Voter model on heterogeneous graphs. Phys. Rev. Letters.
94, paper 178701

Stacey, A. M. (1996). The existence of an intermediate phase for the contact process on trees.
Ann. Probab. 24, 1711–1726
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