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Data:
D = G/K, a symmetric space of nhoncompact type,

[ C G, an arithmetically defined torsion-free discrete sub-
group,

X =T\D, the corresponding locally symmetric space,
E, a finite dimensional representation of G, and

E =D xr FE, the corresponding locally constant sheaf on X.
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“What, why and how?” (L. Ji, 2006)

Specifically,
e What are these invariants and the relations between them?
e Why are they important?
e How can one prove these relations?

We will address these questions via a specific problem . ..



Define the L2-harmonic forms:



Define the L2-harmonic forms:

H(2)(X; E) = E-valued differential forms ¢ on X such that



Define the L2-harmonic forms:

H(2)(X; E) = E-valued differential forms ¢ on X such that

e ¢ IS harmonic:

A¢ = (dd* + d*d)¢ = 0, and



Define the L2-harmonic forms:

H(2)(X; E) = E-valued differential forms ¢ on X such that

e ¢ IS harmonic:
A = (dd* +d*d)¢p =0, and
e & is L2

/X 6|2 dVy < co.



Define the L2-harmonic forms:

H(2)(X; E) = E-valued differential forms ¢ on X such that

e ¢ IS harmonic:
A = (dd* +d*d)¢p =0, and
e & is L2
2
dVy < oo.
/X [P dVx < o0

Problem:
Give a topological description of H(Q)(X; E).
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Easy case: X is compact.

A solution is given by the Hodge-de Rham isomorphism:
H2) (X E) = Hyr(X E) = H(X E)

where
Ker d - closed forms

— — de Rham cohomology,
Imd exact forms

Hyr(X; E) =

H(X;E) = topological cohomology.
Sketch of proof:

e All smooth forms are L2.

Ker d

= (Kerd) N (Imd)+ = Ker A.
Imd

e Imd is closed so

e Poincaré lemma.
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Applications (in the compact case with E = C):

Poincaré Duality: H'(X;C) & HIMX—i(x:C)*.
If X is complex Kahler one has in addition

Hodge Decomposition: H'(X;C) = @yt =i H(X),
where H”9(X) = H?P(X).

Hard Lefschetz: HY(X:C) = @ LFP'~2k(X: C),
where L = w A - and P 2F(X;C) = Ker LF+1 = primitive
cohomology.

But the Hodge-de Rham isomorphism fails in the noncompact
case in general.
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Main case of interest: X is nhoncompact.

In this case, H(Q)(X;IE) is sometimes equal to a variant of de
Rham cohomology, the L2-cohomology:

Ay (X E) ={o|¢, dp € L?},
H ) (X;E) = H(A(5)(X;E)) = the L?-cohomology.

Theorem. If dim H(Q)(X; E) < oo, then H(Q)(X; E) = H(Q)(X, E)
and satisfies Poincareé duality.

Proof:

Kerd /Imd = (Kerd/m) & (m/Im d)

=HBB(_ o ).

oo-dimensional
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A Noncompact Example:

® OO

D =H =SL3(R)/SO(2)
= the complex upper half-plane

[ =finite index subgroup of SL»(Z) |
X =M\H s
FE = associated to the k"

symmetric power of the

@
standard representation 0

Sk+42(IM) = classical holomorphic modular cusp forms of weight
k+ 2, that is, f: H — C holomorphic,

f(az—l—b
cz + d
and f vanishes at all cusps.

) = (cz + d)FT2£(2) for all (Z Z) er,
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In this example the L2-harmonic 1-forms are known:

H(lg)(X; E) = H%Q)(X; E) = 8p42(M) & Sp42(IM).

But we want a topological interpretation:

H*=HUQU {0},

X* =T\H* = X U {cusps}, a projective algebraic curve de-
fined over a number field,

HL(X* E) = Ker(HY(X;E) = @pecusps) H (Up: E))
(parabolic cohomology).

Theorem (Eichler-Shimura). 84 >(M) & 8,4 o(M) = HL(X* E).
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Heuristic argument for H(lz)(X;E) = HL(X* C):

It suffice to show L2-cohomology and parabolic cohomology
agree in degree 1 locally near a cusp p.

The usual de Rham cohomology of U, = [r, o) xS generated
by db.

2 2
The hyperbolic metric is LT~ Near the cusp this is

dr? 4+ e~ 2" do?.

oo
Thus /U 1d6|2dV N/b ¢" dr = oo and hence df is not L2.

p

T hus L2—Cohomology equals parabolic cohomology.
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Applications of Eichler-Shimura isomorphism:

Rational Structure: 84 (") is endowed with a rational struc-
ture.

L-functions: (I a congruence subgroup) One can relate the
Hasse-Weil zeta function of X* (which encodes the number
of points of X™* defined over all finite fields) to the L-functions
associated to modular forms.

T his suggests it would be useful to generalize the Eichler-Shimura
iIsomorphism; the natural generalization is to replace the upper
half-plane H (= unit disk in C) by a general Hermitian sym-
metric space D.

Question: What replaces X* and H3?
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The Baily-Borel-Satake compactification X*:

D = Hermitian symmetric space,
— a bounded symmetric domain in CN,

D = one of the minimal Satake compactifications, stratified
by real boundary components,

— the closure in the complex topology, stratified by its
holomorphic arc components,

D* = D U {rational boundary components},
X* =T\D*, the Satake compactification of X.

Baily and Borel show that X™* is a (generally singular) projective
algebraic variety.
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The Middle Perversity Intersection Cohomology I, H(X*; E):

X* is a stratified pseudomanifold: a point in the codimension k
stratum has a fundamental system of neighborhoods of the form

Ball;_; x cone(L;_1), where L is the stratified link.

The intersection cohomology I,H(X*;E) is characterized by the
local calculation:

IpH'(Ballg_p, x cone(Ly_1);E) = { pH'(Li_1;E) for i < p(k),

0 for ¢ > p(k)
Here we always take p(k) to be a middle perversity:
k—2 k—1
m(k) = V > )J or n(k)= V > )J :

Intersection cohomology was introduced by Goresky and MacPher-
son in order to restore Poincaré duality to the cohomology of
singular spaces.
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The Eichler-Shimura isomorphism generalizes to Zucker’s con-
jecture:

Theorem (Looijenga, S. and Stern). For X a Hermitian locally
symmetric space,

H(Q)(X; E) = H(Q)(X; E) = IpH(X*; E)

The theorem is proved by establishing a local vanishing theorem
in high degree for the L2—cohomology near singular points of X*
(compare the heuristic argument for Eichler-Shimura and the
local characterization of intersection cohomology).

In view of the fact that X™ is naturally defined over a number
field, this result is important for Langlands’s program.
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Langlands’s Program:

Represent_ations ? Representations
of Gal(Q/Q) of G in L2(M\G)
Artin L-functions L Automorphic

L-functions

One source of Galois representations:
e Start with Y projective algebraic over Q and E over Q;
e [,H(Y;E) may be defined algebraically;
e Thus Gal(Q/Q) acts on I,H(Y;E).

For Y smooth, one obtains the Hasse-Weil zeta function of Y,
which encodes #Y(IFpk) for all prime powers pF.
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Thus Langlands’s program predicts

Hasse-Weil zeta I automorphic
function of Y L-functions
Examples:

e Y = a point: class-field theory;,

e Y — an elliptic curve: the Shimura-Taniyama-Weil conjecture
(= Fermat’s last theorem);

e Y = X™*: our case.
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Compare L-functions via fixed-point formulas:

Lefschetz fixed Arthur-Selberg trace
point formula for S formula for Hecke
Frobenius on Ip,H(X™*; E) operators on H (X, E)
Problems:

e Local contributions on left involve local intersection coho-
mology of X* — hard since the links are complicated.

e Strata of X™ indexed by maximal parabolic subgroups R,
while terms in trace formula indexed by all parabolic sub-

groups.

e Many other difficulties.
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Link® =
Ng-bundle—__
over Xpgy

1M

Ngr = T\Nr = a compact nilmanifold.
XR,K — a possibly non-Hermitian locally symmetric space.

Since we do not have an effective method in general to compute

the cohomology of a locally symmetric space, the local intersec-
tion cohomology of X™* is difficult to work with.
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Solution: “resolve” X*. There are two quite different approaches:

(i) The toroidal compactification X — X* (Mumford, et al.)
e smooth, algebraic, but non-canonical

e I[,H(X*;E) is a direct summand of H(X;E), but not canon-
ically

(ii) The reductive Borel-Serre compactification X = X* (Zucker)
e Mild singularities, not complex analytic, canonical

e Conjecture (Rapoport, Goresky-MacPherson): I,H(X*, E) =
I,H(XE).

Theorem (S.). The conjecture above is true.



The reductive Borel-Serre compactification 5(\

T hree constructions:

(i)

(ii)

(i)

“Blow up” each stratum of X™* (replace each
point with its link) and collapse the nilman-
ifold fibers

Remove a neighborhood of each stratum of
X* and collapse the nilmanifold fibers on
boundary faces

Start with the Borel-Serre compactification
(1973) X (a manifold with corners) and col-
lapse the nilmanifold fibers on the boundary
faces (applies to any locally symmetric space
X)

NE




Example: Hilbert Modular Surface SL(2,0,)\(H x H)
Here k = Q(v/d), d > 0. Near “infinity”, SL(2,0;) acts via

t@t)lecony o {(g,a)|ueof]

D Yo
(u=2u2)

(1,1)

\/ T
(6,0) _

OL=7+176 O ={uF|keZ}



T hus

Boundary stratum Link
X | flat T2-bundle over St point
X Sl T2
X* point flat T2-bundle over St

The hyperbola y1yo> = b in the yjyo-plane becomes the S above
under the action of{ (g u91)|“ S C’)/,Z< } The T2-fibers correspond
to the x1x>-plane modulo a lattice.

By the way, the metric is dr? + dsgl + e_zrds%Q.
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Boundary stratum Link
X | flat T2-bundle over St point
X Sl T2
X* point flat T2-bundle over St

The hyperbola y1yo> = b in the yjyo-plane becomes the S above
under the action of{ (g u91)|“ S C’)/,Z< } The T2-fibers correspond
to the x1x>-plane modulo a lattice.

By the way, the metric is dr? + dsgl + e_zrds%Q.

In general, the space S1 above will be replaced by a locally sym-
metric space Xp; the fibers T2 above will be replaced in general
by a compact nilmanifold Np. Here P is a N-conjugacy class of
parabolic Q-subgroups of GG; these index the strata.
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Moral: As we pass from X to X to X*
e Strata become simpler;
e links become more complicated; and hence

e |ocal intersection cohomology becomes more complicated.



Equal-rank generalization:

X is equal-rank if rankG = rank K; all Hermitian symmetric
spaces are equal-rank.



Equal-rank generalization:

X is equal-rank if rankG = rank K; all Hermitian symmetric

spaces are equal-rank.
Theorem (Borel and Casselman). If X is equal-rank then

H (X E) = H) (X E) is finite-dimensional.



Equal-rank generalization:

X is equal-rank if rankG = rank K; all Hermitian symmetric

spaces are equal-rank.
Theorem (Borel and Casselman). If X is equal-rank then

H (X E) = H) (X E) is finite-dimensional.

In this setting our main results generalize:



Equal-rank generalization:

X is equal-rank if rankG = rank K; all Hermitian symmetric

spaces are equal-rank.
Theorem (Borel and Casselman). If X is equal-rank then
H (X E) = H) (X E) is finite-dimensional.

In this setting our main results generalize:

Theorem (Borel Conjecture, S. and Stern). Let X* be a Sa-
take compactification for which all real boundary components
are equal-rank. Then

H(z)(X; E) = H(Q)(X, E) = IpH(X*; E)



Equal-rank generalization:

X is equal-rank if rankG = rank K; all Hermitian symmetric
spaces are equal-rank.

Theorem (Borel and Casselman). If X is equal-rank then
H (X E) = H) (X E) is finite-dimensional.

In this setting our main results generalize:

Theorem (Borel Conjecture, S. and Stern). Let X* be a Sa-
take compactification for which all real boundary components
are equal-rank. Then

H(z)(X; E) = H(Q)(X, E) = IpH(X*; E)

Theorem (S.). Let X* be a Satake compactification for which
all real boundary components are equal-rank. Then

IL,H(X* E) &£ I,H(X;E).
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When X is not equal-rank, H(Q)(X;E) may not represent L2-
cohomology (which can be infinite dimensionall).

Nonetheless we can prove a topological interpretation:

Theorem (S.).
H(2)(X;E) = Im (ImH()?; E) — I,H(X: E))

provided the Q-root system of G does not have a factor of type
Dn, En, or F4

The condition on the Q-root system should be able to be re-
moved.

How are these results proved?

The theory of L-modules and micro-support . ..



The poset P

P = [-conjugacy classes of parabolic Q-subgroups. For example
(when Q-rank G = 2):

G

Q1 Q2



The Levi quotients L = Ly
Pass to the reductive Levi quotients Ly = Q/Ng for all Q € P.

Lg



An L-module M
An L-module consists of graded Ly-modules Eg for all Q . ..

Eg

1 2



An L-module M
1
and degree 1 morphisms fpq : H(nIQD; EQ) ICN Ep for all P <Q

L
H(ng,, Eq) H(ng,, Eq)
fQ.c fQoG
[1] [1]
£, H(np, Eq) Eq,
H(n%, Eg)) 1l /e H(0E2 Eg,)
frgq frq
[1] [1]




An L-module M
satisfying Y p<q<r fpg © H(ng; for) =0 for all P < R.

L
H(ng,, Eg) H(ng,, Eq)
fQ.c fo,a
[1] [1]
£, H(np, Eg) Qs
H(n%, Eg)) 1l /e H(0E2 Eg,)
frgq TP
[1] [1]




The realization S (M)

Asp(X; Eg)

dQlG dQQG
1] [1]

Asp(Xg,:Eg,) [1]/dpc Asp(X0,: Eg,)

dpQ, [1]
[1] dPQQ

Asp(Xp; Ep)



The realization SX,(M) with d.. factored

Asp(X; Eg)

Asp(Xg, i H(ng,, Eg))
fQia

[1]

Asp(Xp; H(n%?, Eg,))

frPQq
[1]

Asp(Xp; H(np, Eq))

kQ G
2
kp\

Asp(Xg,i H(ng,, Eg))

fosa
[1]

ASD(X\QQ; EQ,)

Az

Asp(Xp; H(n%2, Eg,))

frqs
[1]

fra

Asp(Xp; Ep)



The micro-support SS(M) of an L-module M

Roughly SS(M) consists of all irreducible representations V of
Lp (any P € P) such that

(Vnp)* = Vipp, and
H(i};i!QVM)V = H(U,U\ (UnXg,); M)y # 0.

Here we write Lp = MpAp where Ap is the Q-split center of Lp
and Qy > P is chosen depending on the character by which Ap
acts on V. Finally U is a small neighborhood of a point on the

P-stratum Xp.
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TO summarize:

e An L-module M on X is a combinatorial model for a con-
structible complex of sheaves S(M) on X.

o Our various cohomological iInvariants equal
H(X; M) .= H(X;S(M)) for various L-modules M;

e To every L-module M there is associated an invariant called

the micro-support SS(M), it is a finite collection of irre-
ducible finite-dimensional representations of all Levi quo-

tients Lp.
Our results follow from three theorems on L-modules:
e a Vanishing Theorem for global cohomology;
e a Micro-purity Theorem for Z,C(X; E);

e a2 Functoriality Theorem for micro-support.



Vanishing Theorem for the Cohomology of an L-module

Define
c(M) = Vesigle)%(dim Dp —dimDp(V)) + c(V; M) ,
d(M)= sup Z(dimDp+dimDp(V))+ d(V; M) .
VeSS(M)

The first terms are the range of degrees where H5)(Xp;V) can
be nonzero by a vanishing theorem of Raghunathan.

The second terms are computed combinatorily from the micro-
support.

Vanishing Theorem. H{(X; M) =0 for i ¢ [c¢(M), d(M)].

In particular, H(X; M) =0 if SS(M) = 0.



Micro-support of Intersection Cohomology

Micro-support is not always so easy to compute. The following
IS a very deep combinatorial result.

Micro-Purity Theorem. Assume the Q-root system of G does
not contain a factor of type D,, E,, or F,. Let p be a middle
perversity. If E* = E, then SS(IpC(X’\; E)) ={FE}.

A simpler result is

Theorem. If E* 2 E, then SS(L(5y(X; E)) = {E}.



Functoriality of Micro-support

Let M be an L-module for which SS(M) = {E}
(e.9. ZpC(X; E) or L) (X; E)).

Let 7: X — X* be the projection onto a Satake
compactification with equal-rank real boundary X
components. \

To prove Zucker and Rapoport’'s conjecture, we

need to check the local vanishing condition for

the pushforward of M by w. Equivalently we x

need to show XRANAX

HY(m (2); M|7T_1($)) =0 for ¢ > %codim Xpp— 1



However 7~ 1(z) & X\R,E x {x}.
The Vanishing Theorem implies

H'(Xp.y; Mlg, )=0 fori>d(Mlg ).

T hus the following theorem completes the proof:

Functoriality Theorem. Let M be an L-module -

with SS(M) = {E} and let Xrj, be a stratum of T

a Satake compactification X* with real equal- XRANAX
rank boundary components. Then

d(Mlg )< zcodimXp, — 1.



Final remark:

L-modules have many other applications besides the Rapoport-
Goresky-MacPherson conjecture. For example:

Theorem (S., Li-Schwermer). If E has regular highest weight,
then

: 1
H'(X;E)=0 fori<E(dimX—(rankG—rankK)).



