International Conference and Instructional Workshop on Discrete Groups
Morningside Center of Mathematics, Beijing

$$
\text { July } 17 \text { - August 4, } 2006
$$

Cohomology of Locally Symmetric Spaces

Leslie Saper, Duke University
http://www.math.duke.edu/faculty/saper/

Data:

Data:

$D=G / K$, a symmetric space of noncompact type,
$\Gamma \subset G$, an arithmetically defined torsion-free discrete subgroup,
$X=\Gamma \backslash D$, the corresponding locally symmetric space,
E, a finite dimensional representation of G, and
$\mathbb{E}=D \times_{\Gamma} E$, the corresponding locally constant sheaf on X.
"Cohomological" invariants associated to X and \mathbb{E} :
"Cohomological" invariants associated to X and \mathbb{E} :

- $H(X ; \mathbb{E})$, the ordinary cohomology,
"Cohomological" invariants associated to X and \mathbb{E} :
- $H(X ; \mathbb{E})$, the ordinary cohomology,
- $H_{(2)}(X ; \mathbb{E})$, the L^{2}-cohomology,
"Cohomological" invariants associated to X and \mathbb{E} :
- $H(X ; \mathbb{E})$, the ordinary cohomology,
- $H_{(2)}(X ; \mathbb{E})$, the L^{2}-cohomology,
- $\mathcal{H}_{(2)}(X ; \mathbb{E})$, the L^{2}-harmonic forms,
"Cohomological" invariants associated to X and \mathbb{E} :
- $H(X ; \mathbb{E})$, the ordinary cohomology,
- $H_{(2)}(X ; \mathbb{E})$, the L^{2}-cohomology,
- $\mathcal{H}_{(2)}(X ; \mathbb{E})$, the L^{2}-harmonic forms,
- $I H(\widehat{X} ; \mathbb{E})$, the intersection homology of the reductive BorelSerre compactification,
"Cohomological" invariants associated to X and \mathbb{E} :
- $H(X ; \mathbb{E})$, the ordinary cohomology,
- $H_{(2)}(X ; \mathbb{E})$, the L^{2}-cohomology,
- $\mathcal{H}_{(2)}(X ; \mathbb{E})$, the L^{2}-harmonic forms,
- $I H(\widehat{X} ; \mathbb{E})$, the intersection homology of the reductive BorelSerre compactification,
"What, why and how?" (L. Ji, 2006)
"What, why and how?" (L. Ji, 2006)
Specifically,
- What are these invariants and the relations between them?
"What, why and how?" (L. Ji, 2006)
Specifically,
- What are these invariants and the relations between them?
- Why are they important?
"What, why and how?" (L. Ji, 2006)
Specifically,
- What are these invariants and the relations between them?
- Why are they important?
- How can one prove these relations?
"What, why and how?" (L. Ji, 2006)
Specifically,
- What are these invariants and the relations between them?
- Why are they important?
- How can one prove these relations?

We will address these questions via a specific problem ...

Define the L^{2}-harmonic forms:

Define the L^{2}-harmonic forms:
$\mathcal{H}_{(2)}(X ; \mathbb{E})=\mathbb{E}$-valued differential forms ϕ on X such that

Define the L^{2}-harmonic forms:
$\mathcal{H}_{(2)}(X ; \mathbb{E})=\mathbb{E}$-valued differential forms ϕ on X such that

- ϕ is harmonic:

$$
\Delta \phi=\left(d d^{*}+d^{*} d\right) \phi=0, \quad \text { and }
$$

Define the L^{2}-harmonic forms:
$\mathcal{H}_{(2)}(X ; \mathbb{E})=\mathbb{E}$-valued differential forms ϕ on X such that

- ϕ is harmonic:

$$
\Delta \phi=\left(d d^{*}+d^{*} d\right) \phi=0, \quad \text { and }
$$

- ϕ is L^{2} :

$$
\int_{X}|\phi|^{2} d V_{X}<\infty
$$

Define the L^{2}-harmonic forms:
$\mathcal{H}_{(2)}(X ; \mathbb{E})=\mathbb{E}$-valued differential forms ϕ on X such that

- ϕ is harmonic:

$$
\Delta \phi=\left(d d^{*}+d^{*} d\right) \phi=0, \quad \text { and }
$$

- ϕ is L^{2} :

$$
\int_{X}|\phi|^{2} d V_{X}<\infty
$$

Problem:
Give a topological description of $\mathcal{H}_{(2)}(X ; \mathbb{E})$.

Easy case: X is compact.

Easy case: X is compact.
A solution is given by the Hodge-de Rham isomorphism:

$$
\mathcal{H}_{(2)}(X ; \mathbb{E}) \cong H_{\mathrm{dR}}(X ; \mathbb{E}) \cong H(X ; \mathbb{E})
$$

where

$$
\begin{aligned}
& H_{\mathrm{dR}}(X ; \mathbb{E})=\frac{\operatorname{Ker} d}{\operatorname{Im} d}=\frac{\text { closed forms }}{\text { exact forms }}=\text { de Rham cohomology, } \\
& H(X ; \mathbb{E})=\text { topological cohomology. }
\end{aligned}
$$

Easy case: X is compact.
A solution is given by the Hodge-de Rham isomorphism:

$$
\mathcal{H}_{(2)}(X ; \mathbb{E}) \cong H_{\mathrm{dR}}(X ; \mathbb{E}) \cong H(X ; \mathbb{E})
$$

where

$$
\begin{aligned}
& H_{\mathrm{dR}}(X ; \mathbb{E})=\frac{\text { Ker } d}{\operatorname{Im} d}=\frac{\text { closed forms }}{\text { exact forms }}=\text { de Rham cohomology, } \\
& H(X ; \mathbb{E})=\text { topological cohomology. }
\end{aligned}
$$

Sketch of proof:

- All smooth forms are L^{2}.
- $\operatorname{Im} d$ is closed so $\frac{\operatorname{Ker} d}{\operatorname{Im} d}=(\operatorname{Ker} d) \cap(\operatorname{Im} d)^{\perp}=\operatorname{Ker} \Delta$.
- Poincaré Iemma.

Applications (in the compact case with $\mathbb{E}=\mathbb{C}$):

Applications (in the compact case with $\mathbb{E}=\mathbb{C}$):

Poincaré Duality: $H^{i}(X ; \mathbb{C}) \cong H^{\operatorname{dim} X-i}(X ; \mathbb{C})^{*}$.

Applications (in the compact case with $\mathbb{E}=\mathbb{C}$):
Poincaré Duality: $H^{i}(X ; \mathbb{C}) \cong H^{\operatorname{dim} X-i}(X ; \mathbb{C})^{*}$.
If X is complex Kähler one has in addition
Hodge Decomposition: $H^{i}(X ; \mathbb{C})=\oplus_{p+q=i} H^{p, q}(X)$, where $\bar{H}^{p, q}(X)=H^{q, p}(X)$.

Applications (in the compact case with $\mathbb{E}=\mathbb{C}$):

Poincaré Duality: $H^{i}(X ; \mathbb{C}) \cong H^{\operatorname{dim} X-i}(X ; \mathbb{C})^{*}$.
If X is complex Kähler one has in addition
Hodge Decomposition: $H^{i}(X ; \mathbb{C})=\oplus_{p+q=i} H^{p, q}(X)$, where $\bar{H}^{p, q}(X)=H^{q, p}(X)$.

Hard Lefschetz: $H^{i}(X ; \mathbb{C})=\oplus_{k} L^{k} P^{i-2 k}(X ; \mathbb{C})$, where $L=\omega \wedge$. and $P^{i-2 k}(X ; \mathbb{C})=\operatorname{Ker} L^{k+1}=$ primitive cohomology.

Applications (in the compact case with $\mathbb{E}=\mathbb{C}$):

Poincaré Duality: $H^{i}(X ; \mathbb{C}) \cong H^{\operatorname{dim} X-i}(X ; \mathbb{C})^{*}$.
If X is complex Kähler one has in addition
Hodge Decomposition: $H^{i}(X ; \mathbb{C})=\oplus_{p+q=i} H^{p, q}(X)$, where $\bar{H}^{p, q}(X)=H^{q, p}(X)$.

Hard Lefschetz: $H^{i}(X ; \mathbb{C})=\oplus_{k} L^{k} P^{i-2 k}(X ; \mathbb{C})$, where $L=\omega \wedge$. and $P^{i-2 k}(X ; \mathbb{C})=\operatorname{Ker} L^{k+1}=$ primitive cohomology.

But the Hodge-de Rham isomorphism fails in the noncompact case in general.

Main case of interest: X is noncompact.

Main case of interest: X is noncompact.
In this case, $\mathcal{H}_{(2)}(X ; \mathbb{E})$ is sometimes equal to a variant of de Rham cohomology, the L^{2}-cohomology:

Main case of interest: X is noncompact.
In this case, $\mathcal{H}_{(2)}(X ; \mathbb{E})$ is sometimes equal to a variant of de Rham cohomology, the L^{2}-cohomology:

$$
A_{(2)}(X ; \mathbb{E})=\left\{\phi \mid \phi, d \phi \in L^{2}\right\}
$$

Main case of interest: X is noncompact.
In this case, $\mathcal{H}_{(2)}(X ; \mathbb{E})$ is sometimes equal to a variant of de Rham cohomology, the L^{2}-cohomology:

$$
\begin{aligned}
& A_{(2)}(X ; \mathbb{E})=\left\{\phi \mid \phi, d \phi \in L^{2}\right\}, \\
& H_{(2)}(X ; \mathbb{E})=H\left(A_{(2)}(X ; \mathbb{E})\right)=\text { the } L^{2} \text {-cohomology. }
\end{aligned}
$$

Main case of interest: X is noncompact.
In this case, $\mathcal{H}_{(2)}(X ; \mathbb{E})$ is sometimes equal to a variant of de Rham cohomology, the L^{2}-cohomology:

$$
\begin{aligned}
& A_{(2)}(X ; \mathbb{E})=\left\{\phi \mid \phi, d \phi \in L^{2}\right\} \\
& H_{(2)}(X ; \mathbb{E})=H\left(A_{(2)}(X ; \mathbb{E})\right)=\text { the } L^{2} \text {-cohomology. }
\end{aligned}
$$

Theorem. If dim $H_{(2)}(X ; \mathbb{E})<\infty$, then $H_{(2)}(X ; \mathbb{E}) \cong \mathcal{H}_{(2)}(X ; \mathbb{E})$ and satisfies Poincaré duality.

Main case of interest: X is noncompact.
In this case, $\mathcal{H}_{(2)}(X ; \mathbb{E})$ is sometimes equal to a variant of de Rham cohomology, the L^{2}-cohomology:

$$
\begin{aligned}
& A_{(2)}(X ; \mathbb{E})=\left\{\phi \mid \phi, d \phi \in L^{2}\right\} \\
& H_{(2)}(X ; \mathbb{E})=H\left(A_{(2)}(X ; \mathbb{E})\right)=\text { the } L^{2} \text {-cohomology. }
\end{aligned}
$$

Theorem. If $\operatorname{dim} H_{(2)}(X ; \mathbb{E})<\infty$, then $H_{(2)}(X ; \mathbb{E}) \cong \mathcal{H}_{(2)}(X ; \mathbb{E})$ and satisfies Poincaré duality.

Proof:

$$
\operatorname{Ker} d / \operatorname{Im} d=(\operatorname{Ker} d / \overline{\operatorname{Im} d}) \bigoplus(\overline{\operatorname{Im} d} / \operatorname{Im} d)
$$

Main case of interest: X is noncompact.

In this case, $\mathcal{H}_{(2)}(X ; \mathbb{E})$ is sometimes equal to a variant of de Rham cohomology, the L^{2}-cohomology:

$$
\begin{aligned}
& A_{(2)}(X ; \mathbb{E})=\left\{\phi \mid \phi, d \phi \in L^{2}\right\} \\
& H_{(2)}(X ; \mathbb{E})=H\left(A_{(2)}(X ; \mathbb{E})\right)=\text { the } L^{2} \text {-cohomology. }
\end{aligned}
$$

Theorem. If dim $H_{(2)}(X ; \mathbb{E})<\infty$, then $H_{(2)}(X ; \mathbb{E}) \cong \mathcal{H}_{(2)}(X ; \mathbb{E})$ and satisfies Poincaré duality.

Proof:

$$
\begin{aligned}
\operatorname{Ker} d / \operatorname{Im} d & =(\operatorname{Ker} d / \overline{\operatorname{Im} d}) \bigoplus(\overline{\operatorname{Im} d} / \operatorname{Im} d) \\
& =\mathcal{H}_{(2)}(X ; \mathbb{E}) \bigoplus\binom{0 \text { or }}{\infty \text {-dimensional }} .
\end{aligned}
$$

A Noncompact Example:

A Noncompact Example:

$$
D=H=\mathrm{SL}_{2}(\mathbb{R}) / \mathrm{SO}(2)
$$

\cong the complex upper half-plane
$\Gamma=$ finite index subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$
$X=\Gamma \backslash H$

A Noncompact Example:

$$
\begin{aligned}
D & =H=\mathrm{SL}_{2}(\mathbb{R}) / \mathrm{SO}(2) \\
& \cong \text { the complex upper half-plane } \\
\Gamma & =\text { finite index subgroup of } \mathrm{SL}_{2}(\mathbb{Z}) \\
X & =\Gamma \backslash H
\end{aligned}
$$

- ∞

A Noncompact Example:

$$
\begin{aligned}
D= & H=\mathrm{SL}_{2}(\mathbb{R}) / \mathrm{SO}(2) \\
\cong & \text { the complex upper half-plane } \\
\Gamma= & \text { finite index subgroup of } \mathrm{SL}_{2}(\mathbb{Z}) \\
X= & \Gamma \backslash H \\
\mathbb{E}= & \text { associated to the } k^{\text {th }} \\
& \text { symmetric power of the } \\
& \text { standard representation }
\end{aligned}
$$

A Noncompact Example:

$$
\begin{aligned}
D= & H=\mathrm{SL}_{2}(\mathbb{R}) / \mathrm{SO}(2) \\
\cong & \text { the complex upper half-plane } \\
\Gamma= & \text { finite index subgroup of } \mathrm{SL}_{2}(\mathbb{Z}) \\
X= & \Gamma \backslash H \\
\mathbb{E}= & \text { associated to the } k^{\text {th }} \\
& \text { symmetric power of the } \\
& \text { standard representation }
\end{aligned}
$$

$\mathcal{S}_{k+2}(\Gamma)=$ classical holomorphic modular cusp forms of weight $k+2$, that is, $f: H \rightarrow \mathbb{C}$ holomorphic,

$$
f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k+2} f(z) \quad \text { for all }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma
$$

and f vanishes at all cusps.

In this example the L^{2}-harmonic 1 -forms are known:

$$
H_{(2)}^{1}(X ; \mathbb{E}) \cong \mathcal{H}_{(2)}^{1}(X ; \mathbb{E})=\mathcal{S}_{k+2}(\Gamma) \oplus \overline{S_{k+2}(\Gamma)}
$$

In this example the L^{2}-harmonic 1 -forms are known:

$$
H_{(2)}^{1}(X ; \mathbb{E}) \cong \mathcal{H}_{(2)}^{1}(X ; \mathbb{E})=S_{k+2}(\Gamma) \oplus \overline{S_{k+2}(\Gamma)}
$$

But we want a topological interpretation:

In this example the L^{2}-harmonic 1 -forms are known:

$$
H_{(2)}^{1}(X ; \mathbb{E}) \cong \mathcal{H}_{(2)}^{1}(X ; \mathbb{E})=\mathcal{S}_{k+2}(\Gamma) \oplus \overline{\mathcal{S}_{k+2}(\Gamma)}
$$

But we want a topological interpretation:

$$
\begin{aligned}
& H^{*}=H \cup \mathbb{Q} \cup\{\infty\}, \\
& X^{*}=\left\ulcorner\backslash H^{*}=X \cup\{\text { cusps }\},\right. \text { a projective algebraic curve de- } \\
& \text { fined over a number field, } \\
& H_{P}^{1}\left(X^{*} ; \mathbb{E}\right)=\operatorname{Ker}\left(H^{1}(X ; \mathbb{E}) \rightarrow \oplus_{p \in\{\text { cusps }\}} H^{1}\left(U_{p} ; \mathbb{E}\right)\right)
\end{aligned}
$$

(parabolic cohomology).

In this example the L^{2}-harmonic 1 -forms are known:

$$
H_{(2)}^{1}(X ; \mathbb{E}) \cong \mathcal{H}_{(2)}^{1}(X ; \mathbb{E})=\mathcal{S}_{k+2}(\Gamma) \oplus \overline{s_{k+2}(\Gamma)}
$$

But we want a topological interpretation:

$$
\begin{aligned}
& H^{*}=H \cup \mathbb{Q} \cup\{\infty\}, \\
& X^{*}=\left\ulcorner\backslash H^{*}=X \cup\{\text { cusps }\},\right. \text { a projective algebraic curve de- } \\
& \text { fined over a number field, } \\
& H_{P}^{1}\left(X^{*} ; \mathbb{E}\right)=\operatorname{Ker}\left(H^{1}(X ; \mathbb{E}) \rightarrow \oplus_{p \in\{c u s p s\}} H^{1}\left(U_{p} ; \mathbb{E}\right)\right)
\end{aligned}
$$

(parabolic cohomology).
Theorem (Eichler-Shimura). $\mathcal{S}_{k+2}(\Gamma) \oplus \overline{\mathcal{S}_{k+2}(\Gamma)} \cong H_{P}^{1}\left(X^{*} ; \mathbb{E}\right)$.

Heuristic argument for $H_{(2)}^{1}(X ; \mathbb{E}) \cong H_{P}^{1}\left(X^{*} ; \mathbb{C}\right)$:

Heuristic argument for $H_{(2)}^{1}(X ; \mathbb{E}) \cong H_{P}^{1}\left(X^{*} ; \mathbb{C}\right)$:

- It suffice to show L^{2}-cohomology and parabolic cohomology agree in degree 1 locally near a cusp p.

Heuristic argument for $H_{(2)}^{1}(X ; \mathbb{E}) \cong H_{P}^{1}\left(X^{*} ; \mathbb{C}\right)$:

- It suffice to show L^{2}-cohomology and parabolic cohomology agree in degree 1 locally near a cusp p.
- The usual de Rham cohomology of $U_{p}=[r, \infty) \times S^{1}$ generated by $d \theta$.

Heuristic argument for $H_{(2)}^{1}(X ; \mathbb{E}) \cong H_{P}^{1}\left(X^{*} ; \mathbb{C}\right)$:

- It suffice to show L^{2}-cohomology and parabolic cohomology agree in degree 1 locally near a cusp p.
- The usual de Rham cohomology of $U_{p}=[r, \infty) \times S^{1}$ generated by $d \theta$.
- The hyperbolic metric is $\frac{d x^{2}+d y^{2}}{y^{2}}$. Near the cusp this is

$$
d r^{2}+e^{-2 r} d \theta^{2}
$$

Heuristic argument for $H_{(2)}^{1}(X ; \mathbb{E}) \cong H_{P}^{1}\left(X^{*} ; \mathbb{C}\right)$:

- It suffice to show L^{2}-cohomology and parabolic cohomology agree in degree 1 locally near a cusp p.
- The usual de Rham cohomology of $U_{p}=[r, \infty) \times S^{1}$ generated by $d \theta$.
- The hyperbolic metric is $\frac{d x^{2}+d y^{2}}{y^{2}}$. Near the cusp this is

$$
d r^{2}+e^{-2 r} d \theta^{2}
$$

- Thus $\int_{U_{p}}|d \theta|^{2} d V \sim \int_{b}^{\infty} e^{r} d r=\infty$ and hence $d \theta$ is not L^{2}.

Heuristic argument for $H_{(2)}^{1}(X ; \mathbb{E}) \cong H_{P}^{1}\left(X^{*} ; \mathbb{C}\right)$:

- It suffice to show L^{2}-cohomology and parabolic cohomology agree in degree 1 locally near a cusp p.
- The usual de Rham cohomology of $U_{p}=[r, \infty) \times S^{1}$ generated by $d \theta$.
- The hyperbolic metric is $\frac{d x^{2}+d y^{2}}{y^{2}}$. Near the cusp this is

$$
d r^{2}+e^{-2 r} d \theta^{2}
$$

- Thus $\int_{U_{p}}|d \theta|^{2} d V \sim \int_{b}^{\infty} e^{r} d r=\infty$ and hence $d \theta$ is not L^{2}.
- Thus L^{2}-cohomology equals parabolic cohomology.

Applications of Eichler-Shimura isomorphism:

Rational Structure: $\mathcal{S}_{k+2}(\Gamma)$ is endowed with a rational structure.

Applications of Eichler-Shimura isomorphism:

Rational Structure: $\mathcal{S}_{k+2}(\Gamma)$ is endowed with a rational structure.

L-functions: (Γ a congruence subgroup) One can relate the Hasse-Weil zeta function of X^{*} (which encodes the number of points of X^{*} defined over all finite fields) to the L-functions associated to modular forms.

Applications of Eichler-Shimura isomorphism:

Rational Structure: $\mathcal{S}_{k+2}(\Gamma)$ is endowed with a rational structure.

L-functions: (Γ a congruence subgroup) One can relate the Hasse-Weil zeta function of X^{*} (which encodes the number of points of X^{*} defined over all finite fields) to the L-functions associated to modular forms.

This suggests it would be useful to generalize the Eichler-Shimura isomorphism; the natural generalization is to replace the upper half-plane H (\cong unit disk in \mathbb{C}) by a general Hermitian symmetric space D.

Applications of Eichler-Shimura isomorphism:

Rational Structure: $\mathcal{S}_{k+2}(\Gamma)$ is endowed with a rational structure.

L-functions: (Γ a congruence subgroup) One can relate the Hasse-Weil zeta function of X^{*} (which encodes the number of points of X^{*} defined over all finite fields) to the L-functions associated to modular forms.

This suggests it would be useful to generalize the Eichler-Shimura isomorphism; the natural generalization is to replace the upper half-plane H (\cong unit disk in \mathbb{C}) by a general Hermitian symmetric space D.

Question: What replaces X^{*} and H_{P}^{1} ?

The Baily-Borel-Satake compactification \boldsymbol{X}^{*} :

The Baily-Borel-Satake compactification X^{*} :

$D=$ Hermitian symmetric space,
$=$ a bounded symmetric domain in \mathbb{C}^{N},

The Baily-Borel-Satake compactification X^{*} :

$D=$ Hermitian symmetric space,
$=$ a bounded symmetric domain in \mathbb{C}^{N},
$\bar{D}=$ one of the minimal Satake compactifications, stratified by real boundary components,
$=$ the closure in the complex topology, stratified by its holomorphic arc components,

The Baily-Borel-Satake compactification X^{*} :

$D=$ Hermitian symmetric space,
$=$ a bounded symmetric domain in \mathbb{C}^{N},
$\bar{D}=$ one of the minimal Satake compactifications, stratified by real boundary components,
$=$ the closure in the complex topology, stratified by its holomorphic arc components,
$D^{*}=D \cup\{$ rational boundary components $\}$,
$X^{*}=\Gamma \backslash D^{*}$, the Satake compactification of X.

The Baily-Borel-Satake compactification X^{*} :

$D=$ Hermitian symmetric space,
$=$ a bounded symmetric domain in \mathbb{C}^{N},
$\bar{D}=$ one of the minimal Satake compactifications, stratified by real boundary components,
$=$ the closure in the complex topology, stratified by its holomorphic arc components,
$D^{*}=D \cup\{$ rational boundary components $\}$,
$X^{*}=\Gamma \backslash D^{*}$, the Satake compactification of X.

Baily and Borel show that X^{*} is a (generally singular) projective algebraic variety.

The Middle Perversity Intersection Cohomology $I_{p} H\left(X^{*} ; \mathbb{E}\right)$:

The Middle Perversity Intersection Cohomology $I_{p} H\left(X^{*} ; \mathbb{E}\right)$: X^{*} is a stratified pseudomanifold

The Middle Perversity Intersection Cohomology $I_{p} H\left(X^{*} ; \mathbb{E}\right)$: X^{*} is a stratified pseudomanifold: a point in the codimension k stratum has a fundamental system of neighborhoods of the form

$$
\text { Ball }_{d-k} \times \operatorname{cone}\left(L_{k-1}\right), \quad \text { where } L \text { is the stratified link. }
$$

The Middle Perversity Intersection Cohomology $I_{p} H\left(X^{*} ; \mathbb{E}\right)$: X^{*} is a stratified pseudomanifold: a point in the codimension k stratum has a fundamental system of neighborhoods of the form

$$
\operatorname{Ball}_{d-k} \times \operatorname{cone}\left(L_{k-1}\right), \quad \text { where } L \text { is the stratified link. }
$$

The intersection cohomology $I_{p} H\left(X^{*} ; \mathbb{E}\right)$ is characterized by the local calculation:

$$
I_{p} H^{i}\left(\text { Ball }_{d-k} \times \operatorname{cone}\left(L_{k-1}\right) ; \mathbb{E}\right) \cong \begin{cases}I_{p} H^{i}\left(L_{k-1} ; \mathbb{E}\right) & \text { for } i \leq p(k), \\ 0 & \text { for } i>p(k)\end{cases}
$$

The Middle Perversity Intersection Cohomology $I_{p} \boldsymbol{H}\left(X^{*} ; \mathbb{E}\right)$: X^{*} is a stratified pseudomanifold: a point in the codimension k stratum has a fundamental system of neighborhoods of the form

$$
\text { Ball }_{d-k} \times \operatorname{cone}\left(L_{k-1}\right), \quad \text { where } L \text { is the stratified link. }
$$

The intersection cohomology $I_{p} H\left(X^{*} ; \mathbb{E}\right)$ is characterized by the local calculation:

$$
I_{p} H^{i}\left(\text { Ball }_{d-k} \times \operatorname{cone}\left(L_{k-1}\right) ; \mathbb{E}\right) \cong \begin{cases}I_{p} H^{i}\left(L_{k-1} ; \mathbb{E}\right) & \text { for } i \leq p(k) \\ 0 & \text { for } i>p(k)\end{cases}
$$

Here we always take $p(k)$ to be a middle perversity:

$$
m(k)=\left\lfloor\frac{(k-2)}{2}\right\rfloor \quad \text { or } \quad n(k)=\left\lfloor\frac{(k-1)}{2}\right\rfloor
$$

The Middle Perversity Intersection Cohomology $I_{p} H\left(X^{*} ; \mathbb{E}\right)$:

 X^{*} is a stratified pseudomanifold: a point in the codimension k stratum has a fundamental system of neighborhoods of the form$$
\text { Ball }_{d-k} \times \operatorname{cone}\left(L_{k-1}\right), \quad \text { where } L \text { is the stratified link. }
$$

The intersection cohomology $I_{p} H\left(X^{*} ; \mathbb{E}\right)$ is characterized by the local calculation:

$$
I_{p} H^{i}\left(\text { Ball }_{d-k} \times \operatorname{cone}\left(L_{k-1}\right) ; \mathbb{E}\right) \cong \begin{cases}I_{p} H^{i}\left(L_{k-1} ; \mathbb{E}\right) & \text { for } i \leq p(k) \\ 0 & \text { for } i>p(k)\end{cases}
$$

Here we always take $p(k)$ to be a middle perversity:

$$
m(k)=\left\lfloor\frac{(k-2)}{2}\right\rfloor \quad \text { or } \quad n(k)=\left\lfloor\frac{(k-1)}{2}\right\rfloor .
$$

Intersection cohomology was introduced by Goresky and MacPherson in order to restore Poincare duality to the cohomology of singular spaces.

The Eichler-Shimura isomorphism generalizes to Zucker's conjecture:

The Eichler-Shimura isomorphism generalizes to Zucker's conjecture:

Theorem (Looijenga, S. and Stern). For X a Hermitian locally symmetric space,

$$
H_{(2)}(X ; \mathbb{E}) \cong \mathcal{H}_{(2)}(X ; \mathbb{E}) \cong I_{p} H\left(X^{*} ; \mathbb{E}\right) .
$$

The Eichler-Shimura isomorphism generalizes to Zucker's conjecture:

Theorem (Looijenga, S. and Stern). For X a Hermitian locally symmetric space,

$$
H_{(2)}(X ; \mathbb{E}) \cong \mathcal{H}_{(2)}(X ; \mathbb{E}) \cong I_{p} H\left(X^{*} ; \mathbb{E}\right)
$$

The theorem is proved by establishing a local vanishing theorem in high degree for the L^{2}-cohomology near singular points of X^{*} (compare the heuristic argument for Eichler-Shimura and the local characterization of intersection cohomology).

The Eichler-Shimura isomorphism generalizes to Zucker's conjecture:

Theorem (Looijenga, S. and Stern). For X a Hermitian locally symmetric space,

$$
H_{(2)}(X ; \mathbb{E}) \cong \mathcal{H}_{(2)}(X ; \mathbb{E}) \cong I_{p} H\left(X^{*} ; \mathbb{E}\right)
$$

The theorem is proved by establishing a local vanishing theorem in high degree for the L^{2}-cohomology near singular points of X^{*} (compare the heuristic argument for Eichler-Shimura and the local characterization of intersection cohomology).

In view of the fact that X^{*} is naturally defined over a number field, this result is important for Langlands's program.

Langlands's Program:

Langlands's Program:

$$
\begin{array}{lll}
\text { Representations } \\
\text { of } G \text { Gal }(\overline{\mathbb{Q}} / \mathbb{Q})
\end{array} \quad ? \quad \begin{aligned}
& \text { Representations } \\
& \text { of } G \text { in } L^{2}(\Gamma \backslash G)
\end{aligned}
$$

Langlands's Program:

$$
\begin{array}{ccc}
\begin{array}{c}
\text { Representations } \\
\text { of } \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})
\end{array} & ? & \begin{array}{c}
\text { Representations } \\
\text { of } G \text { in } L^{2}(\Gamma \backslash G)
\end{array} \\
\text { Artin } L \text {-functions } & \longleftrightarrow ? & \begin{array}{c}
\text { Automorphic } \\
L \text {-functions }
\end{array}
\end{array}
$$

Langlands's Program:

Representations of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$	\longleftrightarrow	Representations of G in $L^{2}(\Gamma \backslash G)$
Artin L-functions	$?$	Automorphic L-functions

One source of Galois representations:

- Start with Y projective algebraic over \mathbb{Q} and E over \mathbb{Q};

Langlands's Program:

Representations of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$	\longleftrightarrow	Representations of G in $L^{2}(\Gamma \backslash G)$
Artin L-functions	$?$	Automorphic L-functions

One source of Galois representations:

- Start with Y projective algebraic over \mathbb{Q} and E over \mathbb{Q};
- $I_{p} H(Y ; \mathbb{E})$ may be defined algebraically;

Langlands's Program:

Representations of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$	$?$	Representations of G in $L^{2}(\Gamma \backslash G)$
Artin L-functions	$?$	Automorphic L-functions

One source of Galois representations:

- Start with Y projective algebraic over \mathbb{Q} and E over \mathbb{Q};
- $I_{p} H(Y ; \mathbb{E})$ may be defined algebraically;
- Thus Gal($(\mathbb{Q} / \mathbb{Q})$ acts on $I_{p} H(Y ; \mathbb{E})$.

Langlands's Program:

Representations of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$	\longleftrightarrow	Representations of G in $L^{2}(\Gamma \backslash G)$
Artin L-functions	$?$	Automorphic L-functions

One source of Galois representations:

- Start with Y projective algebraic over \mathbb{Q} and E over \mathbb{Q};
- $I_{p} H(Y ; \mathbb{E})$ may be defined algebraically;
- Thus $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ acts on $I_{p} H(Y ; \mathbb{E})$.

For Y smooth, one obtains the Hasse-Weil zeta function of Y, which encodes $\# Y\left(\mathbb{F}_{p^{k}}\right)$ for all prime powers p^{k}.

Thus Langlands's program predicts
Hasse-Weil zeta

function of $Y$$\quad \stackrel{?}{ } \quad$| automorphic |
| :--- |
| L-functions |

Thus Langlands's program predicts
Hasse-Weil zeta

function of $Y$$\quad \stackrel{?}{\longleftrightarrow} \quad$| automorphic |
| :--- |
| L-functions |

Examples:

- $Y=$ a point: class-field theory;

Thus Langlands's program predicts
Hasse-Weil zeta

function of $Y$$\quad \stackrel{?}{ } \quad$| automorphic |
| :--- |
| L-functions |

Examples:

- $Y=$ a point: class-field theory;
- $Y=$ an elliptic curve: the Shimura-Taniyama-Weil conjecture (\Longrightarrow Fermat's last theorem);

Thus Langlands's program predicts
Hasse-Weil zeta

function of $Y$$\quad ? \quad$| automorphic |
| :--- |
| L-functions |

Examples:

- $Y=$ a point: class-field theory;
- $Y=$ an elliptic curve: the Shimura-Taniyama-Weil conjecture (\Longrightarrow Fermat's last theorem);
- $Y=X^{*}$: our case.

Compare L-functions via fixed-point formulas:

Lefschetz fixed point formula for Frobenius on $I_{p} H\left(X^{*} ; \mathbb{E}\right)$

Arthur-Selberg trace formula for Hecke operators on $H_{(2)}(X ; \mathbb{E})$

Compare L-functions via fixed-point formulas:
Lefschetz fixed
point formula for for

Frobenius on $I_{p} H\left(X^{*} ; \mathbb{E}\right)$$\quad ? \quad$| Arthur-Selberg trace |
| :---: |
| formula for Hecke |

Problems:

Compare L-functions via fixed-point formulas:

> Lefschetz fixed point formula for Frobenius on $I_{p} H\left(X^{*} ; \mathbb{E}\right)$$\quad ? \quad \begin{gathered}\text { Arthur-Selberg trace } \\ \text { formula for Hecke } \\ \text { operators on } H_{(2)}(X ; \mathbb{E})\end{gathered}$

Problems:

- Local contributions on left involve local intersection cohomology of X^{*} - hard since the links are complicated.

Compare L-functions via fixed-point formulas:

$$
\begin{gathered}
\text { Lefschetz fixed } \\
\text { point formula for } \\
\text { Frobenius on } I_{p} H\left(X^{*} ; \mathbb{E}\right)
\end{gathered} \quad ? \quad \begin{gathered}
\text { Arthur-Selberg trace } \\
\text { formula for Heke } \\
\text { operators on } H_{(2)}(X ; \mathbb{E})
\end{gathered}
$$

Problems:

- Local contributions on left involve local intersection cohomology of X^{*} - hard since the links are complicated.
- Strata of X^{*} indexed by maximal parabolic subgroups R, while terms in trace formula indexed by all parabolic subgroups.

Compare L-functions via fixed-point formulas:

$$
\begin{gathered}
\text { Lefschetz fixed } \\
\text { point formula for } \\
\text { Frobenius on } I_{p} H\left(X^{*} ; \mathbb{E}\right)
\end{gathered} \quad ? \quad \begin{gathered}
\text { Arthur-Selberg trace } \\
\text { formula for Hecke } \\
\text { operators on } H_{(2)}(X ; \mathbb{E})
\end{gathered}
$$

Problems:

- Local contributions on left involve local intersection cohomology of X^{*} - hard since the links are complicated.
- Strata of X^{*} indexed by maximal parabolic subgroups R, while terms in trace formula indexed by all parabolic subgroups.
- Many other difficulties.

Structure of X^{*} near a stratum $X_{R, h}$:

Structure of X^{*} near a stratum $X_{R, h}$:

Structure of X^{*} near a stratum $X_{R, h}$:

Structure of X^{*} near a stratum $X_{R, h}$:

$\mathcal{N}_{R}=\Gamma \backslash N_{R}=$ a compact nilmanifold.
$X_{R, \ell}=$ a possibly non-Hermitian locally symmetric space.

Structure of X^{*} near a stratum $X_{R, h}$:

$\mathcal{N}_{R}=\Gamma \backslash N_{R}=$ a compact nilmanifold.
$X_{R, \ell}=$ a possibly non-Hermitian locally symmetric space.
Since we do not have an effective method in general to compute the cohomology of a locally symmetric space, the local intersection cohomology of X^{*} is difficult to work with.

Solution: "resolve" X^{*}. There are two quite different approaches:
(i)

Solution: "resolve" X^{*}. There are two quite different approaches:
(i) The toroidal compactification $\widetilde{X} \rightarrow X^{*}$ (Mumford, et al.)

- smooth, algebraic, but non-canonical
- $I_{p} H\left(X^{*} ; \mathbb{E}\right)$ is a direct summand of $H(\widetilde{X} ; \widetilde{\mathbb{E}})$, but not canonically
(ii)

Solution: "resolve" X^{*}. There are two quite different approaches:
(i) The toroidal compactification $\widetilde{X} \rightarrow X^{*}$ (Mumford, et al.)

- smooth, algebraic, but non-canonical
- $I_{p} H\left(X^{*} ; \mathbb{E}\right)$ is a direct summand of $H(\widetilde{X} ; \widetilde{\mathbb{E}})$, but not canonically
(ii) The reductive Borel-Serre compactification $\widehat{X} \xrightarrow{\pi} X^{*}$ (Zucker)
- mild singularities, not complex analytic, canonical
- ?

Solution: "resolve" X^{*}. There are two quite different approaches:
(i) The toroidal compactification $\widetilde{X} \rightarrow X^{*}$ (Mumford, et al.)

- smooth, algebraic, but non-canonical
- $I_{p} H\left(X^{*} ; \mathbb{E}\right)$ is a direct summand of $H(\widetilde{X} ; \widetilde{\mathbb{E}})$, but not canonically
(ii) The reductive Borel-Serre compactification $\widehat{X} \xrightarrow{\pi} X^{*}$ (Zucker)
- mild singularities, not complex analytic, canonical
- Conjecture (Rapoport, Goresky-MacPherson): $I_{p} H\left(X^{*} ; \mathbb{E}\right) \cong$ $I_{p} H(\widehat{X} ; \mathbb{E})$.

Solution: "resolve" X^{*}. There are two quite different approaches:
(i) The toroidal compactification $\widetilde{X} \rightarrow X^{*}$ (Mumford, et al.)

- smooth, algebraic, but non-canonical
- $I_{p} H\left(X^{*} ; \mathbb{E}\right)$ is a direct summand of $H(\widetilde{X} ; \widetilde{\mathbb{E}})$, but not canonically
(ii) The reductive Borel-Serre compactification $\widehat{X} \xrightarrow{\pi} X^{*}$ (Zucker)
- mild singularities, not complex analytic, canonical
- Conjecture (Rapoport, Goresky-MacPherson): $I_{p} H\left(X^{*} ; \mathbb{E}\right) \cong$ $I_{p} H(\widehat{X} ; \mathbb{E})$.

Theorem (S.). The conjecture above is true.

The reductive Borel-Serre compactification \widehat{X}

Three constructions:
(i) "Blow up" each stratum of X^{*} (replace each point with its link) and collapse the nilmanifold fibers
(ii) Remove a neighborhood of each stratum of X^{*} and collapse the nilmanifold fibers on boundary faces
(iii) Start with the Borel-Serre compactification
 (1973) \bar{X} (a manifold with corners) and collapse the nilmanifold fibers on the boundary faces (applies to any locally symmetric space X)

Example: Hilbert Modular Surface $\operatorname{SL}\left(2, \mathcal{O}_{k}\right) \backslash(H \times H)$ Here $k=\mathbb{Q}(\sqrt{d}), d>0$. Near "infinity", $\operatorname{SL}\left(2, \mathcal{O}_{k}\right)$ acts via

$$
\left\{\left.\left(\begin{array}{cc}
1 & a \\
0 & 1
\end{array}\right) \right\rvert\, a \in \mathcal{O}_{k}\right\} \quad \rtimes \quad\left\{\left.\left(\begin{array}{cc}
u & 0 \\
0 & u^{-1}
\end{array}\right) \right\rvert\, u \in \mathcal{O}_{k}^{\times}\right\}
$$

$$
\mathcal{O}_{k}=\mathbb{Z}+\mathbb{Z} \delta
$$

Thus

	Boundary stratum	Link
\bar{X}	flat T^{2}-bundle over S^{1}	point
\widehat{X}	S^{1}	T^{2}
X^{*}	point	flat T^{2}-bundle over S^{1}

The hyperbola $y_{1} y_{2}=b$ in the $y_{1} y_{2}$-plane becomes the S^{1} above under the action of $\left\{\left.\left(\begin{array}{cc}u & 0 \\ 0 & u^{-1}\end{array}\right) \right\rvert\, u \in \mathcal{O}_{k}^{\times}\right\}$. The T^{2}-fibers correspond to the $x_{1} x_{2}$-plane modulo a lattice.
By the way, the metric is $d r^{2}+d s_{S^{1}}^{2}+e^{-2 r} d s_{T^{2}}^{2}$.

Thus

	Boundary stratum	Link
\bar{X}	flat T^{2}-bundle over S^{1}	point
\widehat{X}	S^{1}	T^{2}
X^{*}	point	flat T^{2}-bundle over S^{1}

The hyperbola $y_{1} y_{2}=b$ in the $y_{1} y_{2}$-plane becomes the S^{1} above under the action of $\left\{\left.\left(\begin{array}{cc}u & 0 \\ 0 & u^{-1}\end{array}\right) \right\rvert\, u \in \mathcal{O}_{k}^{\times}\right\}$. The T^{2}-fibers correspond to the $x_{1} x_{2}$-plane modulo a lattice.
By the way, the metric is $d r^{2}+d s_{S^{1}}^{2}+e^{-2 r} d s_{T^{2}}^{2}$.

In general, the space S^{1} above will be replaced by a locally symmetric space X_{P}; the fibers T^{2} above will be replaced in general by a compact nilmanifold \mathcal{N}_{P}. Here P is a 「-conjugacy class of parabolic \mathbb{Q}-subgroups of G; these index the strata.

Moral:

Moral: As we pass from \bar{X} to \widehat{X} to X^{*},

Moral: As we pass from \bar{X} to \widehat{X} to X^{*},

- strata become simpler;

Moral: As we pass from \bar{X} to \widehat{X} to X^{*},

- strata become simpler;
- links become more complicated; and hence

Moral: As we pass from \bar{X} to \widehat{X} to X^{*},

- strata become simpler;
- links become more complicated; and hence
- local intersection cohomology becomes more complicated.

Equal-rank generalization:

X is equal-rank if rank $G=\operatorname{rank} K$; all Hermitian symmetric spaces are equal-rank.

Equal-rank generalization:

X is equal-rank if rank $G=\operatorname{rank} K$; all Hermitian symmetric spaces are equal-rank.
Theorem (Borel and Casselman). If X is equal-rank then
$H_{(2)}(X ; \mathbb{E}) \cong \mathcal{H}_{(2)}(X ; \mathbb{E})$ is finite-dimensional.

Equal-rank generalization:

X is equal-rank if rank $G=\operatorname{rank} K$; all Hermitian symmetric spaces are equal-rank.
Theorem (Borel and Casselman). If X is equal-rank then
$H_{(2)}(X ; \mathbb{E}) \cong \mathcal{H}_{(2)}(X ; \mathbb{E})$ is finite-dimensional.
In this setting our main results generalize:

Equal-rank generalization:

X is equal-rank if rank $G=\operatorname{rank} K$; all Hermitian symmetric spaces are equal-rank.
Theorem (Borel and Casselman). If X is equal-rank then
$H_{(2)}(X ; \mathbb{E}) \cong \mathcal{H}_{(2)}(X ; \mathbb{E})$ is finite-dimensional.
In this setting our main results generalize:
Theorem (Borel Conjecture, S. and Stern). Let X^{*} be a Satake compactification for which all real boundary components are equal-rank. Then

$$
H_{(2)}(X ; \mathbb{E}) \cong \mathcal{H}_{(2)}(X ; \mathbb{E}) \cong I_{p} H\left(X^{*} ; \mathbb{E}\right)
$$

Equal-rank generalization:

X is equal-rank if rank $G=\operatorname{rank} K$; all Hermitian symmetric spaces are equal-rank.
Theorem (Borel and Casselman). If X is equal-rank then
$H_{(2)}(X ; \mathbb{E}) \cong \mathcal{H}_{(2)}(X ; \mathbb{E})$ is finite-dimensional.
In this setting our main results generalize:
Theorem (Borel Conjecture, S. and Stern). Let X^{*} be a Satake compactification for which all real boundary components are equal-rank. Then

$$
H_{(2)}(X ; \mathbb{E}) \cong \mathcal{H}_{(2)}(X ; \mathbb{E}) \cong I_{p} H\left(X^{*} ; \mathbb{E}\right)
$$

Theorem (S.). Let X^{*} be a Satake compactification for which all real boundary components are equal-rank. Then

$$
I_{p} H\left(X^{*} ; \mathbb{E}\right) \cong I_{p} H(\widehat{X} ; \mathbb{E})
$$

Non-equal-rank case:

When X is not equal-rank, $\mathcal{H}_{(2)}(X ; \mathbb{E})$ may not represent L^{2} cohomology (which can be infinite dimensional!).

Non-equal-rank case:

When X is not equal-rank, $\mathcal{H}_{(2)}(X ; \mathbb{E})$ may not represent L^{2} cohomology (which can be infinite dimensional!).

Nonetheless we can prove a topological interpretation:

Non-equal-rank case:

When X is not equal-rank, $\mathcal{H}_{(2)}(X ; \mathbb{E})$ may not represent L^{2} cohomology (which can be infinite dimensional!).

Nonetheless we can prove a topological interpretation:

Theorem (S.).

$$
\mathcal{H}_{(2)}(X ; \mathbb{E}) \cong \operatorname{Im}\left(I_{m} H(\widehat{X} ; \mathbb{E}) \longrightarrow I_{n} H(\widehat{X} ; \mathbb{E})\right)
$$

Non-equal-rank case:

When X is not equal-rank, $\mathcal{H}_{(2)}(X ; \mathbb{E})$ may not represent L^{2} cohomology (which can be infinite dimensional!).

Nonetheless we can prove a topological interpretation:

Theorem (S.).

$$
\mathcal{H}_{(2)}(X ; \mathbb{E}) \cong \operatorname{Im}\left(I_{m} H(\widehat{X} ; \mathbb{E}) \longrightarrow I_{n} H(\widehat{X} ; \mathbb{E})\right)
$$

provided the \mathbb{Q}-root system of G does not have a factor of type D_{n}, E_{n}, or F_{4}.

Non-equal-rank case:

When X is not equal-rank, $\mathcal{H}_{(2)}(X ; \mathbb{E})$ may not represent L^{2} cohomology (which can be infinite dimensional!).

Nonetheless we can prove a topological interpretation:

Theorem (S.).

$$
\mathcal{H}_{(2)}(X ; \mathbb{E}) \cong \operatorname{Im}\left(I_{m} H(\widehat{X} ; \mathbb{E}) \longrightarrow I_{n} H(\widehat{X} ; \mathbb{E})\right)
$$

provided the \mathbb{Q}-root system of G does not have a factor of type D_{n}, E_{n}, or F_{4}.

The condition on the \mathbb{Q}-root system should be able to be removed.

Non-equal-rank case:

When X is not equal-rank, $\mathcal{H}_{(2)}(X ; \mathbb{E})$ may not represent L^{2} cohomology (which can be infinite dimensional!).

Nonetheless we can prove a topological interpretation:

Theorem (S.).

$$
\mathcal{H}_{(2)}(X ; \mathbb{E}) \cong \operatorname{Im}\left(I_{m} H(\widehat{X} ; \mathbb{E}) \longrightarrow I_{n} H(\widehat{X} ; \mathbb{E})\right)
$$

provided the \mathbb{Q}-root system of G does not have a factor of type D_{n}, E_{n}, or F_{4}.

The condition on the \mathbb{Q}-root system should be able to be removed.

How are these results proved?

Non-equal-rank case:

When X is not equal-rank, $\mathcal{H}_{(2)}(X ; \mathbb{E})$ may not represent L^{2} cohomology (which can be infinite dimensional!).

Nonetheless we can prove a topological interpretation:
Theorem (S.).

$$
\mathcal{H}_{(2)}(X ; \mathbb{E}) \cong \operatorname{Im}\left(I_{m} H(\widehat{X} ; \mathbb{E}) \longrightarrow I_{n} H(\widehat{X} ; \mathbb{E})\right)
$$

provided the \mathbb{Q}-root system of G does not have a factor of type D_{n}, E_{n}, or F_{4}.

The condition on the \mathbb{Q}-root system should be able to be removed.

How are these results proved?
The theory of \mathcal{L}-modules and micro-support ...

The poset \mathcal{P}

$\mathcal{P}=\Gamma$-conjugacy classes of parabolic \mathbb{Q}-subgroups. For example (when \mathbb{Q}-rank $G=2$):

The Levi quotients $\mathcal{L}=\mathcal{L}_{\mathcal{P}}$

Pass to the reductive Levi quotients $L_{Q}=Q / N_{Q}$ for all $Q \in \mathcal{P}$.

$$
L_{G}
$$

$L_{Q_{1}}$
$L_{Q_{2}}$
L_{P}

An L-module \mathcal{M}

An \mathcal{L}-module consists of graded L_{Q}-modules E_{Q} for all $Q \ldots$

$$
E_{G}
$$

$$
E_{Q_{1}}
$$

$$
E_{Q_{2}}
$$

E_{P}

An \mathcal{L}-module \mathcal{M}

and degree 1 morphisms $f_{P Q}: H\left(\mathfrak{n}_{P}^{Q} ; E_{Q}\right) \xrightarrow{[1]} E_{P}$ for all $P \leq Q$

$$
E_{G}
$$

An L-module \mathcal{M}

satisfying $\sum_{P \leq Q \leq R} f_{P Q} \circ H\left(\mathfrak{n}_{P}^{Q} ; f_{Q R}\right)=0$ for all $P \leq R$.

$$
E_{G}
$$

The realization $\mathcal{S}_{\widehat{X}}(\mathcal{M})$

The realization $\mathcal{S}_{\widehat{X}}(\mathcal{M})$ with d. factored

The micro-support $S S(\mathcal{M})$ of an \mathcal{L}-module \mathcal{M}

Roughly $\operatorname{SS}(\mathcal{M})$ consists of all irreducible representations V of L_{P} (any $P \in \mathcal{P}$) such that

$$
\begin{aligned}
& \left(\left.V\right|_{M_{P}}\right)^{*} \cong \overline{\left.V\right|_{M_{P}}}, \text { and } \\
& H\left(i_{P}^{*} \imath_{Q_{V}} \mathcal{M}\right)_{V}=H\left(U, U \backslash\left(U \cap \widehat{X}_{Q_{V}}\right) ; \mathcal{M}\right)_{V} \neq 0
\end{aligned}
$$

Here we write $L_{P}=M_{P} A_{P}$ where A_{P} is the \mathbb{Q}-split center of L_{P} and $Q_{V} \geq P$ is chosen depending on the character by which A_{P} acts on V. Finally U is a small neighborhood of a point on the P-stratum X_{P}.

To summarize:

To summarize:

- An L-module \mathcal{M} on \widehat{X} is a combinatorial model for a constructible complex of sheaves $\mathcal{S}(\mathcal{M})$ on \widehat{X}.

To summarize:

- An L-module \mathcal{M} on \widehat{X} is a combinatorial model for a constructible complex of sheaves $\mathcal{S}(\mathcal{M})$ on \widehat{X}.
- Our various cohomological invariants equal $H(\widehat{X} ; \mathcal{M}):=H(\widehat{X} ; \mathcal{S}(\mathcal{M}))$ for various \mathcal{L}-modules \mathcal{M};

To summarize:

- An L-module \mathcal{M} on \widehat{X} is a combinatorial model for a constructible complex of sheaves $\mathcal{S}(\mathcal{M})$ on \widehat{X}.
- Our various cohomological invariants equal $H(\widehat{X} ; \mathcal{M}):=H(\widehat{X} ; \mathcal{S}(\mathcal{M}))$ for various \mathcal{L}-modules \mathcal{M};
- To every \mathcal{L}-module \mathcal{M} there is associated an invariant called the micro-support $\operatorname{SS}(\mathcal{M})$, it is a finite collection of irreducible finite-dimensional representations of all Levi quotients L_{P}.

To summarize:

- An \mathcal{L}-module \mathcal{M} on \widehat{X} is a combinatorial model for a constructible complex of sheaves $\mathcal{S}(\mathcal{M})$ on \widehat{X}.
- Our various cohomological invariants equal $H(\widehat{X} ; \mathcal{M}):=H(\widehat{X} ; \mathcal{S}(\mathcal{M}))$ for various \mathcal{L}-modules \mathcal{M};
- To every \mathcal{L}-module \mathcal{M} there is associated an invariant called the micro-support $\operatorname{SS}(\mathcal{M})$, it is a finite collection of irreducible finite-dimensional representations of all Levi quotients L_{P}.

Our results follow from three theorems on \mathcal{L}-modules:

To summarize:

- An L-module \mathcal{M} on \widehat{X} is a combinatorial model for a constructible complex of sheaves $\mathcal{S}(\mathcal{M})$ on \widehat{X}.
- Our various cohomological invariants equal $H(\widehat{X} ; \mathcal{M}):=H(\widehat{X} ; \mathcal{S}(\mathcal{M}))$ for various \mathcal{L}-modules \mathcal{M};
- To every \mathcal{L}-module \mathcal{M} there is associated an invariant called the micro-support $\operatorname{SS}(\mathcal{M})$, it is a finite collection of irreducible finite-dimensional representations of all Levi quotients L_{P}.

Our results follow from three theorems on \mathcal{L}-modules:

- a Vanishing Theorem for global cohomology;

To summarize:

- An L-module \mathcal{M} on \widehat{X} is a combinatorial model for a constructible complex of sheaves $\mathcal{S}(\mathcal{M})$ on \widehat{X}.
- Our various cohomological invariants equal $H(\widehat{X} ; \mathcal{M}):=H(\widehat{X} ; \mathcal{S}(\mathcal{M}))$ for various \mathcal{L}-modules \mathcal{M};
- To every \mathcal{L}-module \mathcal{M} there is associated an invariant called the micro-support $\operatorname{SS}(\mathcal{M})$, it is a finite collection of irreducible finite-dimensional representations of all Levi quotients L_{P}.

Our results follow from three theorems on \mathcal{L}-modules:

- a Vanishing Theorem for global cohomology;
- a Micro-purity Theorem for $\mathcal{I}_{p} \mathcal{C}(\widehat{X} ; E)$;

To summarize:

- An L-module \mathcal{M} on \widehat{X} is a combinatorial model for a constructible complex of sheaves $\mathcal{S}(\mathcal{M})$ on \widehat{X}.
- Our various cohomological invariants equal $H(\widehat{X} ; \mathcal{M}):=H(\widehat{X} ; \mathcal{S}(\mathcal{M}))$ for various \mathcal{L}-modules \mathcal{M};
- To every \mathcal{L}-module \mathcal{M} there is associated an invariant called the micro-support $S S(\mathcal{M})$, it is a finite collection of irreducible finite-dimensional representations of all Levi quotients L_{P}.

Our results follow from three theorems on \mathcal{L}-modules:

- a Vanishing Theorem for global cohomology;
- a Micro-purity Theorem for $\mathcal{I}_{p} \mathcal{C}(\widehat{X} ; E)$;
- a Functoriality Theorem for micro-support.

Vanishing Theorem for the Cohomology of an \mathcal{L}-module

Define

$$
\begin{aligned}
& c(\mathcal{M})=\inf _{V \in \operatorname{SS}(\mathcal{M})} \frac{1}{2}\left(\operatorname{dim} D_{P}-\operatorname{dim} D_{P}(V)\right)+c(V ; \mathcal{M}) \\
& d(\mathcal{M})=\sup _{V \in \operatorname{SS}(\mathcal{M})} \frac{1}{2}\left(\operatorname{dim} D_{P}+\operatorname{dim} D_{P}(V)\right)+d(V ; \mathcal{M})
\end{aligned}
$$

The first terms are the range of degrees where $H_{(2)}\left(X_{P} ; \mathbb{V}\right)$ can be nonzero by a vanishing theorem of Raghunathan.

The second terms are computed combinatorily from the microsupport.

Vanishing Theorem. $H^{i}(\widehat{X} ; \mathcal{M})=0$ for $i \notin[c(\mathcal{M}), d(\mathcal{M})]$.
In particular, $H(\widehat{X} ; \mathcal{M}) \equiv 0$ if $\mathrm{SS}(\mathcal{M})=\emptyset$.

Micro-support of Intersection Cohomology

Micro-support is not always so easy to compute. The following is a very deep combinatorial result.

Micro-Purity Theorem. Assume the \mathbb{Q}-root system of G does not contain a factor of type D_{n}, E_{n}, or F_{4}. Let p be a middle perversity. If $E^{*} \cong \bar{E}$, then $\operatorname{SS}\left(\mathcal{I}_{p} \mathcal{C}(\widehat{X} ; E)\right)=\{E\}$.

A simpler result is
Theorem. If $E^{*} \cong \bar{E}$, then $\operatorname{SS}\left(\mathcal{L}_{(2)}(\widehat{X} ; E)\right)=\{E\}$.

Functoriality of Micro-support

Let \mathcal{M} be an \mathcal{L}-module for which $\operatorname{SS}(\mathcal{M})=\{E\}$ (e.g. $\mathcal{I}_{p} \mathcal{C}(\widehat{X} ; E)$ or $\mathcal{L}_{(2)}(\widehat{X} ; E)$).

Let $\pi: \widehat{X} \rightarrow X^{*}$ be the projection onto a Satake compactification with equal-rank real boundary components.

To prove Zucker and Rapoport's conjecture, we need to check the local vanishing condition for the pushforward of \mathcal{M} by π. Equivalently we need to show

$$
H^{i}\left(\pi^{-1}(x) ;\left.\mathcal{M}\right|_{\pi^{-1}(x)}\right)=0 \quad \text { for } i>\frac{1}{2} \operatorname{codim} X_{R, h}-1
$$

However $\pi^{-1}(x) \cong \widehat{X}_{R, \ell} \times\{x\}$.
The Vanishing Theorem implies

$$
H^{i}\left(\widehat{X}_{R, \ell} ;\left.\mathcal{M}\right|_{\widehat{X}_{R, \ell}}\right)=0 \quad \text { for } i>d\left(\left.\mathcal{M}\right|_{\widehat{X}_{R, \ell}}\right)
$$

Thus the following theorem completes the proof:

Functoriality Theorem. Let \mathcal{M} be an L-module with $\operatorname{SS}(\mathcal{M})=\{E\}$ and let $X_{R, h}$ be a stratum of a Satake compactification X^{*} with real equal-
 rank boundary components. Then

$$
d\left(\left.\mathcal{M}\right|_{\widehat{X}_{R, \ell}}\right) \leq \frac{1}{2} \operatorname{codim} X_{R, h}-1
$$

Final remark:

L-modules have many other applications besides the Rapoport-Goresky-MacPherson conjecture. For example:

Theorem (S., Li-Schwermer). If E has regular highest weight, then

$$
H^{i}(X ; E)=0 \quad \text { for } i<\frac{1}{2}(\operatorname{dim} X-(\operatorname{rank} G-\operatorname{rank} K))
$$

