International Conference and Instructional Workshop on Discrete Groups Morningside Center of Mathematics, Beijing July 17 – August 4, 2006

Cohomology of Locally Symmetric Spaces

Leslie Saper, Duke University

http://www.math.duke.edu/faculty/saper/

Data:

Data:

D = G/K, a symmetric space of noncompact type,

 $\Gamma \subset G$, an arithmetically defined torsion-free discrete subgroup,

 $X = \Gamma \backslash D$, the corresponding locally symmetric space,

E, a finite dimensional representation of G, and

 $\mathbb{E} = D \times_{\Gamma} E$, the corresponding locally constant sheaf on X.

• $H(X; \mathbb{E})$, the ordinary cohomology,

- $H(X; \mathbb{E})$, the ordinary cohomology,
- $H_{(2)}(X; \mathbb{E})$, the L^2 -cohomology,

- $H(X; \mathbb{E})$, the ordinary cohomology,
- $H_{(2)}(X; \mathbb{E})$, the L^2 -cohomology,
- $\mathcal{H}_{(2)}(X;\mathbb{E})$, the L^2 -harmonic forms,

- $H(X; \mathbb{E})$, the ordinary cohomology,
- $H_{(2)}(X; \mathbb{E})$, the L^2 -cohomology,
- $\mathcal{H}_{(2)}(X;\mathbb{E})$, the L^2 -harmonic forms,
- $IH(\widehat{X}; \mathbb{E})$, the intersection homology of the reductive Borel-Serre compactification,

- $H(X; \mathbb{E})$, the ordinary cohomology,
- $H_{(2)}(X; \mathbb{E})$, the L^2 -cohomology,
- $\mathcal{H}_{(2)}(X;\mathbb{E})$, the L^2 -harmonic forms,
- $IH(\widehat{X}; \mathbb{E})$, the intersection homology of the reductive Borel-Serre compactification,

• . . .

Specifically,

• What are these invariants and the relations between them?

Specifically,

- What are these invariants and the relations between them?
- Why are they important?

Specifically,

- What are these invariants and the relations between them?
- Why are they important?
- How can one prove these relations?

Specifically,

- What are these invariants and the relations between them?
- Why are they important?
- **How** can one prove these relations?

We will address these questions via a specific problem . . .

 $\mathcal{H}_{(2)}(X;\mathbb{E})=\mathbb{E}$ -valued differential forms ϕ on X such that

 $\mathcal{H}_{(2)}(X;\mathbb{E})=\mathbb{E}$ -valued differential forms ϕ on X such that

 \bullet ϕ is harmonic:

$$\Delta \phi = (dd^* + d^*d)\phi = 0, \quad \text{and}$$

 $\mathcal{H}_{(2)}(X;\mathbb{E})=\mathbb{E}$ -valued differential forms ϕ on X such that

 \bullet ϕ is harmonic:

$$\Delta \phi = (dd^* + d^*d)\phi = 0, \quad \text{and}$$

• ϕ is L^2 :

$$\int_X |\phi|^2 \, dV_X < \infty.$$

 $\mathcal{H}_{(2)}(X;\mathbb{E})=\mathbb{E}$ -valued differential forms ϕ on X such that

 \bullet ϕ is harmonic:

$$\Delta \phi = (dd^* + d^*d)\phi = 0, \quad \text{and}$$

• ϕ is L^2 :

$$\int_X |\phi|^2 \, dV_X < \infty.$$

Problem:

Give a topological description of $\mathcal{H}_{(2)}(X;\mathbb{E})$.

Easy case: X is compact.

Easy case: X is compact.

A solution is given by the Hodge-de Rham isomorphism:

$$\mathcal{H}_{(2)}(X;\mathbb{E}) \cong H_{\mathsf{dR}}(X;\mathbb{E}) \cong H(X;\mathbb{E})$$

where

$$H_{dR}(X; \mathbb{E}) = \frac{\operatorname{Ker} d}{\operatorname{Im} d} = \frac{\operatorname{closed forms}}{\operatorname{exact forms}} = \operatorname{de Rham cohomology},$$

 $H(X; \mathbb{E}) = \text{topological cohomology}.$

Easy case: X is compact.

A solution is given by the Hodge-de Rham isomorphism:

$$\mathcal{H}_{(2)}(X;\mathbb{E}) \cong H_{\mathsf{dR}}(X;\mathbb{E}) \cong H(X;\mathbb{E})$$

where

$$H_{\mathrm{dR}}(X;\mathbb{E}) = \frac{\mathrm{Ker}\,d}{\mathrm{Im}\,d} = \frac{\mathrm{closed\ forms}}{\mathrm{exact\ forms}} = \mathrm{de\ Rham\ cohomology},$$

 $H(X; \mathbb{E}) = \text{topological cohomology}.$

Sketch of proof:

- All smooth forms are L^2 .
- Im d is closed so $\frac{\operatorname{Ker} d}{\operatorname{Im} d} = (\operatorname{Ker} d) \cap (\operatorname{Im} d)^{\perp} = \operatorname{Ker} \Delta$.
- Poincaré lemma.

Poincaré Duality: $H^i(X; \mathbb{C}) \cong H^{\dim X - i}(X; \mathbb{C})^*$.

Poincaré Duality: $H^i(X; \mathbb{C}) \cong H^{\dim X - i}(X; \mathbb{C})^*$.

If X is complex Kähler one has in addition

Hodge Decomposition: $H^i(X; \mathbb{C}) = \bigoplus_{p+q=i} H^{p,q}(X)$, where $\overline{H}^{p,q}(X) = H^{q,p}(X)$.

Poincaré Duality: $H^i(X; \mathbb{C}) \cong H^{\dim X - i}(X; \mathbb{C})^*$.

If X is complex Kähler one has in addition

Hodge Decomposition: $H^i(X; \mathbb{C}) = \bigoplus_{p+q=i} H^{p,q}(X)$, where $\overline{H}^{p,q}(X) = H^{q,p}(X)$.

Hard Lefschetz: $H^i(X;\mathbb{C})=\bigoplus_k L^k P^{i-2k}(X;\mathbb{C}),$ where $L=\omega\wedge\cdot$ and $P^{i-2k}(X;\mathbb{C})=\operatorname{Ker} L^{k+1}=\operatorname{primitive}$ cohomology.

Poincaré Duality: $H^i(X; \mathbb{C}) \cong H^{\dim X - i}(X; \mathbb{C})^*$.

If X is complex Kähler one has in addition

Hodge Decomposition: $H^i(X; \mathbb{C}) = \bigoplus_{p+q=i} H^{p,q}(X)$, where $\overline{H}^{p,q}(X) = H^{q,p}(X)$.

Hard Lefschetz: $H^i(X;\mathbb{C})=\bigoplus_k L^k P^{i-2k}(X;\mathbb{C}),$ where $L=\omega\wedge\cdot$ and $P^{i-2k}(X;\mathbb{C})=\operatorname{Ker} L^{k+1}=\operatorname{primitive}$ cohomology.

But the Hodge-de Rham isomorphism fails in the noncompact case in general.

In this case, $\mathcal{H}_{(2)}(X;\mathbb{E})$ is sometimes equal to a variant of de Rham cohomology, the L^2 -cohomology:

In this case, $\mathcal{H}_{(2)}(X;\mathbb{E})$ is sometimes equal to a variant of de Rham cohomology, the L^2 -cohomology:

$$A_{(2)}(X; \mathbb{E}) = \{ \phi \mid \phi, \ d\phi \in L^2 \},$$

In this case, $\mathcal{H}_{(2)}(X;\mathbb{E})$ is sometimes equal to a variant of de Rham cohomology, the L^2 -cohomology:

$$A_{(2)}(X; \mathbb{E}) = \{ \phi \mid \phi, \ d\phi \in L^2 \},$$

$$H_{(2)}(X; \mathbb{E}) = H(A_{(2)}(X; \mathbb{E})) = \text{the } L^2\text{-cohomology}.$$

In this case, $\mathcal{H}_{(2)}(X;\mathbb{E})$ is sometimes equal to a variant of de Rham cohomology, the L^2 -cohomology:

$$A_{(2)}(X; \mathbb{E}) = \{ \phi \mid \phi, \ d\phi \in L^2 \},$$

$$H_{(2)}(X; \mathbb{E}) = H(A_{(2)}(X; \mathbb{E})) = \text{the } L^2\text{-cohomology}.$$

Theorem. If dim $H_{(2)}(X; \mathbb{E}) < \infty$, then $H_{(2)}(X; \mathbb{E}) \cong \mathcal{H}_{(2)}(X; \mathbb{E})$ and satisfies Poincaré duality.

In this case, $\mathcal{H}_{(2)}(X;\mathbb{E})$ is sometimes equal to a variant of de Rham cohomology, the L^2 -cohomology:

$$A_{(2)}(X; \mathbb{E}) = \{ \phi \mid \phi, \ d\phi \in L^2 \},$$

$$H_{(2)}(X; \mathbb{E}) = H(A_{(2)}(X; \mathbb{E})) = \text{the } L^2\text{-cohomology}.$$

Theorem. If dim $H_{(2)}(X; \mathbb{E}) < \infty$, then $H_{(2)}(X; \mathbb{E}) \cong \mathcal{H}_{(2)}(X; \mathbb{E})$ and satisfies Poincaré duality.

Proof:

$$\operatorname{Ker} d / \operatorname{Im} d = \left(\operatorname{Ker} d / \overline{\operatorname{Im} d} \right) \bigoplus \left(\overline{\operatorname{Im} d} / \operatorname{Im} d \right)$$

In this case, $\mathcal{H}_{(2)}(X;\mathbb{E})$ is sometimes equal to a variant of de Rham cohomology, the L^2 -cohomology:

$$A_{(2)}(X; \mathbb{E}) = \{ \phi \mid \phi, \ d\phi \in L^2 \},$$

$$H_{(2)}(X; \mathbb{E}) = H(A_{(2)}(X; \mathbb{E})) = \text{the } L^2\text{-cohomology}.$$

Theorem. If dim $H_{(2)}(X; \mathbb{E}) < \infty$, then $H_{(2)}(X; \mathbb{E}) \cong \mathcal{H}_{(2)}(X; \mathbb{E})$ and satisfies Poincaré duality.

Proof:

$$\operatorname{Ker} d / \operatorname{Im} d = \left(\operatorname{Ker} d / \overline{\operatorname{Im} d} \right) \bigoplus \left(\overline{\operatorname{Im} d} / \operatorname{Im} d \right)$$
$$= \mathcal{H}_{(2)}(X; \mathbb{E}) \bigoplus \left(\begin{array}{c} 0 \text{ or} \\ \infty \text{-dimensional} \end{array} \right).$$

A Noncompact Example:

A Noncompact Example:

$$D = H = \operatorname{SL}_2(\mathbb{R})/\operatorname{SO}(2)$$

 \cong the complex upper half-plane
 $\Gamma = \operatorname{finite}$ index subgroup of $\operatorname{SL}_2(\mathbb{Z})$
 $X = \Gamma \backslash H$

A Noncompact Example:

$$D = H = SL_2(\mathbb{R})/SO(2)$$

 \cong the complex upper half-plane

 Γ = finite index subgroup of $SL_2(\mathbb{Z})$

$$X = \Gamma \backslash H$$

A Noncompact Example:

$$D = H = SL_2(\mathbb{R})/SO(2)$$

 \cong the complex upper half-plane

 Γ = finite index subgroup of $SL_2(\mathbb{Z})$

$$X = \Gamma \backslash H$$

 \mathbb{E} = associated to the k^{th} symmetric power of the standard representation

A Noncompact Example:

$$D = H = SL_2(\mathbb{R})/SO(2)$$

 \cong the complex upper half-plane

 Γ = finite index subgroup of $SL_2(\mathbb{Z})$

$$X = \Gamma \backslash H$$

 \mathbb{E} = associated to the k^{th} symmetric power of the standard representation

 $\mathbb{S}_{k+2}(\Gamma) = \text{classical holomorphic modular cusp forms of weight } k+2, \text{ that is, } f: H \to \mathbb{C} \text{ holomorphic,}$

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^{k+2}f(z)$$
 for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$,

and f vanishes at all cusps.

$$H^1_{(2)}(X;\mathbb{E}) \cong \mathcal{H}^1_{(2)}(X;\mathbb{E}) = \mathbb{S}_{k+2}(\Gamma) \oplus \overline{\mathbb{S}_{k+2}(\Gamma)}.$$

$$H^1_{(2)}(X;\mathbb{E}) \cong \mathcal{H}^1_{(2)}(X;\mathbb{E}) = \mathbb{S}_{k+2}(\Gamma) \oplus \overline{\mathbb{S}_{k+2}(\Gamma)}.$$

But we want a topological interpretation:

$$H^1_{(2)}(X;\mathbb{E}) \cong \mathcal{H}^1_{(2)}(X;\mathbb{E}) = \mathbb{S}_{k+2}(\Gamma) \oplus \overline{\mathbb{S}_{k+2}(\Gamma)}.$$

But we want a topological interpretation:

$$H^* = H \cup \mathbb{Q} \cup \{\infty\}$$
,

 $X^* = \Gamma \backslash H^* = X \cup \{\text{cusps}\},$ a projective algebraic curve defined over a number field,

$$H_P^1(X^*; \mathbb{E}) = \operatorname{Ker}(H^1(X; \mathbb{E}) \to \bigoplus_{p \in \{\text{cusps}\}} H^1(U_p; \mathbb{E}))$$
 (parabolic cohomology).

$$H^1_{(2)}(X;\mathbb{E}) \cong \mathcal{H}^1_{(2)}(X;\mathbb{E}) = \mathbb{S}_{k+2}(\Gamma) \oplus \overline{\mathbb{S}_{k+2}(\Gamma)}.$$

But we want a topological interpretation:

$$H^* = H \cup \mathbb{Q} \cup \{\infty\},\,$$

 $X^* = \Gamma \backslash H^* = X \cup \{\text{cusps}\},$ a projective algebraic curve defined over a number field,

$$H_P^1(X^*; \mathbb{E}) = \operatorname{Ker}(H^1(X; \mathbb{E}) \to \bigoplus_{p \in \{\text{cusps}\}} H^1(U_p; \mathbb{E}))$$
 (parabolic cohomology).

Theorem (Eichler-Shimura). $\mathbb{S}_{k+2}(\Gamma) \oplus \overline{\mathbb{S}_{k+2}(\Gamma)} \cong H^1_P(X^*; \mathbb{E})$.

• It suffice to show L^2 -cohomology and parabolic cohomology agree in degree 1 locally near a cusp p.

- ullet It suffice to show L^2 -cohomology and parabolic cohomology agree in degree 1 locally near a cusp p.
- The usual de Rham cohomology of $U_p = [r, \infty) \times S^1$ generated by $d\theta$.

- ullet It suffice to show L^2 -cohomology and parabolic cohomology agree in degree 1 locally near a cusp p.
- The usual de Rham cohomology of $U_p = [r, \infty) \times S^1$ generated by $d\theta$.
- The hyperbolic metric is $\frac{dx^2+dy^2}{y^2}$. Near the cusp this is $dr^2+e^{-2r}d\theta^2.$

- It suffice to show L^2 -cohomology and parabolic cohomology agree in degree 1 locally near a cusp p.
- The usual de Rham cohomology of $U_p = [r, \infty) \times S^1$ generated by $d\theta$.
- The hyperbolic metric is $\frac{dx^2+dy^2}{y^2}$. Near the cusp this is $dr^2+e^{-2r}d\theta^2.$
- Thus $\int_{U_p} |d\theta|^2 dV \sim \int_b^\infty e^r \, dr = \infty$ and hence $d\theta$ is not L^2 .

- It suffice to show L^2 -cohomology and parabolic cohomology agree in degree 1 locally near a cusp p.
- The usual de Rham cohomology of $U_p = [r, \infty) \times S^1$ generated by $d\theta$.
- The hyperbolic metric is $\frac{dx^2+dy^2}{y^2}$. Near the cusp this is $dr^2+e^{-2r}d\theta^2.$
- Thus $\int_{U_p} |d\theta|^2 dV \sim \int_b^\infty e^r \, dr = \infty$ and hence $d\theta$ is not L^2 .
- Thus L^2 -cohomology equals parabolic cohomology.

Rational Structure: $S_{k+2}(\Gamma)$ is endowed with a rational structure.

Rational Structure: $S_{k+2}(\Gamma)$ is endowed with a rational structure.

L-functions: (Γ a congruence subgroup) One can relate the Hasse-Weil zeta function of X^* (which encodes the number of points of X^* defined over all finite fields) to the L-functions associated to modular forms.

Rational Structure: $S_{k+2}(\Gamma)$ is endowed with a rational structure.

L-functions: (Γ a congruence subgroup) One can relate the Hasse-Weil zeta function of X^* (which encodes the number of points of X^* defined over all finite fields) to the L-functions associated to modular forms.

This suggests it would be useful to generalize the Eichler-Shimura isomorphism; the natural generalization is to replace the upper half-plane $H \cong \text{unit} \text{ disk in } \mathbb{C}$ by a general **Hermitian symmetric space** D.

Rational Structure: $S_{k+2}(\Gamma)$ is endowed with a rational structure.

L-functions: (Γ a congruence subgroup) One can relate the Hasse-Weil zeta function of X^* (which encodes the number of points of X^* defined over all finite fields) to the L-functions associated to modular forms.

This suggests it would be useful to generalize the Eichler-Shimura isomorphism; the natural generalization is to replace the upper half-plane $H \cong \text{unit} \text{ disk in } \mathbb{C}$ by a general **Hermitian symmetric space** D.

Question: What replaces X^* and H_P^1 ?

D = Hermitian symmetric space,

= a bounded symmetric domain in \mathbb{C}^N ,

D = Hermitian symmetric space,

= a bounded symmetric domain in \mathbb{C}^N ,

 $\overline{D}=$ one of the minimal Satake compactifications, stratified by real boundary components,

= the closure in the complex topology, stratified by its holomorphic arc components,

D = Hermitian symmetric space,

= a bounded symmetric domain in \mathbb{C}^N ,

 $\overline{D}=$ one of the minimal Satake compactifications, stratified by real boundary components,

= the closure in the complex topology, stratified by its holomorphic arc components,

 $D^* = D \cup \{\text{rational boundary components}\},$

 $X^* = \Gamma \backslash D^*$, the Satake compactification of X.

D = Hermitian symmetric space,

= a bounded symmetric domain in \mathbb{C}^N ,

 $\overline{D}=$ one of the minimal Satake compactifications, stratified by real boundary components,

= the closure in the complex topology, stratified by its holomorphic arc components,

 $D^* = D \cup \{\text{rational boundary components}\},$

 $X^* = \Gamma \backslash D^*$, the Satake compactification of X.

Baily and Borel show that X^* is a (generally singular) projective algebraic variety.

 X^* is a stratified pseudomanifold

 X^{st} is a stratified pseudomanifold: a point in the codimension k stratum has a fundamental system of neighborhoods of the form

 $Ball_{d-k} \times cone(L_{k-1}),$ where L is the stratified link.

 X^{st} is a stratified pseudomanifold: a point in the codimension k stratum has a fundamental system of neighborhoods of the form

 $Ball_{d-k} \times cone(L_{k-1}),$ where L is the stratified link.

The *intersection cohomology* $I_pH(X^*; \mathbb{E})$ is characterized by the local calculation:

$$I_pH^i(\mathsf{Ball}_{d-k} \times \mathsf{cone}(L_{k-1}); \mathbb{E}) \cong \begin{cases} I_pH^i(L_{k-1}; \mathbb{E}) & \text{for } i \leq p(k), \\ 0 & \text{for } i > p(k) \end{cases}$$

 X^{st} is a stratified pseudomanifold: a point in the codimension k stratum has a fundamental system of neighborhoods of the form

 $Ball_{d-k} \times cone(L_{k-1}),$ where L is the stratified link.

The intersection cohomology $I_pH(X^*; \mathbb{E})$ is characterized by the local calculation:

$$I_pH^i(\mathsf{Ball}_{d-k} \times \mathsf{cone}(L_{k-1}); \mathbb{E}) \cong \begin{cases} I_pH^i(L_{k-1}; \mathbb{E}) & \text{for } i \leq p(k), \\ 0 & \text{for } i > p(k) \end{cases}$$

Here we always take p(k) to be a *middle perversity*:

$$m(k) = \left\lfloor \frac{(k-2)}{2} \right\rfloor$$
 or $n(k) = \left\lfloor \frac{(k-1)}{2} \right\rfloor$.

 X^{st} is a stratified pseudomanifold: a point in the codimension k stratum has a fundamental system of neighborhoods of the form

$$Ball_{d-k} \times cone(L_{k-1}),$$
 where L is the stratified link.

The *intersection cohomology* $I_pH(X^*; \mathbb{E})$ is characterized by the local calculation:

$$I_pH^i(\mathsf{Ball}_{d-k} \times \mathsf{cone}(L_{k-1}); \mathbb{E}) \cong \begin{cases} I_pH^i(L_{k-1}; \mathbb{E}) & \text{for } i \leq p(k), \\ 0 & \text{for } i > p(k) \end{cases}$$

Here we always take p(k) to be a *middle perversity*:

$$m(k) = \left\lfloor \frac{(k-2)}{2} \right\rfloor$$
 or $n(k) = \left\lfloor \frac{(k-1)}{2} \right\rfloor$.

Intersection cohomology was introduced by Goresky and MacPherson in order to restore Poincaré duality to the cohomology of singular spaces.

Theorem (Looijenga, S. and Stern). For X a Hermitian locally symmetric space,

$$H_{(2)}(X; \mathbb{E}) \cong \mathcal{H}_{(2)}(X; \mathbb{E}) \cong I_p H(X^*; \mathbb{E}).$$

Theorem (Looijenga, S. and Stern). For X a Hermitian locally symmetric space,

$$H_{(2)}(X; \mathbb{E}) \cong \mathcal{H}_{(2)}(X; \mathbb{E}) \cong I_p H(X^*; \mathbb{E}).$$

The theorem is proved by establishing a local vanishing theorem in high degree for the L^2 -cohomology near singular points of X^* (compare the heuristic argument for Eichler-Shimura and the local characterization of intersection cohomology).

Theorem (Looijenga, S. and Stern). For X a Hermitian locally symmetric space,

$$H_{(2)}(X; \mathbb{E}) \cong \mathcal{H}_{(2)}(X; \mathbb{E}) \cong I_p H(X^*; \mathbb{E}).$$

The theorem is proved by establishing a local vanishing theorem in high degree for the L^2 -cohomology near singular points of X^* (compare the heuristic argument for Eichler-Shimura and the local characterization of intersection cohomology).

In view of the fact that X^* is naturally defined over a number field, this result is important for Langlands's program.

Representations of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$

 $\overrightarrow{?} \qquad \text{Representations} \\
 of <math>G \text{ in } L^2(\Gamma \backslash G)$

Representations of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$

Artin L-functions

?→

Representations of G in $L^2(\Gamma \backslash G)$

Automorphic L-functions

Representations of
$$Gal(\overline{\mathbb{Q}}/\mathbb{Q})$$
 ? Representations of G in $L^2(\Gamma\backslash G)$ Artin L -functions ? Automorphic L -functions

One source of Galois representations:

• Start with Y projective algebraic over $\mathbb Q$ and E over $\mathbb Q$;

Langlands's Program:

Representations of
$$Gal(\overline{\mathbb{Q}}/\mathbb{Q})$$
 ? Representations of G in $L^2(\Gamma \backslash G)$ Artin L -functions ? Automorphic L -functions

One source of Galois representations:

- Start with Y projective algebraic over $\mathbb Q$ and E over $\mathbb Q$;
- $I_pH(Y;\mathbb{E})$ may be defined algebraically;

Langlands's Program:

Representations of
$$Gal(\overline{\mathbb{Q}}/\mathbb{Q})$$
 ? Representations of G in $L^2(\Gamma \backslash G)$ Artin L -functions ? Automorphic L -functions

One source of Galois representations:

- Start with Y projective algebraic over $\mathbb Q$ and E over $\mathbb Q$;
- $I_pH(Y;\mathbb{E})$ may be defined algebraically;
- Thus $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on $I_pH(Y;\mathbb{E})$.

Langlands's Program:

Representations of
$$Gal(\overline{\mathbb{Q}}/\mathbb{Q})$$
 ? Representations of G in $L^2(\Gamma \backslash G)$ Artin L -functions ? Automorphic L -functions

One source of Galois representations:

- Start with Y projective algebraic over $\mathbb Q$ and E over $\mathbb Q$;
- $I_pH(Y;\mathbb{E})$ may be defined algebraically;
- Thus $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on $I_pH(Y;\mathbb{E})$.

For Y smooth, one obtains the *Hasse-Weil zeta function* of Y, which encodes $\#Y(\mathbb{F}_{p^k})$ for all prime powers p^k .

Hasse-Weil zeta function of Y

? →

automorphic L-functions

Examples:

• Y = a point: class-field theory;

Examples:

- Y = a point: class-field theory;
- Y = an elliptic curve: the Shimura-Taniyama-Weil conjecture (\Longrightarrow Fermat's last theorem);

Hasse-Weil zeta $\stackrel{?}{\leftarrow}$ function of Y

Examples:

- Y = a point: class-field theory;
- Y = an elliptic curve: the Shimura-Taniyama-Weil conjecture (\Longrightarrow Fermat's last theorem);

automorphic

L-functions

• $Y = X^*$: our case.

Lefschetz fixed Arthur-Selberg trace point formula for formula for formula for Hecke special points on $I_pH(X^*;\mathbb{E})$ operators on $H_{(2)}(X;\mathbb{E})$

Lefschetz fixed Arthur-Selberg trace point formula for formula for formula for Hecke special points on $I_pH(X^*;\mathbb{E})$ operators on $H_{(2)}(X;\mathbb{E})$

Problems:

Lefschetz fixed Arthur-Selberg trace point formula for
$$\stackrel{?}{\leftarrow}$$
 formula for Hecke Frobenius on $I_pH(X^*;\mathbb{E})$ operators on $H_{(2)}(X;\mathbb{E})$

Problems:

• Local contributions on left involve local intersection cohomology of X^* — hard since the links are complicated.

Lefschetz fixed Arthur-Selberg trace point formula for $\stackrel{?}{\leftarrow}$ formula for Hecke Frobenius on $I_pH(X^*;\mathbb{E})$ operators on $H_{(2)}(X;\mathbb{E})$

Problems:

- Local contributions on left involve local intersection cohomology of X^* hard since the links are complicated.
- ullet Strata of X^* indexed by maximal parabolic subgroups R, while terms in trace formula indexed by all parabolic subgroups.

Lefschetz fixed Arthur-Selberg trace point formula for $\stackrel{?}{\leftarrow}$ formula for Hecke Frobenius on $I_pH(X^*;\mathbb{E})$ operators on $H_{(2)}(X;\mathbb{E})$

Problems:

- Local contributions on left involve local intersection cohomology of X^* hard since the links are complicated.
- ullet Strata of X^* indexed by maximal parabolic subgroups R, while terms in trace formula indexed by all parabolic subgroups.
- Many other difficulties.

 $\mathcal{N}_R = \Gamma \backslash N_R =$ a compact nilmanifold. $X_{R,\ell} =$ a possibly non-Hermitian locally symmetric space.

 $\mathcal{N}_R=\Gamma\backslash N_R=$ a compact nilmanifold. $X_{R,\ell}=$ a possibly non-Hermitian locally symmetric space.

Since we do not have an effective method in general to compute the cohomology of a locally symmetric space, the local intersection cohomology of X^* is difficult to work with.

(i)

- (i) The toroidal compactification $\widetilde{X} \to X^*$ (Mumford, et al.)
 - smooth, algebraic, but non-canonical
 - $I_pH(X^*;\mathbb{E})$ is a direct summand of $H(\widetilde{X};\widetilde{\mathbb{E}})$, but not canonically

(ii)

- (i) The toroidal compactification $\widetilde{X} \to X^*$ (Mumford, et al.)
 - smooth, algebraic, but non-canonical
 - $I_pH(X^*;\mathbb{E})$ is a direct summand of $H(\widetilde{X};\widetilde{\mathbb{E}})$, but not canonically
- (ii) The reductive Borel-Serre compactification $\widehat{X} \xrightarrow{\pi} X^*$ (Zucker)
 - mild singularities, not complex analytic, canonical
 - ?

- (i) The toroidal compactification $\widetilde{X} \to X^*$ (Mumford, et al.)
 - smooth, algebraic, but non-canonical
 - $I_pH(X^*;\mathbb{E})$ is a direct summand of $H(\widetilde{X};\widetilde{\mathbb{E}})$, but not canonically
- (ii) The reductive Borel-Serre compactification $\widehat{X} \xrightarrow{\pi} X^*$ (Zucker)
 - mild singularities, not complex analytic, canonical
 - Conjecture (Rapoport, Goresky-MacPherson): $I_pH(X^*; \mathbb{E}) \cong I_pH(\widehat{X}; \mathbb{E})$.

- (i) The toroidal compactification $\widetilde{X} \to X^*$ (Mumford, et al.)
 - smooth, algebraic, but non-canonical
 - $I_pH(X^*;\mathbb{E})$ is a direct summand of $H(\widetilde{X};\widetilde{\mathbb{E}})$, but not canonically
- (ii) The reductive Borel-Serre compactification $\widehat{X} \xrightarrow{\pi} X^*$ (Zucker)
 - mild singularities, not complex analytic, canonical
 - Conjecture (Rapoport, Goresky-MacPherson): $I_pH(X^*; \mathbb{E}) \cong I_pH(\widehat{X}; \mathbb{E})$.

Theorem (S.). The conjecture above is true.

The reductive Borel-Serre compactification \widehat{X}

Three constructions:

- (i) "Blow up" each stratum of X^* (replace each point with its link) and collapse the nilmanifold fibers
- (ii) Remove a neighborhood of each stratum of X^* and collapse the nilmanifold fibers on boundary faces
- (iii) Start with the Borel-Serre compactification (1973) \overline{X} (a manifold with corners) and collapse the nilmanifold fibers on the boundary faces (applies to any locally symmetric space X)

Example: Hilbert Modular Surface $SL(2, \mathcal{O}_k) \setminus (H \times H)$

Here $k = \mathbb{Q}(\sqrt{d})$, d > 0. Near "infinity", $SL(2, \mathcal{O}_k)$ acts via

$$\left\{ \left. \left(\begin{smallmatrix} 1 & a \\ 0 & 1 \end{smallmatrix} \right) \middle| a \in \mathcal{O}_k \right. \right\}$$

$$\left\{ \left. \left(\begin{smallmatrix} u & \mathsf{0} \\ \mathsf{0} & u^{-1} \end{smallmatrix} \right) \right| u \in \mathcal{O}_k^{\times} \right\}$$

Thus

	Boundary stratum	Link
\overline{X}	flat T^2 -bundle over S^1	point
\widehat{X}	S^1	T^2
X^*	point	flat T^2 -bundle over S^1

The hyperbola $y_1y_2=b$ in the y_1y_2 -plane becomes the S^1 above under the action of $\left\{ \left. \begin{pmatrix} u & 0 \\ 0 & u^{-1} \end{pmatrix} \right| u \in \mathcal{O}_k^{\times} \right\}$. The T^2 -fibers correspond to the x_1x_2 -plane modulo a lattice.

By the way, the metric is $dr^2 + ds_{S^1}^2 + e^{-2r}ds_{T^2}^2$.

Thus

	Boundary stratum	Link
\overline{X}	flat T^2 -bundle over S^1	point
\widehat{X}	S^1	T^2
X^*	point	flat T^2 -bundle over S^1

The hyperbola $y_1y_2=b$ in the y_1y_2 -plane becomes the S^1 above under the action of $\left\{ \begin{pmatrix} u & 0 \\ 0 & u^{-1} \end{pmatrix} \middle| u \in \mathcal{O}_k^{\times} \right\}$. The T^2 -fibers correspond to the x_1x_2 -plane modulo a lattice.

By the way, the metric is $dr^2 + ds_{S^1}^2 + e^{-2r} ds_{T^2}^2$.

In general, the space S^1 above will be replaced by a locally symmetric space X_P ; the fibers T^2 above will be replaced in general by a compact nilmanifold \mathcal{N}_P . Here P is a Γ -conjugacy class of parabolic \mathbb{Q} -subgroups of G; these index the strata.

Moral:

• strata become simpler;

- strata become simpler;
- links become more complicated; and hence

- strata become simpler;
- links become more complicated; and hence
- local intersection cohomology becomes more complicated.

X is equal-rank if $\mathrm{rank}\,G=\mathrm{rank}\,K$; all Hermitian symmetric spaces are equal-rank.

X is equal-rank if rank $G = \operatorname{rank} K$; all Hermitian symmetric spaces are equal-rank.

Theorem (Borel and Casselman). If X is equal-rank then $H_{(2)}(X; \mathbb{E}) \cong \mathcal{H}_{(2)}(X; \mathbb{E})$ is finite-dimensional.

X is equal-rank if rank $G = \operatorname{rank} K$; all Hermitian symmetric spaces are equal-rank.

Theorem (Borel and Casselman). If X is equal-rank then $H_{(2)}(X; \mathbb{E}) \cong \mathcal{H}_{(2)}(X; \mathbb{E})$ is finite-dimensional.

In this setting our main results generalize:

X is equal-rank if rank $G = \operatorname{rank} K$; all Hermitian symmetric spaces are equal-rank.

Theorem (Borel and Casselman). If X is equal-rank then $H_{(2)}(X; \mathbb{E}) \cong \mathcal{H}_{(2)}(X; \mathbb{E})$ is finite-dimensional.

In this setting our main results generalize:

Theorem (Borel Conjecture, S. and Stern). Let X^* be a Satake compactification for which all real boundary components are equal-rank. Then

$$H_{(2)}(X;\mathbb{E}) \cong \mathcal{H}_{(2)}(X;\mathbb{E}) \cong I_p H(X^*;\mathbb{E}).$$

X is equal-rank if rank $G = \operatorname{rank} K$; all Hermitian symmetric spaces are equal-rank.

Theorem (Borel and Casselman). If X is equal-rank then $H_{(2)}(X; \mathbb{E}) \cong \mathcal{H}_{(2)}(X; \mathbb{E})$ is finite-dimensional.

In this setting our main results generalize:

Theorem (Borel Conjecture, S. and Stern). Let X^* be a Satake compactification for which all real boundary components are equal-rank. Then

$$H_{(2)}(X; \mathbb{E}) \cong \mathcal{H}_{(2)}(X; \mathbb{E}) \cong I_p H(X^*; \mathbb{E}).$$

Theorem (S.). Let X^* be a Satake compactification for which all real boundary components are equal-rank. Then

$$I_pH(X^*;\mathbb{E})\cong I_pH(\widehat{X};\mathbb{E}).$$

When X is not equal-rank, $\mathcal{H}_{(2)}(X;\mathbb{E})$ may not represent L^2 -cohomology (which can be infinite dimensional!).

When X is not equal-rank, $\mathcal{H}_{(2)}(X;\mathbb{E})$ may not represent L^2 -cohomology (which can be infinite dimensional!).

Nonetheless we can prove a topological interpretation:

When X is not equal-rank, $\mathcal{H}_{(2)}(X;\mathbb{E})$ may not represent L^2 -cohomology (which can be infinite dimensional!).

Nonetheless we can prove a topological interpretation:

Theorem (S.).

$$\mathcal{H}_{(2)}(X;\mathbb{E}) \cong \operatorname{Im}\left(I_m H(\widehat{X};\mathbb{E}) \longrightarrow I_n H(\widehat{X};\mathbb{E})\right)$$

When X is not equal-rank, $\mathcal{H}_{(2)}(X;\mathbb{E})$ may not represent L^2 -cohomology (which can be infinite dimensional!).

Nonetheless we can prove a topological interpretation:

Theorem (S.).

$$\mathcal{H}_{(2)}(X;\mathbb{E}) \cong \operatorname{Im}\left(I_m H(\widehat{X};\mathbb{E}) \longrightarrow I_n H(\widehat{X};\mathbb{E})\right)$$

provided the \mathbb{Q} -root system of G does not have a factor of type D_n , E_n , or F_4 .

When X is not equal-rank, $\mathcal{H}_{(2)}(X;\mathbb{E})$ may not represent L^2 -cohomology (which can be infinite dimensional!).

Nonetheless we can prove a topological interpretation:

Theorem (S.).

$$\mathcal{H}_{(2)}(X;\mathbb{E}) \cong \operatorname{Im}\left(I_m H(\widehat{X};\mathbb{E}) \longrightarrow I_n H(\widehat{X};\mathbb{E})\right)$$

provided the \mathbb{Q} -root system of G does not have a factor of type D_n , E_n , or F_4 .

The condition on the \mathbb{Q} -root system should be able to be removed.

When X is not equal-rank, $\mathcal{H}_{(2)}(X;\mathbb{E})$ may not represent L^2 -cohomology (which can be infinite dimensional!).

Nonetheless we can prove a topological interpretation:

Theorem (S.).

$$\mathcal{H}_{(2)}(X;\mathbb{E}) \cong \operatorname{Im}\left(I_m H(\widehat{X};\mathbb{E}) \longrightarrow I_n H(\widehat{X};\mathbb{E})\right)$$

provided the \mathbb{Q} -root system of G does not have a factor of type D_n , E_n , or F_4 .

The condition on the \mathbb{Q} -root system should be able to be removed.

How are these results proved?

When X is not equal-rank, $\mathcal{H}_{(2)}(X;\mathbb{E})$ may not represent L^2 -cohomology (which can be infinite dimensional!).

Nonetheless we can prove a topological interpretation:

Theorem (S.).

$$\mathcal{H}_{(2)}(X;\mathbb{E}) \cong \operatorname{Im}\left(I_m H(\widehat{X};\mathbb{E}) \longrightarrow I_n H(\widehat{X};\mathbb{E})\right)$$

provided the \mathbb{Q} -root system of G does not have a factor of type D_n , E_n , or F_4 .

The condition on the \mathbb{Q} -root system should be able to be removed.

How are these results proved?

The theory of \mathcal{L} -modules and micro-support . . .

The poset ${\mathfrak P}$

 $\mathbb{P}=\Gamma\text{-conjugacy classes of parabolic }\mathbb{Q}\text{-subgroups.}$ For example (when $\mathbb{Q}\text{-rank}\,G=2)$:

The Levi quotients $\mathcal{L} = \mathcal{L}_{\mathcal{P}}$

Pass to the reductive Levi quotients $L_Q=Q/N_Q$ for all $Q\in \mathcal{P}.$

 L_G

 L_{Q_2}

An \mathcal{L} -module \mathcal{M}

An \mathcal{L} -module consists of graded L_Q -modules E_Q for all Q . . .

 E_G

 E_{Q_1} E_{Q_2}

An \mathcal{L} -module \mathcal{M}

and degree 1 morphisms $f_{PQ}: H(\mathfrak{n}_P^Q; E_Q) \xrightarrow{[1]} E_P$ for all $P \leq Q$

$$E_G$$

An \mathcal{L} -module \mathcal{M}

satisfying $\sum_{P\leq Q\leq R} f_{PQ}\circ H(\mathfrak{n}_P^Q;f_{QR})=0$ for all $P\leq R$.

 E_G

The realization $\mathcal{S}_{\widehat{X}}(\mathcal{M})$

The realization $\mathcal{S}_{\widehat{X}}(\mathcal{M})$ with d.. factored

The micro-support SS(M) of an L-module M

Roughly $SS(\mathcal{M})$ consists of all irreducible representations V of L_P (any $P \in \mathcal{P}$) such that

$$(V|_{M_P})^*\cong \overline{V|_{M_P}}$$
, and

$$H(i_P^* \widehat{\imath}_{Q_V}^! \mathcal{M})_V = H(U, U \setminus (U \cap \widehat{X}_{Q_V}); \mathcal{M})_V \neq 0.$$

Here we write $L_P = M_P A_P$ where A_P is the \mathbb{Q} -split center of L_P and $Q_V \geq P$ is chosen depending on the character by which A_P acts on V. Finally U is a small neighborhood of a point on the P-stratum X_P .

ullet An \mathcal{L} -module \mathcal{M} on \widehat{X} is a combinatorial model for a constructible complex of sheaves $\mathcal{S}(\mathcal{M})$ on \widehat{X} .

- An \mathcal{L} -module \mathcal{M} on \widehat{X} is a combinatorial model for a constructible complex of sheaves $\mathcal{S}(\mathcal{M})$ on \widehat{X} .
- Our various cohomological invariants equal $H(\widehat{X}; \mathcal{M}) := H(\widehat{X}; \mathcal{S}(\mathcal{M}))$ for various \mathcal{L} -modules \mathcal{M} ;

- An \mathcal{L} -module \mathcal{M} on \widehat{X} is a combinatorial model for a constructible complex of sheaves $\mathcal{S}(\mathcal{M})$ on \widehat{X} .
- Our various cohomological invariants equal $H(\widehat{X}; \mathcal{M}) := H(\widehat{X}; \mathcal{S}(\mathcal{M}))$ for various \mathcal{L} -modules \mathcal{M} ;
- To every \mathcal{L} -module \mathcal{M} there is associated an invariant called the *micro-support* $SS(\mathcal{M})$, it is a finite collection of irreducible finite-dimensional representations of all Levi quotients L_P .

- An \mathcal{L} -module \mathcal{M} on \widehat{X} is a combinatorial model for a constructible complex of sheaves $\mathcal{S}(\mathcal{M})$ on \widehat{X} .
- Our various cohomological invariants equal $H(\widehat{X}; \mathcal{M}) := H(\widehat{X}; \mathcal{S}(\mathcal{M}))$ for various \mathcal{L} -modules \mathcal{M} ;
- To every \mathcal{L} -module \mathcal{M} there is associated an invariant called the *micro-support* $SS(\mathcal{M})$, it is a finite collection of irreducible finite-dimensional representations of all Levi quotients L_P .

Our results follow from three theorems on \mathcal{L} -modules:

- An \mathcal{L} -module \mathcal{M} on \widehat{X} is a combinatorial model for a constructible complex of sheaves $\mathcal{S}(\mathcal{M})$ on \widehat{X} .
- Our various cohomological invariants equal $H(\widehat{X}; \mathcal{M}) := H(\widehat{X}; \mathcal{S}(\mathcal{M}))$ for various \mathcal{L} -modules \mathcal{M} ;
- To every \mathcal{L} -module \mathcal{M} there is associated an invariant called the *micro-support* $SS(\mathcal{M})$, it is a finite collection of irreducible finite-dimensional representations of all Levi quotients L_P .

Our results follow from three theorems on \mathcal{L} -modules:

• a Vanishing Theorem for global cohomology;

- An \mathcal{L} -module \mathcal{M} on \widehat{X} is a combinatorial model for a constructible complex of sheaves $\mathcal{S}(\mathcal{M})$ on \widehat{X} .
- Our various cohomological invariants equal $H(\widehat{X}; \mathcal{M}) := H(\widehat{X}; \mathcal{S}(\mathcal{M}))$ for various \mathcal{L} -modules \mathcal{M} ;
- To every \mathcal{L} -module \mathcal{M} there is associated an invariant called the *micro-support* $SS(\mathcal{M})$, it is a finite collection of irreducible finite-dimensional representations of all Levi quotients L_P .

Our results follow from three theorems on \mathcal{L} -modules:

- a Vanishing Theorem for global cohomology;
- a Micro-purity Theorem for $\mathcal{I}_p\mathcal{C}(\widehat{X};E)$;

- An \mathcal{L} -module \mathcal{M} on \widehat{X} is a combinatorial model for a constructible complex of sheaves $\mathcal{S}(\mathcal{M})$ on \widehat{X} .
- Our various cohomological invariants equal $H(\widehat{X}; \mathcal{M}) := H(\widehat{X}; \mathcal{S}(\mathcal{M}))$ for various \mathcal{L} -modules \mathcal{M} ;
- To every \mathcal{L} -module \mathcal{M} there is associated an invariant called the *micro-support* $SS(\mathcal{M})$, it is a finite collection of irreducible finite-dimensional representations of all Levi quotients L_P .

Our results follow from three theorems on \mathcal{L} -modules:

- a Vanishing Theorem for global cohomology;
- a Micro-purity Theorem for $\mathcal{I}_p\mathcal{C}(\widehat{X};E)$;
- a Functoriality Theorem for micro-support.

Vanishing Theorem for the Cohomology of an \mathcal{L} -module

Define

$$c(\mathcal{M}) = \inf_{V \in SS(\mathcal{M})} \frac{1}{2} (\dim D_P - \dim D_P(V)) + c(V; \mathcal{M}) ,$$

$$d(\mathcal{M}) = \sup_{V \in SS(\mathcal{M})} \frac{1}{2} (\dim D_P + \dim D_P(V)) + d(V; \mathcal{M}) .$$

The first terms are the range of degrees where $H_{(2)}(X_P; \mathbb{V})$ can be nonzero by a vanishing theorem of Raghunathan.

The second terms are computed combinatorily from the microsupport.

Vanishing Theorem. $H^i(\widehat{X}; \mathcal{M}) = 0$ for $i \notin [c(\mathcal{M}), d(\mathcal{M})]$.

In particular, $H(\widehat{X}; \mathcal{M}) \equiv 0$ if $SS(\mathcal{M}) = \emptyset$.

Micro-support of Intersection Cohomology

Micro-support is not always so easy to compute. The following is a very deep combinatorial result.

Micro-Purity Theorem. Assume the \mathbb{Q} -root system of G does not contain a factor of type D_n , E_n , or F_4 . Let p be a middle perversity. If $E^* \cong \overline{E}$, then $SS(\mathcal{I}_p\mathcal{C}(\widehat{X}; E)) = \{E\}$.

A simpler result is

Theorem. If $E^* \cong \overline{E}$, then $SS(\mathcal{L}_{(2)}(\widehat{X}; E)) = \{E\}$.

Functoriality of Micro-support

Let \mathcal{M} be an \mathcal{L} -module for which $SS(\mathcal{M}) = \{E\}$ (e.g. $\mathcal{I}_p\mathcal{C}(\widehat{X}; E)$ or $\mathcal{L}_{(2)}(\widehat{X}; E)$).

Let $\pi:\widehat{X}\to X^*$ be the projection onto a Satake compactification with equal-rank real boundary components.

To prove Zucker and Rapoport's conjecture, we need to check the local vanishing condition for the pushforward of $\mathcal M$ by π . Equivalently we need to show

$$H^{i}(\pi^{-1}(x); \mathcal{M}|_{\pi^{-1}(x)}) = 0$$
 for $i > \frac{1}{2} \operatorname{codim} X_{R,h} - 1$.

However $\pi^{-1}(x) \cong \widehat{X}_{R,\ell} \times \{x\}.$

The Vanishing Theorem implies

$$H^i(\widehat{X}_{R,\ell};\mathcal{M}|_{\widehat{X}_{R,\ell}}) = 0 \quad \text{for } i > d(\mathcal{M}|_{\widehat{X}_{R,\ell}}).$$

Thus the following theorem completes the proof:

Functoriality Theorem. Let \mathcal{M} be an \mathcal{L} -module with $SS(\mathcal{M}) = \{E\}$ and let $X_{R,h}$ be a stratum of a Satake compactification X^* with real equalrank boundary components. Then

$$d(\mathcal{M}|_{\widehat{X}_{R,\ell}}) \leq \frac{1}{2}\operatorname{codim} X_{R,h} - 1$$
 .

Final remark:

 \mathcal{L} -modules have many other applications besides the Rapoport-Goresky-MacPherson conjecture. For example:

Theorem (S., Li-Schwermer). If E has regular highest weight, then

$$H^i(X; E) = 0$$
 for $i < \frac{1}{2} \left(\dim X - (\operatorname{rank} G - \operatorname{rank} K) \right)$.