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1 Introduction

For MPI 2016, Gore brought three distinct problems to the workshop and the participants broke

up into three separate groups, each group focussing on a separate problems. The problems were:

1. Develop a mathematical model describing the production and flow of fluid in a sulfur

dioxide filter

2. Characterize the changes in properties of filters due to compression and other external

forces

3. Develop and parallelize code for simulation of models for cellular growth on lattices

Problem 1

The first problem concerned the operation of a sulfur dioxide filter. In particular, to model the

production and transportation of the fluid within the filter.

The efforts of the group were directed at developing a multi-scale model predicting the

production of sulfuric acid on the scale of the entire filter by describing the generation of acid

at the individual catalyst level, and homogenizing this local acid production to a continuum

scale using an assumed porosity and packing of these catalysts.
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Much of the initial investigation was invested in developing a model to predict the production

of sulfuric acid at a single activated carbon pellet surrounded by sulfur dioxide. Given the

conditions of 100% humidity and an abundance of oxygen, we only considered the change in

concentration of the sulfur dioxide as it diffused through the acid layer and how the reaction

at the catalyst surface affected the production of sulfuric acid. After generating and studying

this model, attention was focused on the entire filter, modeling it as a continuous distribution

of these individual pellets. From the pellet analysis, it was determined that the diffusion of gas

through the filter was much faster than the generation of acid, and that at some maximal layer

thickness (calculated using porosity at each portion of the filter as a measure of the average

distance between pellets) the pores would be effectively sealed by the acid, blocking further

diffusion of the sulfur dioxide from the channel. The resulting diffusion-advection model for

the distribution of concentration of the sulfur dioxide in the filter and resulting generation of

the acid was then used to predict the efficiency of the filter. A framework was developed that

lends itself to including further refinements in the chemistry and the capability of simulating a

variety of changes in the overall design of the filter.

Problem 2

The second group has concentrated on two problems. The first considers a filter comprised of

randomly oriented fibers whose function is to filter out solute from a fluid that is forced through

it. Apparently it is easy to carry out transport and filtration experiments on the filter material

before it is rolled and inserted into canister, the form in which it is used by its customers. The

process of insertion into the canister apparently compresses the filter material on the order

of a factor of two, although the exact compression is not yet known, and the macroscopic

flow and filtration properties become significantly different from the virgin filter material. The

question that concerns Gore Inc.., the goal of this project, is to develop theory that allows the

prediction of the transport properties of the packaged filter from the measured values of the

same parameters on the virgin material.

We model the system by solving the filtration flow problem through a fiber matrix porous

medium that is coupled to an advective-diffusion problem with an equation for the adsorption

of tracer to the filter fibers. The coupling occurs due to 1. the filtration flow velocity field drives

the solute advection; 2. the concentration profile in the filter drives solute adsorption to filter

fibers, which modifies the void space distribution in the filter; 3. the local values of the transport

parameters depend upon the local void space, fiber radius and fiber spacing; 4. the transport

parameters, e.g., Darcy permeability, determine the pressure and velocity distribution. As

such, one needs to set up and solve all parts of the problem simultaneously. Using physical

parameter values from Gore, we have solved a one-dimensional version of the filtration and
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advection-diffusion problem for the concentration of solute as a function of position throughout

the filter for different times after initial filter use assuming an initial condition of a clean filter.

We assume that the input pressure and concentration are given and time-independent. We then

assume various compressions of the fiber matrix, which affect the transport parameters, and

recalculate the tracer concentration vs position as a function of time. At the present moment

the calculation does not include solute adsorption to filter fibers, and thus cannot yet account

for filter clogging.

Future work will include accounting for solute adsorption to filter fibers and the resulting

time-dependent reduction of filter efficiency and clogging. In addition, we shall allow for the

alternative filter inlet boundary condition of prescribed fluid flow rate rather than pressure,

which is more likely to represent the true industrial situation. Subproblem two of this section

considers a model that relates the forces applied to the filter material during its insertion into

its casing to the extent of filter deformation.

Problem 3

The third group was developing a parallel framework to simulate the cell growth based on a 2D

lattice considering the effect of the oxygen and nutrient concentration. This problem has been

broken into five subtasks as follows.

First of all, we initialized the geometry of the biological system by specifying two types of

objects - the lattice points on the dish and biological cells on the dish. For each lattice point

element, we record the following fields - cell index, cell type, a list of neighboring lattice point

elements corresponding to a different cell, as well as the concentrations of oxygen and nutrients.

In terms of each biological cell object, we record the cell type in order to differentiate the four

distinct types - the medium, the necrotic cells, the quiescent cells, and the proliferating ones.

Additional fields are saved for the further simulations and for lattice updates, including a list of

lattice spots composing the given cell and the average concentrations of oxygen and nutrients

over the whole cell. These two types of objects will be linked through the cell indices. Then,

we implemented the cell proliferation. In other words, given a cell object whose volume is

the maximal volume allowed, this cell will be divided into two cells represented by two sets of

connected lattice spots. This uniform cut has been carried out by treating the set of lattice

spots as an undirected graph, and then using the breadth first search strategy to check the

connectivity of its subgraphs. After considering the cellular function, our focus was placed on

numerically solving the chemical reaction diffusion equations (as Partial Differential Equations)

and parallelizing the solving procedure. We used ARKode, a numerical integration package with

multiple types of parallelization. We built our simulation based on a 2D heat equation example,

and implemented an appropriate reaction term and appropriate boundary conditions. As in
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Figure 1: Direction of gas flow and diffusion, along and cross the panels respectively, and filter magnified cross
section.

the example, we used a spatial domain decomposition. Moreover, we began implementing a

parallel version of the Hamiltonian function which unitizes the domain decomposition to assign

different lattice subdomain to available core processors. In the interior of each subdomain, theH

function is computed in a sequential fashion to avoid double counting. The computation on the

boundary of each subdomain is handled by buffers which are carefully designed to communicate

between different core processors. For the future work, we will integrate the above modules

into a parallel framework for the simulation of the cell growth using Monte Carlo steps. We

might also consider more complicated reaction and Hamiltonian function terms.

2 Modeling product transport in catalysts

Liquid production and transport within porous media is known to effect the performance of a

wide range of technologies (fuel cells, venting, general catalysis, etc). In fuel cells, for example,

water and acid are produced in a catalyst layer as a product of surface adsorption reactions.

Once significant liquid is produced, it can push into the gas diffusion layer (GDL) and inhibit

transport paths of reactants to the catalyst layer. A deeper understanding of fluid evolution

within the porous media may help engineers to come up with more effective liquid management

solutions. One of our goals in this workshop is to develop a mathematical model to predict and

characterize fluid production/transport inside porous media. We are particularly interested in

quantifying/predicting the time scale and spatial profile of flooding.
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Figure 2: Macroscopic picture of the filter.

2.1 Modeling

The basic set up for the modeling in this section is as below. We have the gas flow which may

contain some unpleasant gas such as Sulfur Dioxide, passes through the panels and parallel to

them in Z-direction as shown in Figure 1. The panels to be modeled are long in Y -direction

(about l = 300 mm) and the cross section of each of them has a thickness on the order of

millimeters (2H = 1 mm) and a length in Z direction on the order of meters (Figure 2). Because

of symmetry, we just model half of the channel and filter and appropriate boundary condition

were used, accordingly. The gas diffuses in to the panels along in X-axis, perpendicular to the

gas flow direction and panels surface. There is no imposed flow or pressure jump in the inward

direction across the filter. We suppose filters fibers to be arranged in a square repeating lattice

stretch out along panels height. The diffused gas reacts with the filter fibers and the liquid is

being produced in the porous media. It is assumed that the cross section of each filter consists

of many catalyst which in fact make the reaction to be happened as

2SO2 +O2 + 2H2O → 2H2SO4. (1)

We use a coupled multi scale approach to tackle the problem: (i) small scale-analyze: the

formation of sulfuric acid on the surface of a single filter pellet; (ii) large scale-analyze: the

transport of sulfur dioxide in the gas channel and filter.

2.1.1 Small Scale–Analyze the formation of sulfuric acid on the surface of a single

filter pellet

We consider spherical activated carbons (catalysts) with radius R, spread the whole filter

and they react with the sulfur dioxide (gas) and the sulfuric acid (liquid) is formed, which

occupies area around the catalysts. As shown in Figure 3, the liquid moves in the filter, while
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Figure 3: Schematic of activated carbon surrounded by sulfuric acid (H2SO4) and sulfur dioxide (SO2).

concentration of sulfur dioxide decrease. We consider a and b as thickness of liquid (sulfuric

acid) and gas (sulfur dioxide); respectively. Concentration of O2 in the gas and liquid layers are

C1 and C2; respectively, while S1 and S2 are concentration of sulfur dioxide in the mentioned

layers. Here we ignore advection of O2 and SO2 in favor of diffusion, therefore the diffusion

equation in the gas layer follows as

∂C1

∂t
= D1∇2C1,

∂S1

∂t
= d1∇2S1, (2)

where D1 and d1 are diffusion coefficient of O2 and SO2; respectively with the far field boundary

condition

C1 → C∗, S1 → S∗, as r →∞. (3)

We also have similar diffusion equations in the liquid layer for both O2 and SO2 with D2 and

d2 as the correspondence diffusion coefficient in this layer.

∂C2

∂t
= D2∇2C2,

∂S2

∂t
= d2∇2S2, (4)

with boundary condition

C2 → C∗, S2 → S∗, as r →∞, (5)

accompanying with the interface boundary condition for the both layers

D1
∂C1

∂r
= D2

∂C2

∂r
, d1

∂S1

∂r
= d2

∂S2

∂r
, at r = R + a. (6)
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Figure 4: Simplified schematic of activated carbon surrounded by sulfuric acid (H2SO4) and sulfur dioxide
(SO2).

Considering the fact that the the spacing between catalyst is small in comparison to catalyst

radius the geometry described in Figure 3, the problem reduces to unidirectional model as

illustrated in Figure 4, and also assuming the diffusion equation for O2 and SO2 in both gas

and liquid layers are quasi static, the equations (2) and (4) simplify to

SXX = 0, TXX = 0, (7)

where S and T are concentration of SO2 in the liquid and gas layers; respectively, subjected to

the boundary conditions

d2SX = αλSα at X = 0, κS = T, d2SX = d1TX at X = a(t), T = T ∗ at X = b.

(8)

The first equation in (8) simply describes how much SO2 reacts with the catalyst, here λ relates

to the rate of reaction and α is related to schewmetric coefficient, which is 1 or 2 (for simplicity

we consider α = 1). κ is just a coefficient for the interface SO2 concentration and T ∗ is initial

sulfur dioxide concentration.

In order to close the model, we need an equation to describe evolution of a. Note that all

of the produced liquid at the catalyst surface makes the boundary of liquid and gas moves,

therefore a evolves as

ȧ = δαλSα, (9)

where δ relates to rate of reaction between sulfur dioxide and catalyst. Solving (7), (8) and (9)

together, considering number of catalysts in a filter and porosity of filter φ, give
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Table 1: Filter parameters

Parameter Definition
R = 10−5 Catalysts radius
d1 = 2 ∗ 10−5 Diffusion coefficient of SO2 in gas layer
d2 = 2 ∗ 10−9 Diffusion coefficient of SO2 in liquid layer
φ = 0.3 Void fraction of filter
κ = 10−2 Coefficient for the interface SO2 concentration
2H = 10−1 Filter thichness
2h = 10−3 Channel width
L = 1 Filter length
Win = 10−3 Total amount of inlet SO2 concentration
δ = 2 ∗ 10−2 Rate of reaction between sulfur dioxide and catalyst
λ = 2.4 ∗ 10−10 Rate of reaction
u = 5 Gas velocity in channel
tref = 2 ∗ 109 Long run time

d1TXX =
3

Rφ
F (a, t), ȧ = δF (a, t), 0 < X < H, 0 < Y < l, (10)

where

F (a, t) =
t

κ(a/d2 + 1) + (b− a)/d1

, b = R ((1− φ)−1/3 − 1
)
, (11)

with boundary conditions

TX |X=H = 0, T |x=0 = Win, a|t=0 = 0, (12)

where Win is the filter inlet averaged concentration of SO2 in the channel.

2.1.2 Large Scale–Analyze the transport of sulfur dioxide in the gas channel and

filter

In this part we match the macroscopic and microscopic models together. The complete advection-

diffusion equation for sulfur dioxide concentration in the channel gives

Ŵt + uŴZ = d1(ŴXX + ŴZZ), (13)

where Ŵ is the local concentration of sulfur dioxide in the channel with velocity u. With a

carefull analysis and averaging along channel gap (X direction) and ignoring diffusion of sulfur

dioxide in Z direction, we find out the averaged SO2 concentration W as
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Figure 5: Simulations for sulfur dioxide concentration and evolution of a at (a) initial time, (b) 1200 days, (c)
2400 days and (d) 3600 days. The gas enters from the bottom.

h

2
uWZ = d1 TX |X=0 , for 0 < Z < L, W (0, t) = Win, (14)

where L = 1 m is the filter length and Win in the total amount of inlet SO2 concentration.

2.1.3 Results

Our model has several parameters, which are summarized in the table with their value used in

our simulation. Figure 5 shows sulfur dioxide SO2 concentration and evolution of a at several

different times. Our results here show that as time passes the liquid is being formed in the filter

and most of the formed liquid is at the gas entrance. A common experimental characterization

of membrane filtration performance here could be Figure 6, which shows the percentage of

filtrate gas versus time. The efficiency here is defined as 1 −Wout/Win. As shown here, filter

performance thus ultimately deteriorates, since the formed liquid does not let any interaction

happens between the gas and catalysts.
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Figure 6: Effiviency of a filter versus time.

3 Characterization of porous media

3.1 Fluid model for membrane filtration

In this sub-problem, our goal was to consider a filter consisting of randomly oriented fibers

whose function is to filter out solute from a fluid flowing through it (see Figure 7, similar to the

setup in [2, 3]). The motivation for answering this question lies in the fact that transport and

filtration experiments are easy to carry out in the membrane before it is rolled and compressed

into cannisters or cartridges. After the necessary compression step in filter manufacturing,

filtration parameters are no longer known. Therefore, we set out to develop the mathematical

theory and simulations that would allow prediction of transport properties of the packaged

filter.

Our approach is to mathematically characterize an idealized fibrous structure, and use fiber

matrix structure theory to relate transport parameters to fiber matrix properties [1–5]. Some of

the parameters we model include Darcy permeability of the fluid, void fraction (i.e., void space

distribution in the filter), species fraction, effective tracer diffusivity, and the retardation/sieving

coefficient. A complete list of the parameters we consider is summarized in Table 2. Ultimately,

we are interested in examining how changes in filter compression affect these transport and

filtration parameters, as well as the tracer concentration time evolution.

We consider the filtration flow problem through a fiber matrix porous medium, coupled to

an advection-diffusion equation for the absorption of tracer to the filter fibers (similar to the

10



δ

2rf	
  

2rs	
  

P+	
  

P_	
  

C=C*	
  

Cz=0	
  

z=0	
  

z=L	
  

Figure 7: Cartoon of a filter membrane made up of randomly oriented fibers. Fluid flow
is modeled through an imposed vertical pressure p+, while the filter bottom is exposed to
atmospheric pressure. The right figure zooms in on the fiber matrix structure assumed for the
membrane, with some of the parameters indicated in the figure.

approach in [2, 3]). We therefore consider Darcy’s law relating the fluid velocity to pressure:

u =
−Kpeff

µ
∇p , (15)

where u is the fluid velocity, and p is the fluid pressure.

The continuity equation

∇ · u = 0 (16)

then yields

∇ ·
(−Kpeff

µ
∇p
)

= 0 . (17)

The advection-diffusion equation for the concentration of tracer is given by:

∂c

∂t
+

1

γ
∇ · (fcu) = Deff∇2c , (18)

where c is the concentration of solute inside filter.

We thus consider the system composed of equations (17) - (18) for our model of fluid filtration
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Table 2: Fiber matrix structure parameters

Parameter Definition
Kpeff Darcy coefficient/permeability
µ fluid viscosity
f retardation/sieving coefficient
γ partition coefficient/species volume fraction
ε void fraction
rf fiber radius
rs solute particle radius
δ distance between fiber bundles
A surface area of the tracer
Lu uncompressed membrane thickness
Lc compressed membrane thickness

through a porous medium membrane. We note that all the parameters in this equation (with

the exception of viscosity µ) are dependent on the value of ε (void fraction) of the material

considered [1–4]. The expressions for the model parameters are given by:

Dfree =
kT

6πµrs
, (19)

Deff = Dfreee
−
√

1−ε
(

1+ rs
rf

)
, (20)

ψ = e
−
√

1−ε
(

2rs
rf

+
r2s
r2
f

)
, (21)

f = 1− (1− ψ)2 , (22)

Kp =
r2
fε

2

4G(1− ε2)
, (23)

G =
2

3

2ε3

(1− ε)
(

ln
(

1
(1−ε

)
− 1

(1+(1−ε)2)
)
) +

1

3

2ε3

(1− ε)
(

2 ln
(

1
(1−ε)

)
− 3 + 4(1− ε)− (1− ε)2

) ,
(24)

ε = 1−
3r2

f

δ2
, . (25)

We also note that the coupling of the equations occurs through the velocity term u in equation

(18).

In terms of boundary conditions, we consider the following for pressure:

p(z = 0) = p+ (26)

p(z = L) = p− , (27)
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where p+ corresponds to the applied pressure of the fluid, and p− corresponds to the atmospheric

pressure (see Figure 7). For the concentration of solute, we impose the following boundary

conditions:

c(z = 0) = c+ (28)

cz(z = L) = 0 , (29)

so that the concentration starts at level c+ at the inlet boundary, and there is no flux of solute

downstream of the filter.

3.2 Uncompressed case for uniform void fraction ε

We begin by considering uniform void fraction ε, so that it does not depend on concentration.

This means that equation (17) for pressure is uncoupled from the system. We also consider the

problem in 1D, which reduces the system to:

pzz = 0 ,

ct +
f

γ
czu = Deffczz .

Non-dimensionalization further yields:

pzz = 0 ,

ct + b̃czpz = Pe−1czz , (30)

with b̃ = fKp

γµ
, and Pe is the Peclet number: Pe = KpP

µDfree
, where P = 10 psi ≈ 68948 Pa is the

pressure scale considered.

The system (30) with boundary conditions (26), (28) is discretized spatially and a Crank-

Nicholson time integration scheme is implemented. To account for the nonlinearity in the

concentration equation, we set up the system as a Newton’s iteration scheme whose solution

constitutes the variables at the next time point. Simulations of the system with relevant

parameters for the Gore filter membranes are illustrated in Figure 8. We take the concentration

initial condition as a piecewise function in the left panel of Figure 8, and assume that the

pressure decreases linearly in space from p+ to p−. The right panel of Figure 8 shows the

evolution of the concentration profile as time increases. We note that the concentration increases

down the membrane, since the model (30) does not account for clogging at the top of the

membrane. We also note that the pressure does not change with time, since the pressure

simply satisfies the second order equation pzz = 0.
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Figure 8: Left: initial condition for the concentration in the uncompressed membrane case.
Right: evolution of the concentration profile for T = 5s, T = 15s, and T = 25s.

3.2.1 Compressed case for uniform void fraction ε

We assume a linear model for the effect of membrane compression on the void fraction ε.

Assuming that Lu is the uncompressed membrane length and Lc is the length after compression,

we have the following equality by conservation of solid mass:

ALu(1− εu) = ALc(1− εc) , (31)

where the left side corresponds to the volume of solid in the uncompressed case, and the right

side corresponds to the solid volume in the compressed case. Given εu from pre-compression

experiments, we can therefore choose εc satisfying:

1− εu
1− εc

=
Lc
Lu

.

The results given various compression ratios Lc

Lu
are summarized in Figure 9. The differences

between the uncompressed and compressed scenarios on the concentration profiles are more

pronounced for smaller compression ratios, i.e., more compression of the filter membrane (right

column). As mentioned in the previous section, the increase of the concentration down the

membrane is due to the absence of clogging in the model.

3.3 Mechanical model

Based on the the microstructure of the membrane made of PTFE(possibly), as shown in figure

10, it is possible that the mechanical property of the membrane is highly depend on the fiber

length between nodes, based on the microstructure of the membrane, there are several choices

of assumptions we can make in order to simplify the problem:
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Figure 9: Fluid concentration profiles c at times T = 5s (top row) and T = 25s (bottom row).
Compression ratio Lc/Lu = 0.75 is shown in the left column, and Lc/Lu = 0.5 in the right
column.
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• fibers (between each nodes) do not bend or buckle but the angles between fibers attached

on the same node could change.

• fiber bend and buckle but angles remain the same.

• fiber bend, buckle and the angles could change.

Figure 10: Different microstructures of the membrane of PTFE based on the length of the fiber.
see http://www.baghouse.com/products/baghouse-filters/ptfe-filters/

Among the three choices of assumptions, we first discuss the first case which the fibers do not

bend or buckle but can be compressed and stretched. We used a method called the stiffness

method.

3.3.1 Stiffness Method

In the stiffness method, we are going to construct the ”stiffness matrix” of the fibrous structure

such that

f = [K]d (32)

where f is the vector represents the forces acting on each node in three directions (x, y, z), d

is the vector of the changes of location of each node in three directions (x, y, z). We begin to

construct [K] by following steps:

1. Divide the structure into two sets: MEMBERS(fibers or edges) and NODES(knots)

2. For each member, we consider the local relation of the axial forces (q1, q2) and displace-

ments (u1, u2), and the relation can be written as

q = ku (33)
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Figure 11: Simulation of compression of a stack of fibrous cube with symmetric connection,
this validates our model

where k =

[
1 −1

−1 1

]
.

3. Use coordinate transformation to assign the contribution of each member’s local displace-

ment and force into the global coordinate system. For each member,

u = Tv (34)

f = T tq (35)

where T is the coordinate transformation matrix, and T t is the transpose of T .

4. Assemble each forces and displacements of each element into one vector f and v.

For more detailed tutorial, see http://people.duke.edu/~hpgavin/cee421/truss-3d.pdf,

or

https://engineering.purdue.edu/~aprakas/CE474/CE474-Ch5-StiffnessMethod.pdf.

In the simulation, we used the Matlab code ”Truss Analysis” written by Hossein Rahami and

updated by Frank McHugh. We present the following simulations by compressing a cubic

fibrous ”rod” and a fibrous cube.
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Figure 12: Simulation of compression of a fibrous cube whose fibers are extracted from the
edges of a meshed cube
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3.3.2 Remarks

• Random fiber orientations (or random distribution of the nodes) needs to be considered

in this model rather than extracting edges from a mesh.

• Boundary conditions needs to be carefully determined, for example, in both compression

cases, the nodes on the edges and four sides of the cubes only bear vertical forces, which

means we are attaching wheels on all those nodes agains a fixed wall.

3.4 Kirchhoff rod theory

Next we pursue a separate approach to contemplate the compression of porous membranes into

filters. This is inspired by noting that a porous membrane can be made of a fibrous mesh that

traps particles between the fibers. We will model the effects of compression on the shape of a

single fiber, by considering a fiber to be a planar Kirchhoff rod. This places us in the context

of the theory of finite displacement (via bending and twisting) of thin rods. Deformations of

infinitesimal pieces of the rod may be small, but can effect a large deformation of the rod as a

whole.

3.4.1 Derivation of ODE System

Consider the centerline of a rod to be a curve in the xz-plane, with position parameterized by

arc length s as follows
−→r (s) = x(s)̂i+ z(s)k̂ . (36)

Take ê1(s) to be the unit normal vector to the curve and ê3(s) to be the unit tangential

vector to the curve, so that

ê3 =
d−→r
ds

= x′(s)̂i+ z′(s)k̂ . (37)

We must also take into account the rod curvature κ, which corresponds to the direction ĵ

out of the page via the unit binormal vector ê2(s). Let

−→
k = κĵ = κê2 .

By definition, curvature of a smooth curve with position vector −→r (s) and unit tangent

vector ê3(s) is given by

κ =

∥∥∥∥dê3

ds

∥∥∥∥ .
Accordingly, we have

dê3

ds
=
−→
k × ê3 , (38)
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and similarly,
dê1

ds
=
−→
k × ê1 . (39)

Then substituting for
−→
k and ê3 in equation (38) implies

dê3

ds
= κĵ × [x′(s)̂i+ z′(s)]k̂

= κ[z′(s)̂i− x′(s)k̂] .
(40)

Now define φ(s) to be the tangent vector’s angle from the x-axis, with x′(s) = cos(φ) and

z′(s) = sin(φ), so that by substitution into equation (40),

dê3

ds
= κ[sin(φ)̂i− cos(φ)k̂] ; (41)

and also by substitution into equation (37),

ê3 = cos(φ)̂i+ sin(φ)k̂ , (42)

which implies
dê3

ds
= − sin(φ)

dφ

ds
î+ cos(φ)

dφ

ds
k̂ . (43)

Equating the right hand sides of equations (41) and (43), we derive for curvature

κ = −dφ
ds

(44)

Furthermore, from equations (38) and (41) we have that

ê1 = ê2 × ê3 = sin(φ)̂i− cos(φ)k̂ (45)

Keeping in mind this planar representation of a curve (the centerline of our rod), we use

constitutive relationships between moments and curvature to derive an eighth-order ODE sys-

tem describing the curve’s deformation due to a load at its ends. This will represent a single

fiber in a fibrous membrane under compression.

Let
−→
F (s) be the force vector and

−→
M(s) be the moment vector. Recall that the moment

measures the tendency of the force to rotate the object (such as our rod) about a point or axis.

Let E be Young’s modulus and I be the moment of inertia of a cylinder, and recall curvature

κ. Then for the force and the moment, respectively, we have:

−→
F = F1(s)ê1 + F3(s)ê3 , (46)
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and

−→
M = EI(κ− κ′′(s))ê2 . (47)

Taking the derivative of both sides of equation (47) with respect to s, recalling dê2
ds

= 0, we

get
−→
M ′(s) = EI

d

ds
[κ− κ′′]ê2 ,

which implies
M2

EI
= κ− κ′′ . (48)

From the balance of linear and angular momentum, according to general Kirchhoff rod

theory, we have relationships
−→
F ′′(s) =

−→
0 (49)

and
−→
M ′(s) + ê3 ×

−→
F =

−→
0 . (50)

Substituting equation (46) into equation (50) implies

M ′
2 = −F1 . (51)

Next, taking the second derivative of equation (46) and substituting equations (38) and

(39), we see that the constitutive force equation (49) implies

−→
F ′′ = [F ′′1 − κ2F1 + κ′F3 + 2κF3]ê1 + [F ′′3 − κ2F3 − κ′F1 − 2κF ′1]ê3 = 0 (52)

3.4.2 Kirchhoff Rod ODE System

Thus, from equations (44), (48), (51), and (52), we extract the eighth-order ODE system

describing the rod’s centerline:

φ′(s) = −κ

κ′′ − κ =
−M2

EI

M ′
2 = −F1

F ′′1 = κ2F1 − κ′F3 − 2κF ′3

F ′′3 = κ2F3 + κ′F1 + 2κF ′1

(53)

We can solve this system in MATLAB, given eight boundary conditions. The conditions we

21



consider to start with include no shear force at the rod ends

F1(0) = F1(L) = 0 , (54)

a load at the ends (the compression force)

F3(0) = −F3(L) = −N , (55)

constant curvature at the rod ends

κ′(0) = κ′(L) = 0 , (56)

no torque at the bottom, such as from fixing the rod to the base

M2(0) = 0 , (57)

and the rod standing straight up at the base

φ(0) = π/2 . (58)

3.5 Future work

Fluid flow through filters

In the fiber matrix model described in Section 3.1, we considered fluid flow through a filter

membrane, and prescribed boundary conditions for the pressure on the top and bottom of the

membrane. A more realistic boundary condition that we plan to implement is prescribing the

flow Q = −Kp

µ
Apz at the inlet boundaries rather than the pressure, as this may be more easily

available from experiments. Moreover, a more realistic model for the fluid flow can be explored

by introducing clogging through the equation:

dξ

dt
= kc , (59)

where ξ corresponds to the amount of bound solute, and k is a rate parameter. This ξ is

subsequently subtracted from equation (25) for void fraction ε, making all other parameters also

dependent on ξ (and therefore time-varying). This will yield a dynamic pressure distribution,

and will fully couple equations (17) - (18).

Mechanical fiber model

For the mechanical model presented in Section 3.3, we propose the following improvements:
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• Random distributed fibers needs to be applied.

• Buckling of the fibers needs to be considered by adding two more components φ, θ on the

unknown vector u which denotes the angular momentum in 3D.

• Mechanical properties of the membrane should be considered for the realistic case.

• Find a way to get the filter parameters as well as the changes of the macroscopic level

from the microscopic level simulation, i.e. bubble point, porosity, etc.

• A more realistic boundary condition needs to be considered. For example, if the nodes

on the edges or surfaces of the cube are allowed to move horizontally, some of the nodes

might be compressed ”out of” the cube and the deformation of those fibers attached to

the nodes are very large, which is unrealistic. Therefore buckling or even failure of such

fibers shall be considered.
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