Office Problem

(Office consultation: First Draft due March 2)
Let $\mathcal{C}(\mathbb{Q})$ denote the set of equivalence classes $\left[a_{n}\right]$ of Cauchy sequences $\left\{a_{n}\right\}$ of rational numbers as defined in Assignment 5. The purpose of this office problem is to complete the construction of the real numbers from the set $\mathcal{C}(\mathbb{Q})$ which was begun in Assignment 5. In particular, you will show that $\mathcal{C}(\mathbb{Q})$ is ordered and Archimedean, define completeness in $\mathcal{C}(\mathbb{Q})$ and show that each "infinite decimal" gives rise to an element of $\mathcal{C}(\mathbb{Q})$.

1. A Cauchy sequence $\left\{a_{n}\right\}$ is called positive if there exists $B \in \mathbb{Q}, B>0$, and $N \in \mathbb{N}$ such that if $n \geq N$ then $a_{n} \geq B$. Prove that if $\left\{a_{n}\right\} \sim\left\{b_{n}\right\}$ and $\left\{a_{n}\right\}$ is positive, then $\left\{b_{n}\right\}$ is also positive.

Now define $P \subseteq \mathcal{C}(\mathbb{Q})$ to be the subset consisting of those $\left[a_{n}\right]$ such that $\left\{a_{n}\right\}$ is positive. By 1. this notion is well-defined, i.e. does not depend on the choice of Cauchy sequence in the equivalence class $\left[a_{n}\right]$.
2. Prove that if $\left[a_{n}\right],\left[b_{n}\right] \in P$, then $\left[a_{n}\right]+\mathcal{C}(\mathbb{Q})\left[b_{n}\right] \in P$ and $\left[a_{n}\right] \cdot \mathcal{C}(\mathbb{Q})\left[b_{n}\right] \in P$.
3. Prove that if $\left[a_{n}\right] \in \mathcal{C}(\mathbb{Q})$, then either $\left[a_{n}\right] \in P,\left[a_{n}\right]=0$ or $-\left[a_{n}\right] \in P$; and that only one of these conditions holds.
4. Prove that $\mathcal{C}(\mathbb{Q})$ satisfies the Archimedean property.

The Additional Problems in Assignment 5 essentially proved that $\mathcal{C}(\mathbb{Q})$ is a field. Hence we see from 2., 3. and 4. that $\mathcal{C}(\mathbb{Q})$ is an Archimedean ordered field. In fact, $\mathcal{C}(\mathbb{Q})$ has the four equivalent properties: Axiom C, l.u.b. Axiom, Cauchy sequences converge plus the Archimedean Principle, and BW. But these are not axioms in $\mathcal{C}(\mathbb{Q})$: they are provable from the definition of $\mathcal{C}(\mathbb{Q})$ (and once you know one of them holds, the others do as well, since the proofs of their equivalence use only the properties of Archimedean ordered fields). This is a little harder to do, and the next problem asks you just to state what would have to be proved.
5. Give a clear statement of the assertion that every Cauchy sequence in $\mathcal{C}(\mathbb{Q})$ converges to an element of $\mathcal{C}(\mathbb{Q})$. (To do this, you must first define "Cauchy sequence in $\mathcal{C}(\mathbb{Q})$ ".)

The final problem shows the connection between the usual concept of real number and Cauchy sequences: "decimals" do give us elements of $\mathcal{C}(\mathbb{Q})$.
6. Let $\left\{d_{n}\right\}$ be a sequence where $d_{i} \in\{0,1, \ldots, 9\}$ for all i. Show that the sequence $\left\{s_{n}\right\}$ where

$$
s_{n}=\sum_{k=1}^{k=n} d_{k} 10^{-k}
$$

is Cauchy. (We thus think of $\left[s_{n}\right]$ as representing the decimal.$d_{1} d_{2} d_{3} \ldots$)
So $\mathcal{C}(\mathbb{Q})$ talks like \mathbb{R}, walks like \mathbb{R}, \ldots

