Math 431 March 23, 2018

Assignment 9 (Due March 30)

Reading: (from Reed) §4.3

Problems: §4.1: #10, 12

 $\S 4.2: \# 2, 4, 6, 7, 12$

Additional Problems: 1. Prove that if a function is continuous on the open interval (a, b) and bounded on [a, b], then it is Riemann integrable on [a, b]. (Suggestion: Let f be the function. Prove that for any $\epsilon > 0$ there is a partition P of [a, b] such that

$$U_P(f) - L_P(f) \le \epsilon$$

Use your experience with #2, §3.3 to control the potential problems near the endpoints.) Conclude that the function f, defined on [0,1] by $f(x) = \sin(1/x)$ for $x \in (0,1]$ and f(0) = 7, is Riemann integrable on [0,1].

2. Examine the difference quotient used in the definition of the derivative of $\cos x$ and write down, but do not evaluate, the limits you need to know in order to compute $\cos' x$. In this context, what is wrong with your answer to # 4, $\S 4.2$?