Assignment 9

(Due March 30)

Reading: (from Reed) §4.3
Problems: §4.1: \#10, 12
§4.2: \#2, 4, 6, 7, 12

Additional Problems: 1. Prove that if a function is continuous on the open interval (a, b) and bounded on $[a, b]$, then it is Riemann integrable on $[a, b]$. (Suggestion: Let f be the function. Prove that for any $\epsilon>0$ there is a partition P of $[a, b]$ such that

$$
U_{P}(f)-L_{P}(f) \leq \epsilon
$$

Use your experience with $\# 2, \S 3.3$ to control the potential problems near the endpoints.) Conclude that the function f, defined on $[0,1]$ by $f(x)=\sin (1 / x)$ for $x \in(0,1]$ and $f(0)=7$, is Riemann integrable on $[0,1]$.
2. Examine the difference quotient used in the definition of the derivative of $\cos x$ and write down, but do not evaluate, the limits you need to know in order to compute $\cos ^{\prime} x$. In this context, what is wrong with your answer to $\# 4, \S 4.2$?

