Assignment 8 (Due March 23)

Reading: (from Reed) §4.6 Problems: §3.3: #2, 3, 6, 13, 15 §4.1: #2, 3, 5

Additional Problem:

1. We needed the following in the proof that a continuous function on a closed interval is uniformly continuous. Let $\{a_n\}$ and $\{b_n\}$ be two bounded sequences of real numbers. By BW each has a convergent subsequence. Show that each has a convergent subsequence with the *same* index set: there is $\{n_1 < n_2, \ldots\} \subseteq \mathbb{N}$ such that $\{a_{n_k}\}$ and $\{b_{n_k}\}$ converge. (Suggestion: Start by picking a convergent subsequence $\{a_{n_k}\}$; then $\{b_{n_k}\}$ is not necessarily convergent but has a convergent subsequence. This last index set $\subseteq \mathbb{N}$ works. Why?)

2. The following was needed in the final equivalent definition of differentiability of a function at a point in its domain. Let $f : \mathbb{R} \to \mathbb{R}$ be a function and let $c \in \text{Dom } f$. Suppose that for every sequence $\{a_n\} \subset \text{Dom } f$ which converges to c, the sequence $f(a_n)$ also converges. Prove that if $\{a_n\} \to c$ and $\{b_n\} \to c$, then

$$\lim f(a_n) = \lim f(b_n)$$

(Suggestion: Consider the sequence $\{a_1, b_1, a_2, b_2, \dots\}$).

3. Prove that if f(x) and g(x) are Riemann integrable on [a, b], then f(x) + g(x) is Riemann integrable on [a, b]. (Suggestion: Prove first that for any partition $P = \{x_0, x_1, \ldots, x_N\}$ of [a, b],

 $M_i(f+g) \le M_i(f) + M_i(g)$ and $m_i(f) + m_i(g) \le m_i(f+g)$

where as usual M_i and m_i denote the sup and inf on $[x_{i-1}, x_i]$.)