Assignment 5

(Due February 23)

Reading: (from Reed) §6.1, 3.2

Problems: §2.4: \#10

§2.6: \#1, 3, 9
§6.1: \#1(a, c), 8

Additional Problems: 1. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be Cauchy sequences in an ordered field F. Let $\left\{a_{n}\right\} \sim\left\{b_{n}\right\}$ mean that $a_{n}-b_{n} \rightarrow 0$. Prove that \sim is an equivalence relation: $\left\{a_{n}\right\} \sim\left\{a_{n}\right\}$; if $\left\{a_{n}\right\} \sim\left\{b_{n}\right\}$ then $\left\{b_{n}\right\} \sim\left\{a_{n}\right\}$; if $\left\{a_{n}\right\} \sim\left\{b_{n}\right\}$ and $\left\{b_{n}\right\} \sim\left\{c_{n}\right\}$, then $\left\{a_{n}\right\} \sim\left\{c_{n}\right\}$.
2. Let $\mathcal{C}(F)$ denote the set of equivalence classes of Cauchy sequences in F. Find an injective function $F \rightarrow \mathcal{C}(F)$. (So we can think of F as a subset of $\mathcal{C}(F), F \subseteq \mathcal{C}(F)$: we have "enlarged" F.)
3. Prove that the sum and product of Cauchy sequences is Cauchy.
4. Let $\left[a_{n}\right]$ denote the equivalence class containing the Cauchy sequence $\left\{a_{n}\right\}$. Given Cauchy sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$, define the sum and product of the equivalence classes containing them by

$$
\begin{gathered}
{\left[a_{n}\right]+\mathcal{C}(F)\left[b_{n}\right]:=\left[a_{n}+b_{n}\right]} \\
{\left[a_{n}\right] \cdot \mathcal{C}(F)\left[b_{n}\right]:=\left[a_{n} b_{n}\right]}
\end{gathered}
$$

Prove that these rules are well-defined by showing that if $\left\{a_{n}\right\} \sim\left\{a_{n}^{\prime}\right\}$ and $\left\{b_{n}\right\} \sim\left\{b_{n}^{\prime}\right\}$, then $\left\{a_{n}+b_{n}\right\} \sim\left\{a_{n}^{\prime}+b_{n}^{\prime}\right\}$ and $\left\{a_{n} b_{n}\right\} \sim\left\{a_{n}^{\prime} b_{n}^{\prime}\right\}$
5. If $\mathcal{C}(F)$ denotes the set of equivalence classes of Cauchy sequences in F, then with the sum and product operations in $3 . \mathcal{C}$ is in fact a field in such a way that the "copy" of F in $\mathcal{C}(F)$ in 2. above is the field F we started with: $F \subseteq \mathcal{C}(F)$ is a subfield. Don't try to prove this, but identify the additive and multiplicative identities 0 and 1 in $\mathcal{C}(F)$ and verify that $\left[a_{n}\right]+\mathcal{C}_{(F)} 0=\left[a_{n}\right]$ and $\left[a_{n}\right] \cdot \mathcal{C}(F) 1=\left[a_{n}\right]$ for all Cauchy sequences $\left\{a_{n}\right\}$.(Keep in mind that your choice of 0 (or 1) in your answer will be an equivalence class of Cauchy sequences. This class may be identified by specifying any Cauchy sequence in it.)

