Assignment 3

(Due February 9)
Reading: (from Reed) §2.4, 2.5
Problems: §1.3: $\# 3(\mathrm{c})$ (the sets need not be disjoint!), 8 (ditto)
§2.1: \#2b, 3b, 4b, 9b
Additional Problems: 1. Since $a_{n}=n(n+1) / 2, n=1,2, \ldots$, is an increasing sequence of positive integers, every integer is in one and only one of the subsets I_{n} of \mathbb{N} where

$$
I_{1}=\{1\}, \quad I_{n}=\left(a_{n-1}, a_{n}\right] \cap \mathbb{N}=\{n(n-1) / 2+1, \ldots, n(n+1) / 2\}, n \geq 2
$$

Let $f: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ be the function defined by the following rule. Let $\ell \in I_{n}$, say $\ell=n(n-1) / 2+k$, where $k \in\{1, \ldots, n\}$. Then define $f(\ell)=(n-k+1, k)$. Prove that f is bijective.
2. The logical format of the statement "The sequence $\left\{a_{n}\right\}$ converges" is $(\exists a \in \mathbb{R})(\forall \epsilon>$ $0)(\exists N \in \mathbb{R})(\forall n)\left(n \geq N \Longrightarrow\left|a_{n}-a\right| \leq \epsilon\right)$. Write the statement "The sequence $\left\{a_{n}\right\}$ does not converge" in logical format.
3. Show that the sequence $\left\{r^{n}\right\}$ does not converge if $r \leq-1$. (Suggested steps: Begin with a careful statement of what you are trying to prove. Take $\epsilon=1 / 4$ in this statement. If $\left|a-r^{n}\right|>1 / 4$, (what is n ?) you're good. If not, notice that $\left|r^{n}-r^{n+1}\right| \geq 1$ (prove it!), then use the inequality of $\# 10, \S 1.1$ to conclude that $\left|a-r^{n+1}\right|>1 / 4$.)

