Assignment 11

(Due April 20)

Reading: (from Reed) §5.3
Problems: §5.1: \#1, 4, 11
§5.2: \#3, 6, 9
§5.3: \#1, 2, 3

Additional Problems:

1. Let $\left\{f_{n}\right\}$ be a sequence of functions which converges pointwise to a function f on some subset $E \subseteq \mathbb{R}$. Suppose there exists a sequence $\left\{x_{n}\right\} \subseteq E$ and a positive number c such that $\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|>c$, for all n. Prove that $\left\{f_{n}\right\}$ does not converge uniformly to f on E.
2. Let $\left\{r_{1}, r_{2}, \ldots\right\}$ be the set of rational numbers in $[0,1]$. For $x \in[0,1]$ and $n \in \mathbb{N}$, let

$$
f_{n}(x)= \begin{cases}1, & x=r_{1}, \ldots, r_{n} \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
f(x)= \begin{cases}1, & x \text { rational } \\ 0, & x \text { irrational }\end{cases}
$$

Prove that $f_{n} \rightarrow f$ pointwise but not uniformly. (Note that f_{n} is Riemann integrable but f is not.)

