Assignment 10

(Due April 13)

Reading: §5.1, 5.2

Problems: §4.3: #7, 8

 $\S4.6: \#2, 3, 5(c,d,e)$ (give reasons), 6

Additional Problems:

1. Let f(x) be n+1 times continuously differentiable on an open interval I containing $a \in \mathbb{R}$. Use integration by parts to show that the (integral form of the) Taylor remainder for f(x)

$$R_n(x;a) := \frac{1}{n!} \int_a^x f^{(n+1)}(t) (x-t)^n dt$$

satisfies the equation

$$R_n(x;a) = R_{n-1}(x;a) - \frac{f^{(n)}(a)}{n!}(x-a)^n.$$

on I. Use this to prove Taylor's formula: for any $n \ge 1$ and $x \in I$

$$f(x) = \sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!} (x-a)^{i} + R_{n}(x;a).$$

2. Use Taylor's theorem to show that if f and g are (n+1)-times continuously differentiable functions on an open interval containing a, $f^{(k)}(a) = g^{(k)}(a) = 0$ for k = 0, 1, ..., n, and $g^{(n+1)}(a) \neq 0$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f^{(n+1)}(a)}{g^{(n+1)}(a)}$$

3. Use 2. to compute

$$\lim_{x \to 0} \frac{x^2 - \sin^2 x}{x^2 \sin^2 x}$$

4. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by f(0,0) = 0 and, if $(x,y) \neq (0,0)$,

$$f(x,y) = \frac{xy}{x^2 + y^2}.$$

Prove that the partial derivatives f_x and f_y exist at every $\vec{c} \in \mathbb{R}^2$, and that f is not continuous at $\vec{0}$. Why does this not contradict the fact that if f is differentiable at \vec{c} , then it is continuous at \vec{c} ?