1. Uniqueness for the linear equation.

Suppose

$$
\begin{gathered}
a: \Omega \times(0, T) \rightarrow \mathbf{\operatorname { S y m }}\left(\mathbf{R}^{n}\right) \\
b: \Omega \times(0, T) \rightarrow \mathbf{R}^{n} \\
c: \Omega \times(0, T) \rightarrow \mathbb{R}
\end{gathered}
$$

and

$$
\alpha, \beta, \gamma
$$

are nonnegative real numbers such that, for any $(x, t) \in \Omega \times(0, T)$,

$$
\begin{gathered}
a(x, t)(v) \bullet v \geq \alpha|v|^{2} \quad \text { whenever } v \in \mathbf{R}^{n} ; \\
|b(x, t)| \leq \beta ; \\
|c(x, t)| \leq \gamma .
\end{gathered}
$$

Suppose $u: \Omega \times(0, T) \rightarrow \mathbb{R}$ is such that

$$
\begin{equation*}
u(b, t)=0 \quad \text { whenever }(b, t) \in \partial \Omega \times(0, T) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\liminf _{t \downarrow 0} \int_{\Omega} u^{2}=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\operatorname{div}(a(\nabla u))+b \bullet u+c u \tag{3}
\end{equation*}
$$

We will show that

$$
\begin{equation*}
u(x, t)=0 \quad \text { for }(x, t) \in \Omega \times(0, T) \tag{4}
\end{equation*}
$$

Suppose $0<\eta<\infty$ and

$$
\eta^{2}<\alpha
$$

Then

$$
\begin{equation*}
\beta|u||\nabla u|=2(\eta|\nabla u|)\left(\frac{\beta|u|}{2 \eta}\right) \leq \eta^{2}|\nabla u|^{2}+\frac{\beta^{2}}{4 \eta^{2}} u^{2} . \tag{5}
\end{equation*}
$$

In view of (3) and (5) we find that

$$
\begin{aligned}
\frac{\partial}{\partial t} \frac{u^{2}}{2} & =u \frac{\partial u}{\partial t} \\
& =u \operatorname{div}(a(\nabla u))+u b \bullet \nabla u+c u^{2} \\
& =\operatorname{div}(u a(\nabla u))-\nabla u \bullet a(\nabla u)+u b \bullet \nabla u+c u^{2} \\
& \leq \operatorname{div}(u a(\nabla u))-\alpha|\nabla u|^{2}+\beta|u||\nabla u|+\gamma u^{2} \\
& \leq \operatorname{div}(u a(\nabla u))+\left(\eta^{2}-\alpha|\nabla u|^{2}\right)+\left(\frac{\beta^{2}}{4 \eta^{2}}+\gamma\right) u^{2} \\
& \leq \operatorname{div}(u a(\nabla u))+\left(2 \eta \beta-\alpha|\nabla u|^{2}\right)+\left(\frac{\beta^{2}}{4 \eta^{2}}+\gamma\right) u^{2} \\
& \leq \operatorname{div}(u a(\nabla u))+\left(\frac{\beta^{2}}{4 \eta^{2}}+\gamma\right) u^{2} .
\end{aligned}
$$

Integrating over Ω and invoking (1) we find that

$$
\frac{d}{d t} \int_{\Omega} \frac{u^{2}}{2} \leq 2\left(\frac{\beta^{2}}{4 \eta^{2}}+\gamma\right) \int_{\Omega} \frac{u^{2}}{2}
$$

That (4) holds now follows from (2) and the following Lemma.
Lemma 1.1. Suppose $f:(0, T) \rightarrow[0, \infty)$ is continuously differential, $0 \leq M<\infty$,

$$
\dot{f}(t) \leq M f(t) \quad \text { whenever } 0<t<T
$$

and

$$
\liminf _{t \downarrow 0} f(t)=0
$$

Then

$$
f(t)=0 \quad \text { for } 0<t<T
$$

Proof. Suppose, contrary to the Lemma, $0<t_{0}<T$ and $f\left(t_{0}\right)>0$. Let I be the connected component of t_{0} in $\{t \in I: f(t)>0\}$.

Since

$$
\frac{d}{d t} \ln f(t)=\frac{\dot{f}(t)}{f(t)} \leq M \quad \text { whenever } t \in I
$$

we find that

$$
\ln \left(\frac{f(t)}{f\left(t_{0}\right.}\right) \leq M\left(t-t_{0}\right)
$$

or

$$
f(t) \leq f\left(t_{0}\right) e^{M\left(t-t_{0}\right)} \quad \text { for } t \in I
$$

Letting $t_{0} \downarrow \inf I$ we infer that $f(t)=0$ for $t \in I$.

