Independent families of random variables.

Definition. Suppose \mathcal{X} is a family of random variables. We say \mathcal{X} is **independent** if

$$P(X_1 \in A_1, \dots, X_n \in A_n) = P(X_1 \in A_1) \cdots P(X_n \in A_n)$$

whenever X_1, \ldots, X_n are distinct members of \mathcal{X} and A_1, \ldots, A_n are Borel subsets of **R**.

Proposition. Suppose \mathcal{X} is a family of random variables. Then \mathcal{X} is independent if and only if

$$F_{X_1,...,X_n}(x_1,...,x_n) = F_{X_1}(x_1)\cdots F_{X_n}(x_n)$$

whenever X_1, \ldots, X_n are distinct members of \mathcal{X} and $(x_1, \ldots, x_n) \in \mathbf{R}^n$.

Proof. This is really simple once you get straight what a Borel set is. We won't do this, though. \Box

Proposition. Suppose X_1, \ldots, X_n are distinct discrete random variables. Then $\{X_1, \ldots, X_n\}$ is independent if and only if

(1)
$$p_{X_1,...,X_n}(x_1,...,x_n) = p_{X_1}(x_1)\cdots p_{X_n}(x_n)$$
 whenever $(x_1,...,x_n) \in \mathbf{R}^n$.

Proof. This is long winded but simple minded. I hope you will see this. Suppose $\{X_1, \ldots, X_n\}$ is independent and $(x_1, \ldots, x_n) \in \mathbf{R}^n$. Let $A_i = \{x_i\}$ for each $i = 1, \ldots, n$. Then

$$p_{X_1,...,X_n}(x_1,...,x_n) = P(X_1 = x_1,...,X_n = x_n)$$

= $P(X_1 \in A_1,...,X_n \in A_n)$
= $P(X_1 \in A_1) \cdots P(X_n \in A_n)$
= $P(X_1 = x_1) \cdots P(X_n = x_n)$
= $p_{X_1}(x_1) \cdots p_{X_n}(x_n);$

thus (1) holds.

One the other hand suppose (1) holds and $A_i \subset \mathbf{R}, i = 1, ..., n$. Then

$$P(X_{1} \in A_{1}, \dots, X_{n} \in A_{n}) = P(\bigcup_{x_{1} \in A_{1}, \dots, x_{n} \in A_{n}} \{X_{1} = x_{1}, \dots, X_{n} = x_{1}\})$$

$$= \sum_{x_{1} \in A_{1}, \dots, x_{n} \in A_{n}} P(X_{1} = x_{1}, \dots, X_{n} = x_{1})$$

$$= \sum_{x_{1} \in A_{1}, \dots, x_{n} \in A_{n}} p_{X_{1}, \dots, X_{n}}(x_{1}, \dots, x_{n})$$

$$= \sum_{x_{1} \in A_{1}, \dots, x_{n} \in A_{n}} p_{X_{1}}(x_{1}) \cdots p_{X_{n}}(x_{n})$$

$$= \left(\sum_{x_{1} \in A_{1}} p_{X_{1}}(x_{1})\right) \cdots \left(\sum_{x_{n} \in A_{n}} p_{X_{n}}(x_{n})\right)$$

$$= \left(\sum_{x_{1} \in A_{1}} P(X_{1} = x_{1})\right) \cdots \left(\sum_{x_{n} \in A_{n}} P(X_{n} = x_{n})\right)$$

$$= P(X_{1} \in A_{1}) \cdots P(X_{n} \in A_{n})$$

so $\{X_1, \ldots, X_n\}$ is independent. \Box

Definition. We say the random vector $\mathbf{X} = (X_1, \ldots, X_n)$ is **continuous** if there exists a function

$$f_{\mathbf{X}} = f_{X_1,\dots,X_n} : \mathbf{R}^n \to [0,\infty),$$

called a (joint) probability density function, such that

$$F_{\mathbf{X}}(\mathbf{x}) = F_{X_1,\dots,X_n}(x_1,\dots,x_n)$$

= $\int_{\mathbf{w} \le \mathbf{x}} f_{\mathbf{X}}(\mathbf{w}) d\mathbf{w}$
= $\int \cdots \int_{w_1 \le x_1,\dots,w_n \le x_n} f_{X_1,\dots,X_n}(w_1,\dots,w_n) dw_1 \cdots dw_n$
= $\int_{-\infty}^{x_n} \cdots \left(\int_{-\infty}^{x_1} f_{X_1,\dots,X_n}(w_1,\dots,w_n) dw_1 \right) \cdots dw_n.$

We use the following formula *very* frequently.

Theorem. Suppose $\mathbf{X} = (X_1, \ldots, X_n)$ is continuous random vector and R is a Borel subset of \mathbf{R}^n . Then

$$P(\mathbf{X} \in R) = P((X_1, \dots, X_n) \in R) = \int_R f_{\mathbf{X}}(\mathbf{x}) \, d\mathbf{x} = \int \cdots \int_R f_{X_1, \dots, X_n}(x_1, \dots, x_n) \, dx_1 \cdots dx_n.$$

Proof. This is straight forward but technical exercise which we omit. \Box

Corollary. Suppose $\mathbf{X} = (X_1, \ldots, X_n)$ is continuous random vector and $1 \le i_1 < \cdots < i_m \le n$. Then $(X_{i_1}, \ldots, X_{i_m})$ is a continuous random vector for which

$$f_{X_{i_1},\ldots,X_{i_m}}(x_{i_1},\ldots,x_{i_m})$$

equals the integral over all of the other variables.

Definition. Suppose R is a Borel set in \mathbb{R}^n . We say the random vector $\mathbf{X} = (X_1, \ldots, X_n)$ is **uniformly** distributed over R if

$$P(\mathbf{X} \in Q) = \frac{|Q \cap R|}{|R|}$$
 whenever Q is a Borel subset of \mathbf{R}^n .

It is a straightforward but technical exercise which we omit to show that \mathbf{X} is continuous with pdf given by

$$f_{\mathbf{X}}(\mathbf{x}) = \begin{cases} \frac{1}{|R|} & \text{if } \mathbf{x} \in R, \\ 0 & \text{else.} \end{cases}$$