Independent families of random variables.

Definition. Suppose \mathcal{X} is a family of random variables. We say \mathcal{X} is independent if

$$
P\left(X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right)=P\left(X_{1} \in A_{1}\right) \cdots P\left(X_{n} \in A_{n}\right)
$$

whenever X_{1}, \ldots, X_{n} are distinct members of \mathcal{X} and A_{1}, \ldots, A_{n} are Borel subsets of \mathbf{R}.

Proposition. Suppose \mathcal{X} is a family of random variables. Then \mathcal{X} is independent if and only if

$$
F_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=F_{X_{1}}\left(x_{1}\right) \cdots F_{X_{n}}\left(x_{n}\right)
$$

whenever X_{1}, \ldots, X_{n} are distinct members of \mathcal{X} and $\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$.
Proof. This is really simple once you get straight what a Borel set is. We won't do this, though.

Proposition. Suppose X_{1}, \ldots, X_{n} are distinct discrete random variables. Then $\left\{X_{1}, \ldots, X_{n}\right\}$ is independent if and only if

$$
\begin{equation*}
p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=p_{X_{1}}\left(x_{1}\right) \cdots p_{X_{n}}\left(x_{n}\right) \quad \text { whenever }\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n} . \tag{1}
\end{equation*}
$$

Proof. This is long winded but simple minded. I hope you will see this.
Suppose $\left\{X_{1}, \ldots, X_{n}\right\}$ is independent and $\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$. Let $A_{i}=\left\{x_{i}\right\}$ for each $i=1, \ldots, n$. Then

$$
\begin{aligned}
p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) & =P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) \\
& =P\left(X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right) \\
& =P\left(X_{1} \in A_{1}\right) \cdots P\left(X_{n} \in A_{n}\right) \\
& =P\left(X_{1}=x_{1}\right) \cdots P\left(X_{n}=x_{n}\right) \\
& =p_{X_{1}}\left(x_{1}\right) \cdots p_{X_{n}}\left(x_{n}\right) ;
\end{aligned}
$$

thus (1) holds.
One the other hand suppose (1) holds and $A_{i} \subset \mathbf{R}, i=1, \ldots, n$. Then

$$
\begin{aligned}
P\left(X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right) & =P\left(\cup_{x_{1} \in A_{1}, \ldots, x_{n} \in A_{n}}\left\{X_{1}=x_{1}, \ldots, X_{n}=x_{1}\right\}\right) \\
& =\sum_{x_{1} \in A_{1}, \ldots, x_{n} \in A_{n}} P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{1}\right) \\
& =\sum_{x_{1} \in A_{1}, \ldots, x_{n} \in A_{n}} p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) \\
& =\sum_{x_{1} \in A_{1}, \ldots, x_{n} \in A_{n}} p_{X_{1}}\left(x_{1}\right) \cdots p_{X_{n}}\left(x_{n}\right) \\
& =\left(\sum_{x_{1} \in A_{1}} p_{X_{1}}\left(x_{1}\right)\right) \cdots\left(\sum_{x_{n} \in A_{n}} p_{X_{n}}\left(x_{n}\right)\right) \\
& =\left(\sum_{x_{1} \in A_{1}} P\left(X_{1}=x_{1}\right)\right) \cdots\left(\sum_{x_{n} \in A_{n}} P\left(X_{n}=x_{n}\right)\right) \\
& =\left(P (\cup _ { x _ { 1 } \in A _ { 1 } } \{ X _ { 1 } = x _ { 1 })) \cdots \left(P\left(\cup_{x_{n} \in A_{n}}\left\{X_{n}=x_{n}\right)\right)\right.\right. \\
& =P\left(X_{1} \in A_{1}\right) \cdots P\left(X_{n} \in A_{n}\right)
\end{aligned}
$$

so $\left\{X_{1}, \ldots, X_{n}\right\}$ is independent.
Definition. We say the random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ is continuous if there exists a function

$$
f_{\mathbf{X}}=f_{X_{1}, \ldots, X_{n}}: \mathbf{R}^{n} \rightarrow[0, \infty)
$$

called a (joint) probability density function, such that

$$
\begin{aligned}
F_{\mathbf{X}}(\mathbf{x}) & =F_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) \\
& =\int_{\mathbf{w} \leq \mathbf{x}} f_{\mathbf{X}}(\mathbf{w}) d \mathbf{w} \\
& =\int \cdots \int_{w_{1} \leq x_{1}, \ldots, w_{n} \leq x_{n}} f_{X_{1}, \ldots, X_{n}}\left(w_{1}, \ldots, w_{n}\right) d w_{1} \cdots d w_{n} \\
& =\int_{-\infty}^{x_{n}} \cdots\left(\int_{-\infty}^{x_{1}} f_{X_{1}, \ldots, X_{n}}\left(w_{1}, \ldots, w_{n}\right) d w_{1}\right) \cdots d w_{n}
\end{aligned}
$$

We use the following formula very frequently.
Theorem. Suppose $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ is continuous random vector and R is a Borel subset of \mathbf{R}^{n}. Then

$$
P(\mathbf{X} \in R)=P\left(\left(X_{1}, \ldots, X_{n}\right) \in R\right)=\int_{R} f_{\mathbf{X}}(\mathbf{x}) d \mathbf{x}=\int \cdots \int_{R} f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}
$$

Proof. This is straight forward but technical exercise which we omit.

Corollary. Suppose $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ is continuous random vector and $1 \leq i_{1}<\cdots<i_{m} \leq n$. Then $\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)$ is a continuous random vector for which

$$
f_{X_{i_{1}}, \ldots, X_{i_{m}}}\left(x_{i_{1}}, \ldots, x_{i_{m}}\right)
$$

equals the integral over all of the other variables.

Definition. Suppose R is a Borel set in \mathbf{R}^{n}. We say the random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ is uniformly distributed over R if

$$
P(\mathbf{X} \in Q)=\frac{|Q \cap R|}{|R|} \quad \text { whenever } Q \text { is a Borel subset of } \mathbf{R}^{n} .
$$

It is a straightforward but technical exercise which we omit to show that \mathbf{X} is continuous with pdf given by

$$
f_{\mathbf{X}}(\mathbf{x})= \begin{cases}\frac{1}{|R|} & \text { if } \mathbf{x} \in R \\ 0 & \text { else }\end{cases}
$$

