Problem 74, page 113. In successive rolls of a pair of fair dice, what is the probability of getting 2 sevens before 6 even numbers?

Let A, B and C be the events that you get a seven, and even number, or neither on a given roll, respectively. Thus

$$
P(A)=\frac{6}{36}=\frac{1}{6}, \quad P(B)=\frac{18}{36}=\frac{1}{2}, \quad P(C)=1-P(A)-P(B)=\frac{1}{3}
$$

We have
$P(2$ sevens before 6 evens $)$

$$
\begin{aligned}
& =\sum_{i=0}^{5} P(i \text { evens before } 2 \text { sevens }) \\
& =\sum_{i=0}^{5} \sum_{j=0}^{i} P(i \text { evens before } 2 \text { sevens } \mid j \text { evens before first seven }) P(j \text { evens before first seven }) \\
& =\sum_{i=0}^{5} \sum_{j=0}^{i} P(i-j \text { evens before first seven }) P(j \text { evens before first seven })
\end{aligned}
$$

For each nonnegative integer j let E_{j} be the event that you roll j evens before the first seven. We have

$$
\begin{aligned}
P\left(E_{0}\right) & =P\left(E_{0} \mid \text { seven on the first roll }\right) P(\text { seven on the first roll }) \\
& +P\left(E_{0} \mid \text { even on the first roll }\right) P(\text { even on the first roll }) \\
& +P\left(E_{0} \mid \text { neither seven nor even on the first roll }\right) P(\text { neither seven nor even on the first roll }) \\
& =1 P(A)+0 P(B)+P\left(E_{0}\right) P(C)
\end{aligned}
$$

So

$$
P\left(E_{0}\right)=\frac{P(A)}{1-P(C)}=\frac{1}{4}
$$

For $j>0$ we have

$$
\begin{aligned}
P\left(E_{j}\right) & =P\left(E_{j} \mid \text { seven on the first roll }\right) P(\text { seven on the first roll }) \\
& +P\left(E_{j} \mid \text { even on the first roll }\right) P(\text { even on the first roll }) \\
& +P\left(E_{j} \mid \text { neither seven nor even on the first roll }\right) P(\text { neither seven nor even on the first roll }) \\
& =0 P(A)+P\left(E_{j-1}\right) P(B)+P\left(E_{j}\right) P(C)
\end{aligned}
$$

which implies that

$$
(1-P(C)) P\left(E_{j}\right)=P\left(E_{j-1}\right) P(B)
$$

So

$$
P\left(E_{j}\right)=\left(\frac{P(B)}{1-P(C)}\right)^{j} P\left(E_{0}\right)=\left(\frac{3}{4}\right)^{j} \frac{1}{4}
$$

So the desired probability is

$$
\sum_{i=0}^{5} \sum_{j=0}^{i}\left(\frac{3}{4}\right)^{i-j} \frac{1}{4}\left(\frac{3}{4}\right)^{j} \frac{1}{4}=\left(\frac{1}{4}\right)^{2} \sum_{j=0}^{i}(i+1)\left(\frac{3}{4}\right)^{i} \simeq .5550
$$

