Test Two Mathematics 135.01 Fall 2007

## TO GET FULL CREDIT YOU MUST SHOW ALL WORK!

I have neither given nor received aid in the completion of this test.

Signature:

| Problem | Grade |
| :---: | :---: |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 8 |  |
| 7 |  |
| 8 |  |
| 9 |  |
| 10 |  |
| 11 |  |
| Total |  |

1. 10 pts. Suppose $X$ is normal with mean 3 and variance 4 . Determine $a, b$ such that $a X+b$ is normal with mean 5 and variance 9 .
2. 10 pts. Suppose $X$ is exponential distributed with parameter $\lambda=2$. Calculate the pdf of $\sqrt{X}$.
3. 20 pts. Suppose $X$ uniform on $(-1,2)$. Calculate the pdf of $X^{2}+1$.
4. 20 pts. Suppose $(X, Y)$ is uniformly distributed on $(0,1) \times(0,2), A$ is a random variable such that

$$
P(A=a)= \begin{cases}\frac{1}{4} & \text { if } a=0, \\ \frac{3}{4} & \text { if } a=1\end{cases}
$$

and

$$
Z= \begin{cases}X & \text { if } A=0 \\ Y & \text { if } A=1\end{cases}
$$

Calculate the cdf of $Z$ and determined if $Z$ is continuous. Calculate the expectation of $Z$. (Hint: Condition on $A$. Consider $\{Z \leq z\}$ for $z \leq 0$, $0<z<1,1 \leq z<2$ and $2 \leq z$.)
5. 10 pts. Suppose $(X, Y)$ is uniformly distributed on $\Omega=\left\{(x, y) \in \mathbf{R}^{2}\right.$ : $\left.0<y<x^{2}<1\right\}$. Calculate $E(X Y)$. (For this one I want a number for answer which means you have to do whatever integrals are necessary.)
6. 10 pts . Suppose $W_{1}, W_{2}, \ldots, W_{n}, \ldots$ are independent continuous random variables each of which is exponentially distributed with parameter $\lambda=2$. For each $n=1,2, \ldots$ let $T_{n}=\sum_{m=1}^{n} W_{m}$ and let

$$
N=\#\left\{n: 3<T_{n}<13\right\} .
$$

Determine $P(N=n), n=0,1,2, \ldots$. (This is easy given what's in the book and/or what Prof. Huber did in class.)
7. 20 pts. Suppose $(X, Y, Z)$ is uniformly distributed on $(0,1) \times(0,1) \times$ $(0,1)$. Calculate $P(X<\min \{Y, Z\})$.
8. 10 pts. A certain machine has five components $C_{i}, i=1, \ldots, 5$ whose failure times are exponentially distributed with parameters $\lambda_{i}, i=1, \ldots, 5$, respectively. The machine functions if $C_{1}, C_{2}, C_{3}$ function or if $C_{3}, C_{4}, C_{5}$ function. Calculate the cdf of the time of failure of the machine.
9. 20 pts. I have a machine that makes widgets. Let $E_{i}$ be the event that the $i$ th widget produced is acceptable. Assume that $P\left(E_{i}\right)=p$ for all $i=1,2,3, \ldots$ and some $p \in(0,1)$; assume also that the events $E_{i}$, $i=1,2,3, \ldots$ are independent.

Suppose $N$ is a large integer and $0<w<1$. How many widgets does the machine have to produce so that I can be $100 w \%$ sure that I get at least $N$ acceptable widgets? (I want you to use the normal approximation; your answer will depend on that $z$ such that $\Phi(z)=w$.)
10. 20 pts. Suppose $(X, Y)$ is uniform on $(0,1) \times(0,1)$. Show that $X Y$ is continuous and calculate it's pdf. (This is a bit tricky.)
11. 20 pts . Suppose $W_{1}, W_{2}, \ldots, W_{n}, \ldots$ are independent continuous random variables each of which has the same distribution. For each $n=1,2, \ldots$ let $T_{n}=\sum_{m=1}^{n} W_{m}$. Suppose $m$ is a positive integer and $0<a<b<\infty$. Calculate $P\left(b T_{m}<a T_{2 m}\right)$. (This does not require a lot of calculation but it requires a trick.)

