Test One Mathematics 135.01 Fall 2007

TO GET FULL CREDIT YOU MUST SHOW ALL WORK!

I have neither given nor received aid in the completion of this test. Signature:

The average was 82 and the standard deviation was 12.0949.

1. 5 pts. Suppose X is a random variable with variance 5 . Compute $\operatorname{Var}(3 X+9)$.

Solution.

$$
\operatorname{Var}(3 X+9)=\operatorname{Var}(3 X)=3^{2} \operatorname{Var}(X)=3^{2}(5)=45
$$

2. 5 pts. Suppose X and Y are independent variables with expectations 3 and 4, respectively. Compute $E(X Y)$.

Solution. Since X and Y are independent we have

$$
E(X Y)=E(X) E(Y)=3 \cdot 4=12
$$

3. 10 pts. How many 12 letter strings can be made with 3 A's, 4 B's and 5 C's?

Solution. From the multinomial formula we obtain

$$
\binom{3+4+5}{3,4,5}=\frac{12!}{3!4!5!}=27720
$$

4. 10 pts. A fair six sided die is thrown 3 times. Describe a sample space for this experiment and compute the probability that the sum of the three numbers is five.

Solution. A sample space could be $\Omega=\{1,2,3,4,5,6\}^{3}$ with probability $P(E)=|E| /|\Omega|=|E| / 216$. The event in question is

$$
E=\{(1,1,3),(1,3,1),(3,1,1),(1,2,2),(2,1,2),(2,2,1)\}
$$

so that

$$
P(E)=\frac{|E|}{|\Omega|}=\frac{6}{216}=\frac{1}{36} .
$$

5. 20 pts. Suppose X is a random variable such that

$$
P(X=1)=\frac{1}{8}, \quad P(X=3)=\frac{1}{2}, \quad P(X=5)=\frac{3}{8}
$$

Three balls are drawn from and urn containing X black balls and three white balls. Let B be the event that two of the three balls are black. Compute $P(X=5 \mid B)$.

Solution. We will From Bayes' Formula we obtain

$$
P(X=5 \mid B)=\frac{P(B \mid X=5) P(X=5)}{P(B \mid X=1) P(X=1)+P(B \mid X=3) P(X=3)+P(B \mid X=5) P(X=5)} .
$$

We have

$$
\begin{aligned}
& P(B \mid X=1)=0 ; \\
& P(B \mid X=3)=\frac{\binom{3}{2}\binom{3}{1}}{\binom{3+3}{3}}=\frac{9}{20} \\
& \left.P(B \mid X=5)=\frac{\binom{5}{2}}{\binom{3}{1}}=\frac{15}{28}\right)
\end{aligned}
$$

so the answer is

$$
\frac{\frac{15}{28} \frac{1}{8}}{\frac{9}{20} \frac{1}{2}+\frac{15}{28} \frac{1}{8}}=\frac{25}{109} .
$$

6. 15 pts. Suppose $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ is a sequence of independent identically distributed random variables such that

$$
E\left(X_{i}\right)=4 \quad \text { and } \quad \operatorname{Var}\left(X_{i}\right)=4, i=1,2, \ldots
$$

Let

$$
S=\sum_{i=1}^{100} X_{i}
$$

Use the Central Limit Theorem to approximate

$$
P(S>425)
$$

(If you do it correctly the arithmetic is simple.)

Solution. For each $i=1,2, \ldots$ we have $100 E\left(X_{i}\right)=400$ and $\sqrt{100} \sqrt{\operatorname{Var}\left(X_{i}\right)}=10 \cdot 2=20$. Using the normal approximation we obtain

$$
\begin{aligned}
P\left(S_{100}>425\right) & =P\left(424.5<S_{100}\right) \\
& =P\left(\frac{424.5-400}{20}<\frac{S_{100}-400}{20}\right) \\
& =P\left(1.225<\frac{S_{100}-400}{20}\right) \\
& \approx 1-\Phi(1.225) \\
& \approx 1-\frac{\Phi(1.23)+\Phi(1.22)}{2} \\
& \approx 1-\frac{.8907+.8888}{2} \\
& =0.11025
\end{aligned}
$$

7. 15 pts. Let

$$
Q=\left\{(x, y) \in \mathbf{R}^{2}: x \text { and } y \text { are integers, } x \geq 0, y \geq 0 \text { and } x+y \leq 2\right\} .
$$

(I suggest you draw a picture of Q.)
There are random variables X and Y such that

$$
p_{X, Y}(x, y)= \begin{cases}\frac{x+y}{8} & \text { if }(x, y) \in Q \\ 0 & \text { else }\end{cases}
$$

Calculate the mean and variance of $X+Y$ and determine if X and Y are independent.
Solution. The range of $X+Y$ is $\{0,1,2\}$. Moreover,

$$
P(X+Y=1)=P(X=0, Y=1)+P(X=1, Y=0)=\frac{0+1}{8}+\frac{1+0}{8}=\frac{1}{4}
$$

and

$$
P(X+Y=2)=P(X=0, Y=2)+P(X=1, Y=2)+P(X=2, Y=0)=\frac{0+2}{8}+\frac{1+1}{8}+\frac{2+0}{8}=\frac{3}{4}
$$

Thus

$$
E(X+Y)=\sum_{z} z P(X+Y=z)=0 P(X+Y=0)+1 P(X+Y=1)+2 P(X+Y=2)=\frac{1}{4}+2 \frac{3}{4}=\frac{7}{4}
$$

and
$E\left((X+Y)^{2}\right)=\sum_{z} z^{2} P(X+Y=z)=0^{2} P(X+Y=0)+1^{2} P(X+Y=1)+2^{2} P(X+Y=2)=\frac{1}{4}+4 \frac{3}{4}=\frac{13}{4}$.
In particular,

$$
\operatorname{Var}(X+Y)=E\left((X+Y)^{2}\right)-E(X+Y)^{2}=\frac{13}{4}-\left(\frac{7}{4}\right)^{2}=\frac{3}{16}
$$

X and Y are not independent since $P(X=2, Y=2)=0$ whereas $P(X=2) P(Y=2)=(1 / 4)(1 / 4) \neq 0$.
8. 20 pts. Suppose A, B, C, D are independent events. Compute

$$
P((A \cup B) \cap(C \cup D)) \quad \text { and } \quad P((A \sim B) \cup(C \sim D))
$$

in terms of $P(A), P(B), P(C), P(D)$.

Solution. As $A \cup B$ and $C \cup D$ are independent we find that

$$
\begin{aligned}
P((A \cup B) & \cap(C \cup D)) \\
& =P(A \cup B) P(C \cup D) \\
& =(P(A)+P(B)-P(A \cap B))(P(C)+P(D)-P(C \cap D)) \\
& =(P(A)+P(B)-P(A) P(B))(P(C)+P(D)-P(C) P(D))
\end{aligned}
$$

As $A \sim B$ and $C \sim D$ are independent we find that

$$
\begin{aligned}
P((A \sim B) & \cap(C \sim D)) \\
& =P(A \sim B) P(C \sim) \\
& =(P(A)-P(A \cap B))(P(C)-P(C \cap D)) \\
& =(P(A)-P(A) P(B))(P(C)-P(C) P(D))
\end{aligned}
$$

