
Random vectors.

Fix a positive integer n. We say a subset R of Rn is a rectangle if it it the n-fold Cartesian product
of intervals of real numbers.

Definition. Suppose (S, E , P ) We say
X : S → Rn

is a random vector if
{X ∈ R} ∈ E whenever R is a rectangle.

Suppose X is a random vector. Its (joint) cumulative distribution function

FX : Rn → [0, 1]

is defined by
FX(x) = P (X1 ≤ x1, . . . , Xn ≤ xn) for x ∈ Rn.

We say X is discrete if ∑

x∈Rn

P (X = x) = 1

in which case its (joint) probability mass function

pX : Rn → [0, 1]

is defined by
pX(x) = P (X = x) for x ∈ Rn.

We say X is (jointly)(absolutely) continuous if there is a function

fX : Rn → [0,∞),

called the (joint) probability density function of X, such that

P (X ∈ R) =
∫

R

fX(x) dx

whenever R is a rectangle in Rn.

Proposition. Suppose X is a continuous random vector. Then

P (X ∈ G) =
∫

G

fX(x) dx

whenever G is a subset of Rn with well defined Jordan content.

Proof. This is technical. I’ll draw some pictures that I hope will make it intuitively clear.

Example. Suppose X is uniformly distributed on (0, 1) and X = (X, X). Then X is neither discrete nor
continuous. More generally, imagimagine choosing a random position on a curve in R2 or R3 or on a surface
in R3.
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Theorem. Suppose X = (X1, . . . , Xn) is a random vector. If X1, . . . , Xn are continous mutually indepen-
dent random variables then X is continuous and

fX = fX1(x1) · · · fXn
(xn) whenever x = (x1, . . . , xn) ∈ Rn.

If X is continuous and there exist functions fi : R → [0,∞), i = 1, . . . , n such that

fX(x) = f1(x1) · · · fn(xn) whenever x = (x1, . . . , xn) ∈ Rn

then X1, . . . , Xn are continous mutually independent random variables and

fXi
= fi, i = 1, . . . , n.

Proof. All you have to do is unwrap definitions.

Theorem. Suppose X1, . . . , Xn are continous mutually independent random variables. Let

Z =
n∑

i=1

Xi.

Then Z is continuous and
fZ = fX1 ∗ · · · ∗ fXn .

Proof. We’ll assume that n = 2; one handles the general case in a manner that is obviously analagous.
Set X = X1 and Y = X2. For each z ∈ R set

Bz = {(x, y) ∈ R2 : x + y ≤ z}.

Then
FX(z) = P (Z ≤ z) =

∫ ∫

Bz

f(X,Y )(x, y) dx dy =
∫ ∫

Bz

fX(x) fY (y) dx dy.

In this last integral make the substitution

(x, y) = T (u, v) = (u, v − u), (u, v) ∈ R2,

noting that T carries
Az = {(u, v) : v ≤ z}

one to one and onto Bz. Thus this last integral equals

∫ ∫

Az

fX(u), fY (v − u) du dv =
∫ z

−∞
(
∫ ∞

−∞
fX(u), fY (v − u) du) dv.

Applying d/dz we obtain

fZ(z) = F ′Z(z) =
∫ ∞

−∞
fX(u) fY (z − u) du = fX ∗ fY (z).
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