Random vectors.

Fix a positive integer n. We say a subset R of \mathbf{R}^{n} is a rectangle if it it the n-fold Cartesian product of intervals of real numbers.

Definition. Suppose (S, \mathcal{E}, P) We say

$$
\mathbf{X}: S \rightarrow \mathbf{R}^{n}
$$

is a random vector if

$$
\{\mathbf{X} \in R\} \in \mathcal{E} \quad \text { whenever } R \text { is a rectangle. }
$$

Suppose \mathbf{X} is a random vector. Its (joint) cumulative distribution function

$$
F_{\mathbf{X}}: \mathbf{R}^{n} \rightarrow[0,1]
$$

is defined by

$$
F_{\mathbf{X}}(\mathbf{x})=P\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right) \quad \text { for } \mathbf{x} \in \mathbf{R}^{n}
$$

We say \mathbf{X} is discrete if

$$
\sum_{\mathbf{x} \in \mathbf{R}^{n}} P(\mathbf{X}=\mathbf{x})=1
$$

in which case its (joint) probability mass function

$$
p_{\mathbf{X}}: \mathbf{R}^{n} \rightarrow[0,1]
$$

is defined by

$$
p_{\mathbf{X}}(\mathbf{x})=P(\mathbf{X}=\mathbf{x}) \quad \text { for } \mathbf{x} \in \mathbf{R}^{n}
$$

We say \mathbf{X} is (jointly)(absolutely) continuous if there is a function

$$
f_{\mathbf{X}}: \mathbf{R}^{n} \rightarrow[0, \infty)
$$

called the (joint) probability density function of \mathbf{X}, such that

$$
P(\mathbf{X} \in R)=\int_{R} f_{\mathbf{X}}(\mathbf{x}) d \mathbf{x}
$$

whenever R is a rectangle in \mathbf{R}^{n}.

Proposition. Suppose \mathbf{X} is a continuous random vector. Then

$$
P(\mathbf{X} \in G)=\int_{G} f_{\mathbf{X}}(\mathbf{x}) d \mathbf{x}
$$

whenever G is a subset of \mathbf{R}^{n} with well defined Jordan content.
Proof. This is technical. I'll draw some pictures that I hope will make it intuitively clear.

Example. Suppose X is uniformly distributed on $(0,1)$ and $\mathbf{X}=(X, X)$. Then \mathbf{X} is neither discrete nor continuous. More generally, imagimagine choosing a random position on a curve in \mathbf{R}^{2} or \mathbf{R}^{3} or on a surface in \mathbf{R}^{3}.

Theorem. Suppose $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ is a random vector. If X_{1}, \ldots, X_{n} are continous mutually independent random variables then \mathbf{X} is continuous and

$$
f_{\mathbf{X}}=f_{X_{1}}\left(x_{1}\right) \cdots f_{X_{n}}\left(x_{n}\right) \quad \text { whenever } \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}
$$

If \mathbf{X} is continuous and there exist functions $f_{i}: \mathbf{R} \rightarrow[0, \infty), i=1, \ldots, n$ such that

$$
f_{\mathbf{X}}(\mathbf{x})=f_{1}\left(x_{1}\right) \cdots f_{n}\left(x_{n}\right) \quad \text { whenever } \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}
$$

then X_{1}, \ldots, X_{n} are continous mutually independent random variables and

$$
f_{X_{i}}=f_{i}, i=1, \ldots, n
$$

Proof. All you have to do is unwrap definitions.

Theorem. Suppose X_{1}, \ldots, X_{n} are continous mutually independent random variables. Let

$$
Z=\sum_{i=1}^{n} X_{i}
$$

Then Z is continuous and

$$
f_{Z}=f_{X_{1}} * \cdots * f_{X_{n}}
$$

Proof. We'll assume that $n=2$; one handles the general case in a manner that is obviously analagous.
Set $X=X_{1}$ and $Y=X_{2}$. For each $z \in \mathbf{R}$ set

$$
B_{z}=\left\{(x, y) \in \mathbf{R}^{2}: x+y \leq z\right\}
$$

Then

$$
F_{X}(z)=P(Z \leq z)=\iint_{B_{z}} f_{(X, Y)}(x, y) d x d y=\iint_{B_{z}} f_{X}(x) f_{Y}(y) d x d y
$$

In this last integral make the substitution

$$
(x, y)=T(u, v)=(u, v-u), \quad(u, v) \in \mathbf{R}^{2}
$$

noting that T carries

$$
A_{z}=\{(u, v): v \leq z\}
$$

one to one and onto B_{z}. Thus this last integral equals

$$
\iint_{A_{z}} f_{X}(u), f_{Y}(v-u) d u d v=\int_{-\infty}^{z}\left(\int_{-\infty}^{\infty} f_{X}(u), f_{Y}(v-u) d u\right) d v
$$

Applying $d / d z$ we obtain

$$
f_{Z}(z)=F_{Z}^{\prime}(z)=\int_{-\infty}^{\infty} f_{X}(u) f_{Y}(z-u) d u=f_{X} * f_{Y}(z)
$$

