A fundamental example. Suppose B is a nonempty finite set; A is a subset of $B ; m$ is a positive integer not exceeding $|B|$; and $i \in\{1, \ldots, m\}$.

Recall that $(B)_{m}$ is the set of ordered m-tuples $\left(b_{1}, \ldots, b_{m}\right)$ such that $b_{i} \neq b_{j}$ if $i, j \in\{1, \ldots, m\}$ and $i \neq j$ and that

$$
\left|(B)_{m}\right|=(|B|)_{m}=\frac{|B|!}{(|B|-m)!}
$$

Let

$$
P(E)=\frac{|E|}{\left|(B)_{m}\right|} \quad \text { whenever } E \subset(B)_{m}
$$

Let

$$
E=\left\{x \in(B)_{m}: x_{i} \in A\right\} .
$$

We will show that

$$
P(E)=\frac{|A|}{|B|}
$$

Put more informally, if you line up m distinct members of B in a row the probability that a member of A is in the i-th position is $|A| /|B|$.

For each $b \in B$ let

$$
F_{b}=\left\{x \in(B)_{m}: x_{i}=b\right\}
$$

Solution by brute force. Note that

$$
\left|F_{b}\right|=\left|(B \sim\{b\})_{m-1}\right|=(|B|-1)_{m-1} \quad \text { for each } b \in B
$$

Since the family $\left\{F_{a}: a \in A\right\}$ is disjointed and has union E we find that

$$
|E|=\sum_{a \in A}\left|F_{a}\right|=\sum_{a \in A}(|B|-1)_{m-1}=|A|(|B|-1)_{m-1}
$$

Thus

$$
P(E)=\frac{|E|}{\left|(B)_{m}\right|}=|A| \frac{(|B|-1)_{m-1}}{(|B|)_{m}}=\frac{|A|}{|B|}
$$

Solution using symmetry and conditioning. Note that the family $\left\{F_{b}: b \in B\right\}$ is disjointed and has union $(B)_{m}$ and that $P\left(F_{b}\right)=P\left(F_{b^{\prime}}\right)$ whenever $b, b^{\prime} \in B$. Since $1=P\left(\cup_{b \in B} F_{b}\right)=\sum_{b \in B} P\left(F_{b}\right)$ we find that

$$
P\left(F_{b}\right)=\frac{1}{|B|}
$$

Moreover,

$$
P\left(E \mid F_{b}\right)= \begin{cases}1 & \text { if } b \in A \\ 0 & \text { if } b \notin A\end{cases}
$$

Thus

$$
P(E)=\sum_{b \in B} P\left(E \mid F_{b}\right) P\left(F_{b}\right)=\sum_{b \in A} P\left(F_{b}\right)=\frac{|A|}{|B|}
$$

