Consider an experiment with sample space S. Let

$$
E \subset S .
$$

We might call E and event. Perform the experiment indefinitely obtaining outcomes

$$
s_{1}, s_{2}, \ldots, s_{n}, \ldots
$$

For each $n=1,2, \ldots$ let

$$
f_{n}(E)=\frac{\mid\left\{i: i=1, \ldots, n \text { and } s_{i} \in E\right\} \mid}{n} ;
$$

we call $f_{n}(E)$ the relative frquency of the occurrence of E in the first n trials. Clearly,
(i) $0 \leq f_{n}(E) \leq 1$;
(ii) $f_{n}(\emptyset)=0, \quad f_{n}(S)=1$;
(iii) $E \cap F=\emptyset \Rightarrow f_{n}(E \cup F)=f_{n}(E)+f_{n}(F)$.

Let

$$
P(E)=\lim _{n \rightarrow \infty} f_{n}(E) .
$$

Does this limit exist? If so, is it independent of the sequence of outcomes $s_{1}, s_{2}, \ldots, s_{n}, \ldots$? Good questions, huh?

Clearly,
(i') $0 \leq P(E) \leq 1 ;$
(ii') $P(\emptyset)=0, P(S)=1$;
(iii) $E \cap F=\emptyset \Rightarrow P(E \cup F)=P(E)+P(F)$.

