Consider an experiment with sample space S. Let

$$E \subset S$$
.

We might call E and event. Perform the experiment indefinitely obtaining outcomes

$$s_1, s_2, \ldots, s_n, \ldots$$

For each $n = 1, 2, \dots$ let

$$f_n(E) = \frac{|\{i : i = 1, \dots, n \text{ and } s_i \in E\}|}{n};$$

we call $f_n(E)$ the relative frequency of the occurrence of E in the first n trials. Clearly,

- (i) $0 \le f_n(E) \le 1$;
- (ii) $f_n(\emptyset) = 0$, $f_n(S) = 1$;
- (iii) $E \cap F = \emptyset \Rightarrow f_n(E \cup F) = f_n(E) + f_n(F)$.

Let

$$P(E) = \lim_{n \to \infty} f_n(E).$$

Does this limit exist? If so, is it independent of the sequence of outcomes $s_1, s_2, \ldots, s_n, \ldots$? Good questions, huh?

Clearly,

- (i') $0 \le P(E) \le 1$;
- (ii') $P(\emptyset) = 0, P(S) = 1;$
- (iii') $E \cap F = \emptyset \Rightarrow P(E \cup F) = P(E) + P(F)$.