What's behind p. 383 n. 25.

The simplest case. Suppose X and Y are independent random variables with the same cdf F. Thus

$$
F_{X}(x)=F(x) \quad \text { whenever } x \in \mathbf{R} \quad \text { and } \quad F_{Y}(y)=F(y) \quad \text { whenever } y \in \mathbf{R} .
$$

Then, for any $(x, y) \in \mathbf{R}^{2}$,

$$
F_{X, Y}(x, y)=P(X \leq x, Y \leq y)=P(X \leq x) P(Y \leq y)=F_{X}(x) F_{Y}(y)=F(x) F(y)
$$

and

$$
F_{Y, X}(x, y)=P(Y \leq x, X \leq y)=P(Y \leq x) P(X \leq y)=F_{Y}(x) F_{X}(y)=F(x) F(y)
$$

Thus

$$
F_{Y, X}=F_{X, Y}
$$

and therefore

$$
\begin{equation*}
P((Y, X) \in R)=P((X, Y) \in R) \quad \text { whenever } R \text { is a Borel subset of } \mathbf{R}^{2} \tag{1}
\end{equation*}
$$

The general case. Suppose n is a integer no smaller than 2 and X_{1}, \ldots, X_{n} are random variables with the same cdf F. Let \mathbf{S}_{n} be the set of permutations of $\{1, \ldots, n\}$.

Suppose $\sigma \in \mathbf{S}_{n}$. Arguing as we did above we find that

$$
F_{X_{\sigma(1)}, \ldots, X_{\sigma(n)}}=F_{X_{1}, \ldots, X_{n}}
$$

so that

$$
\begin{equation*}
P\left(\left(X_{\sigma}(1), \ldots, X_{\sigma(n)}\right) \in R\right)=P\left(\left(X_{1}, \ldots, X_{n}\right) \in R\right) \quad \text { whenever } R \text { is a Borel subset of } \mathbf{R}^{n} . \tag{2}
\end{equation*}
$$

Now let

$$
R=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}: x_{1}<\cdots<x_{n}\right\}
$$

and, for each $\sigma \in \mathbf{S}_{n}$, let

$$
E_{\sigma}=\left\{X_{\sigma(1)}<\cdots<X_{\sigma(n)}\right\} .
$$

It follows from (2) that

$$
\begin{equation*}
P\left(E_{\sigma}\right)=P\left(E_{\tau}\right) \quad \text { whenever } \sigma, \tau \in \mathbf{S}_{n} . \tag{3}
\end{equation*}
$$

Let us now assume that the $X_{i}, i=1, \ldots, n$, are continuous. Then

$$
P\left(X_{i}=X_{j}\right)=0 \quad \text { whenever } 1 \leq i<j \leq n
$$

from which it follows that

$$
P\left(\cup_{\sigma \in \mathbf{S}_{n}} E_{\sigma}\right)=1
$$

Since

$$
E_{\sigma} \cap E_{\tau} \quad \text { whenever } \sigma, \tau \in \mathbf{S}_{n} \text { and } \sigma \neq \tau
$$

and since $\left|\mathbf{S}_{n}\right|=n$! we find that

$$
\begin{equation*}
P\left(E_{\sigma}\right)=\frac{1}{n!} \quad \text { whenever } \sigma \in \mathbf{S}_{n} \tag{4}
\end{equation*}
$$

