My version of $n .58$ on page 295.
I made a mistake when I did this in class!
Suppose X, Y, Z are indepenent random variables each of which is exponentially distributed with parameter $\lambda=1$. Thus

$$
f_{X, Y, Z}(x, y, z)= \begin{cases}e^{-(x+y+z)} & \text { if } x>0, y>0, z>0 \\ 0 & \text { else }\end{cases}
$$

Let

$$
U=Y+Z, \quad V=X+Z, \quad W=X+Y
$$

We shall compute the joint pdf of (U, V, W).
For each $(x, y, z) \in \mathbf{R}^{3}$ let

$$
u(x, y, z)=y+z, \quad v(x, y, z)=x+z, \quad w(x, y, z)=x+y
$$

and let

$$
\mathbf{G}(x, y, z)=(u(x, y, z), v(x, y, z), w(x, y, z))=(y+z, x+z, x+y)
$$

Evidently,

$$
(U, V, W)=\mathbf{G}(X, Y, Y)=(u(X, Y, Z), v(X, Y, Z), w(X, Y, Z))
$$

Let

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

Note that

$$
A^{-1}=\frac{1}{2}\left[\begin{array}{ccc}
-1 & 1 & 1 \tag{1}\\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]
$$

and that

$$
\begin{equation*}
\operatorname{det} A=2 \tag{2}
\end{equation*}
$$

Whenever (x, y, z) and (u, v, w) are in \mathbf{R}^{3} we infer from (1) that

$$
(u, v, w)=\mathbf{G}(x, y, z) \Leftrightarrow\left[\begin{array}{l}
u \tag{3}\\
v \\
w
\end{array}\right]=A\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \Leftrightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=A^{-1}\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]
$$

Equivalently,

$$
\begin{array}{rlrl}
u & =y+z \\
v & =x+z & =\frac{1}{2}(-u+v+w) \tag{4}\\
w & =x+y
\end{array} \quad \Leftrightarrow \quad y=\frac{1}{2}(u-v+w) \quad \text { whenever }(u, v, w),(x, y, z) \in \mathbf{R}^{3} .
$$

Let

$$
P=\{(x, y, z): x>0, y>0, z>0\} \quad \text { and let } Q=\{\mathbf{G}(x, y, z):(x, y, z) \in P\} .
$$

(My formula for Q in class was wrong.) It follows from (2) that

$$
\begin{equation*}
Q=\left\{(u, v, w) \in \mathbf{R}^{3}: u<v+w, v<u+w, w<u+v\right\} . \tag{5}
\end{equation*}
$$

Make sure you understand this. Note that (4) implies that

$$
(u, v, w) \in Q \Rightarrow u>0, v>0, w>0 .
$$

It follows from (1) that \mathbf{G} carries \mathbf{R}^{3} one-to-one onto \mathbf{R}^{3} and it is evident that
(6)

$$
\left[\begin{array}{ccc}
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z} \\
w_{z} & w_{y} & w_{z}
\end{array}\right]=A .
$$

Moreover,

$$
\begin{equation*}
(u, v, w)=\mathbf{G}(x, y, z) \Rightarrow x+y+z=\frac{1}{2}(u+v+w) . \tag{7}
\end{equation*}
$$

Combining the above with the transformation formula in the book we obtain

$$
\begin{aligned}
f_{U, V, W}(u, v, w) & = \begin{cases}\frac{f_{X, Y, Z}(x, y, z)}{|\operatorname{det} A|} & \text { if }(u, v, w) \in Q \text { and }(u, v, w)=\mathbf{G}(x, y, z), \\
0 & \text { else }\end{cases} \\
& = \begin{cases}\frac{1}{2} e^{-(x+y+z)} & \text { if }(u, v, w) \in Q \text { and }(u, v, w)=\mathbf{G}(x, y, z), \\
0 & \text { else }\end{cases} \\
& = \begin{cases}\frac{1}{2} e^{-u+v+w} \frac{2}{2} & \text { if } 0<u<v+w, 0<v<u+w, 0<w<u+v, . \\
0 & \text { else }\end{cases}
\end{aligned}
$$

