The Poisson process.

Let

$$
I_{1}, I_{2}, \ldots, I_{m}, \ldots
$$

be a sequence of independent identically distributed continuous random variables. Let $T_{0}=0$ and, for each positive integer m, let

$$
T_{m}=\sum_{i=0}^{m} I_{i}
$$

Evidently,

$$
0=T_{0}<T_{1}<\cdots<T_{m}<\cdots
$$

For nonnegative integers m, n with $m \leq n$ let

$$
T_{m, n}=\sum_{m<i \leq n} I_{i}
$$

note that

$$
T_{n}=T_{m}+T_{m, n}
$$

and that

$$
T_{m, n} \text { and } T_{m-n} \text { have the same distribution, which is to say that } f_{T_{m, n}}=f_{T_{m-n}}
$$

Let $F: \mathbf{R} \rightarrow[0,1]$ be such that

$$
F(t)=P\left(I_{m} \leq t\right) \quad \text { whenever } t \in \mathbf{R} \text { and } m=1,2, \ldots
$$

and let

$$
f=F^{\prime}
$$

Let $f_{1}=f$ and, for each $m=2,3, \ldots$ let

$$
f_{m}=\underbrace{f * \cdots * f}_{m \text { times }}
$$

For each $m=1,2, \ldots$ let

$$
F_{m}(t)=\int_{-\infty}^{t} f_{m}(\tau) d \tau \quad \text { whenever } t \in \mathbf{R}
$$

Theorem. We have

$$
\begin{equation*}
F_{T_{m}}=F_{m}, \quad \text { and } \quad f_{T_{m}}=f_{m} \quad m=1,2, \ldots \tag{1}
\end{equation*}
$$

Proof. This was shown earlier.

Theorem. Suppose k and m_{1}, \ldots, m_{k} are positive integers,

$$
m_{k}>\cdots>m_{1}
$$

t_{l}, \ldots, t_{k} are positive real numbers and

$$
t_{k}>\cdots>t_{1}
$$

Then

$$
\begin{equation*}
f_{T_{m_{k}}, \ldots, T_{m_{1}}}\left(t_{k}, \ldots, t_{1}\right)=f_{m_{k}-m_{k-1}}\left(t_{k}-t_{k-1}\right) \cdots f_{2}\left(t_{2}-t_{1}\right) f_{1}\left(t_{1}\right) \tag{2}
\end{equation*}
$$

Proof. This is a good exercise in conditioning.
The key point is the following. Suppose $j=1, \ldots, k$. For any $u \in \mathbf{R}$ we have

$$
\begin{aligned}
P\left(T_{m_{j}} \leq u \mid\right. & \left.T_{m_{j-1}}=t_{j-1}, \ldots, T_{m_{1}}=t_{1}\right) \\
& =P\left(T_{m_{j-1}}+T_{m_{j-1}, m_{j}}<u \mid T_{m_{j-1}}=t_{j-1}, \ldots, T_{m_{1}}=t_{1}\right) \\
& =P\left(t_{j-1}+T_{m_{j-1}, m_{j}}<u \mid T_{m_{j-1}}=t_{j-1}, \ldots, T_{m_{1}}=t_{1}\right) \\
& =P\left(T_{m_{j-1}, m_{j}}<u-t_{j-1}\right) \\
& =P\left(T_{m_{j}-m_{j-1}}<u-t_{j-1}\right)
\end{aligned}
$$

which implies that

$$
f_{T_{m_{j}} \mid T_{m_{j-1}}, \ldots, T_{1}}\left(t_{j} \mid t_{j-1}, \ldots, t_{1}\right)=f_{T_{m_{j}-m_{j-1}}}\left(t_{j}-t_{j-1}\right)
$$

It follows that

$$
\begin{aligned}
f_{T_{m_{k}}, \ldots, T_{m_{1}}} & \left(t_{k}, \ldots, t_{1}\right) \\
& =f_{T_{m_{k}} \mid T_{m_{k-1}}, \ldots, T_{m_{1}}}\left(t_{k} \mid t_{k-1}, \ldots, t_{1}\right) \cdots f_{T_{m_{2}} \mid T_{m_{1}}}\left(t_{2} \mid t_{1}\right) f_{T_{m_{1}}}\left(t_{1}\right) \\
& =f_{T_{m_{k}-m_{k-1}}}\left(t_{k}-t_{k-1}\right) \cdots f_{T_{m_{2}-m_{1}}}\left(t_{2}-t_{1}\right) f_{T_{1}}\left(t_{1}\right)
\end{aligned}
$$

For each $t \in(0, \infty)$ we let

$$
N_{t}
$$

be the nonnegative integer random variable such that

$$
\left\{N_{t}=n\right\}=\left\{T_{n} \leq t<T_{n+1}\right\} \quad \text { for any nonnegative integer } n
$$

Theorem. For each $t \in(0, \infty)$ we have

$$
\begin{equation*}
P\left(N_{t}=n\right)=\int_{0}^{t}\left(\int_{t}^{\infty} f\left(t_{n+1}-t_{n}\right) d t_{n+1}\right) f_{n}\left(t_{n}\right) d t_{n} \tag{3}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
P\left(N_{t}=n\right) & =P\left(T_{n} \leq t, T_{n+1}>t\right) \\
& =\iint_{t_{n} \leq t<t_{n+1}} f_{T_{n+1}, T_{n}}\left(t_{n+1}, t_{n}\right) d t_{n+1} d t_{n} .
\end{aligned}
$$

Now apply (3).

Theorem. Suppose s and t are positive real numbers and m and n are nonnegative integers. Then

$$
\begin{align*}
& P\left(N_{s+t}=m+n, N_{s}=m\right)= \\
& \quad \int_{0}^{s}\left(\int_{s}^{s+t}\left(\int_{t_{m+1}}^{s+t}\left(\int_{s+t}^{\infty} g\left(t_{m}, t_{m+1}, t_{m+n}, t_{m+n+1}\right) d t_{m+n+1}\right) d t_{m+n}\right) d t_{m+1}\right) d t_{m} \tag{4}
\end{align*}
$$

where we have set

$$
g\left(t_{m}, t_{m+1}, t_{m+n}, t_{m+n+1}\right)=f\left(t_{m+n+1}-t_{m+n}\right) f_{n-1}\left(t_{m+n}-t_{m+1}\right) f\left(t_{m+1}-t_{m}\right) f_{m}\left(t_{m}\right)
$$

for $0<t_{m}<t_{m+1}<t_{m_{n}}<t_{m+n+1}$.

Proof. Since

$$
P\left(N_{s+t}=m+n, N_{s}=m\right)=P\left(T_{m} \leq s<T_{m+1}, T_{m+n} \leq s+t<T_{m+n+1}\right)
$$

the desired probability is the integral over

$$
\left\{\left(t_{m+n+1}, t_{m+n}, t_{m+1}, t_{m}\right): 0<t_{m} \leq s<t_{m+1}, t_{m+n} \leq s+t<t_{m+n+1}<\infty\right\}
$$

of the joint density

$$
f_{T_{m+n+1}, T_{m+n}, T_{m+1}, T_{m}}\left(t_{m+n+1}, t_{m+n}, t_{m+1}, t_{m}\right) .
$$

Now apply (3).

The Poisson process. Now suppose $0<\lambda<\infty$ and

$$
P\left(I_{m}>t\right)=e^{-\lambda t} \quad \text { whenever } 0<t<\infty \text { and } m=1,2, \ldots .
$$

That is, $I_{m}, m=1,2, \ldots$ is exponentially distributed with parameter λ.

Theorem. For any $m=1,2, \ldots$ we have

$$
f_{m}(t)= \begin{cases}0 & \text { if } t<0, \tag{5}\\ \lambda^{m} e^{-\lambda t} \frac{t^{m-1}}{(m-1)!} & \text { if } t>0 .\end{cases}
$$

Proof. We induct on n. (4) holds by definition if $m=1$.
Suppose (5) holds for some positive integer k and $t>0$ then

$$
f_{k+1}(t)=f * f_{k}(t)=\int_{0}^{t} e^{-\lambda(t-\tau)} e^{-\lambda \tau} \frac{\tau^{m-1}}{(m-1)!} d \tau=e^{-\lambda t} \int_{0}^{t} \frac{\tau^{m-1}}{(m-1)!} d \tau=e^{-\lambda t} \int_{0}^{t} \frac{t^{m}}{m!} .
$$

Theorem. For any $t \in(0, \infty)$ and any nonnegative integer n we have

$$
\begin{equation*}
P\left(N_{t}=n\right)=e^{-\lambda} \frac{(\lambda t)^{n}}{n!} . \tag{6}
\end{equation*}
$$

Remark. Thus N_{t} has the Poisson distribution with parameter λt.
Proof. Suppose n is a nonnegative integer. By (3) and (5)

$$
P\left(N_{t}=n\right)=\int_{0}^{t}\left(\int_{t}^{\infty} e-\lambda\left(t_{n+1}-t_{n}\right) d t_{n+1}\right) \lambda^{n} e^{-\lambda t_{n}} \frac{t_{n}^{n-1}}{(n-1)!} d t_{n}=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} .
$$

Theorem. Suppose $s, t \in(0, \infty)$ and m, n are nonnegative integers. Then

$$
\begin{equation*}
P\left(N_{s+t}=m+n, N_{s}=m\right)=P\left(N_{s}=m\right) P\left(N_{t}=n\right) . \tag{7}
\end{equation*}
$$

Proof. This will follow from (5) and (4).

Suppose $n>1$. If g is as in (4) we have from (5) that

$$
g\left(t_{m+n+1}, t_{m+n}, t_{m+1}, t_{m}\right)=\lambda^{m+n+1} e^{-\lambda t_{m+n+1}} \frac{\left(t_{m+n}-t_{m+1}\right)^{n-2}}{(n-2)!} \frac{t_{m}^{m-1}}{(m-1)!}
$$

whenever $0<t_{m}<t_{m+1}<t_{m+n+1}<t_{m+n+1}<\infty$. Then

$$
\begin{aligned}
\int_{0}^{s} & \left(\int_{s}^{s+t}\left(\int_{t_{m+1}}^{s+t}\left(\int_{s+t}^{\infty} g\left(t_{m}, t_{m+1}, t_{m+n}, t_{m+n+1}\right) d t_{m+n+1}\right) d t_{m+n}\right) d t_{m+1}\right) d t_{m} \\
& =\lambda^{m+n+1}\left(\int_{s+t}^{\infty} e^{-\lambda t_{m+n+1}} d t_{m+n+1}\right) \\
& \quad\left(\int_{s}^{s+t}\left(\int_{t_{m+1}}^{s+t} \frac{\left(t_{m+n}-t_{m+1}\right)^{n-2}}{(n-2)!} d t_{m+n}\right) d t_{m+1}\right)\left(\int_{0}^{s} \frac{t_{m}^{m-1}}{(m-1)!} d t_{m}\right) \\
& =\lambda^{m+n+1} \frac{e^{-\lambda(s+t)}}{\lambda} \frac{t^{n}}{n!} \frac{s^{m}}{m!}
\end{aligned}
$$

We leave it to the reader to use similar techniques to handle the case $n=0$ or $n=1$.

Corollary. Suppose s and t are positive real numbers. Then $N_{s+t}-N_{s}$ is independent of N_{s} and has the Poisson distribution with parameter λt.

Proof. We have

$$
\begin{equation*}
P\left(N_{s+t}-N_{s}=n, N_{s}=m\right)=P\left(N_{s+t}=m+n,, N_{s}=m\right)=P\left(N_{s}=m\right) P\left(N_{t}=n\right) \tag{1}
\end{equation*}
$$

for any nonnegative integers m and n. Summing over m in (1) we infer that $N_{s+t}-N_{s}$ has the same distribution as N_{t}. Substituting $P\left(N_{t}=n\right)=\left(N_{s+t}-N_{s}=n\right)$ in the right hand side of (1) we infer that $N_{s+t}-N_{s}$ is independent of N_{s}.

Remark. Suppose m is an integer not less than 2 and $0<t_{1}<t_{2}<\cdots<t_{m}<\infty$. Applying the preceding Corollary repeatedly we infer that

$$
N_{t_{1}}, N_{t_{2}}-N_{t_{1}}, \ldots, N_{t_{m}}-N_{t_{m-1}}
$$

are independent with Poisson distributions with parameters

$$
\lambda t_{1}, \lambda\left(t_{2}-t_{1}\right), \ldots, \lambda\left(t_{m}-t_{m-1}\right)
$$

respectively.
We say the Poisson process has independent increments.

