
The Poisson process.

Let
I1, I2, . . . , Im, . . .

be a sequence of independent identically distributed continuous random variables. Let T0 = 0 and, for each
positive integer m, let

Tm =
m∑

i=0

Ii.

Evidently,
0 = T0 < T1 < · · · < Tm < · · · .

For nonnegative integers m, n with m ≤ n let

Tm,n =
∑

m<i≤n

Ii;

note that
Tn = Tm + Tm,n;

and that
Tm,n and Tm−n have the same distribution, which is to say that fTm,n = fTm−n .

Let F : R → [0, 1] be such that

F (t) = P (Im ≤ t) whenever t ∈ R and m = 1, 2, . . .

and let
f = F ′.

Let f1 = f and, for each m = 2, 3, . . . let
fm = f ∗ · · · ∗ f︸ ︷︷ ︸

m times

.

For each m = 1, 2, . . . let

Fm(t) =
∫ t

−∞
fm(τ) dτ whenever t ∈ R.

Theorem. We have

(1) FTm = Fm, and fTm = fm m = 1, 2, . . . .

Proof. This was shown earlier.

Theorem. Suppose k and m1, . . . , mk are positive integers,

mk > · · · > m1,

tl, . . . , tk are positive real numbers and
tk > · · · > t1.

Then

(2) fTmk
,...,Tm1

(tk, . . . , t1) = fmk−mk−1(tk − tk−1) · · · f2(t2 − t1)f1(t1).
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Proof. This is a good exercise in conditioning.
The key point is the following. Suppose j = 1, . . . , k. For any u ∈ R we have

P (Tmj
≤ u|Tmj−1 = tj−1, . . . , Tm1 = t1)

= P (Tmj−1 + Tmj−1,mj
< u|Tmj−1 = tj−1, . . . , Tm1 = t1)

= P (tj−1 + Tmj−1,mj < u|Tmj−1 = tj−1, . . . , Tm1 = t1)
= P (Tmj−1,mj

< u− tj−1)
= P (Tmj−mj−1 < u− tj−1)

which implies that
fTmj

|Tmj−1 ,...,T1(tj |tj−1, . . . , t1) = fTmj−mj−1
(tj − tj−1).

It follows that

fTmk
,...,Tm1

(tk, . . . , t1)

= fTmk
|Tmk−1 ,...,Tm1

(tk|tk−1, . . . , t1) · · · fTm2 |Tm1
(t2|t1)fTm1

(t1)

= fTmk−mk−1
(tk − tk−1) · · · fTm2−m1

(t2 − t1)fT1(t1).

For each t ∈ (0,∞) we let
Nt

be the nonnegative integer random variable such that

{Nt = n} = {Tn ≤ t < Tn+1} for any nonnegative integer n.

Theorem. For each t ∈ (0,∞) we have

(3) P (Nt = n) =
∫ t

0

(∫ ∞

t

f(tn+1 − tn) dtn+1

)
fn(tn) dtn.

Proof. We have
P (Nt = n) = P (Tn ≤ t, Tn+1 > t)

=
∫ ∫

tn≤t<tn+1

fTn+1,Tn(tn+1, tn) dtn+1dtn.

Now apply (3).

Theorem. Suppose s and t are positive real numbers and m and n are nonnegative integers. Then

(4)

P (Ns+t = m + n, Ns = m) =
∫ s

0

(∫ s+t

s

(∫ s+t

tm+1

(∫ ∞

s+t

g(tm, tm+1, tm+n, tm+n+1)dtm+n+1

)
dtm+n

)
dtm+1

)
dtm

where we have set

g(tm, tm+1, tm+n, tm+n+1) = f(tm+n+1 − tm+n)fn−1(tm+n − tm+1)f(tm+1 − tm)fm(tm)

for 0 < tm < tm+1 < tmn < tm+n+1.
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Proof. Since

P (Ns+t = m + n,Ns = m) = P (Tm ≤ s < Tm+1, Tm+n ≤ s + t < Tm+n+1)

the desired probability is the integral over

{(tm+n+1, tm+n, tm+1, tm) : 0 < tm ≤ s < tm+1, tm+n ≤ s + t < tm+n+1 < ∞}

of the joint density
fTm+n+1,Tm+n,Tm+1,Tm(tm+n+1, tm+n, tm+1, tm).

Now apply (3).

The Poisson process. Now suppose 0 < λ < ∞ and

P (Im > t) = e−λt whenever 0 < t < ∞ and m = 1, 2, . . ..

That is, Im, m = 1, 2, . . . is exponentially distributed with parameter λ.

Theorem. For any m = 1, 2, . . . we have

(5) fm(t) =

{ 0 if t < 0,

λme−λt tm−1

(m−1)! if t > 0.

Proof. We induct on n. (4) holds by definition if m = 1.
Suppose (5) holds for some positive integer k and t > 0 then

fk+1(t) = f ∗ fk(t) =
∫ t

0

e−λ(t−τ)e−λτ τm−1

(m− 1)!
dτ = e−λt

∫ t

0

τm−1

(m− 1)!
dτ = e−λt

∫ t

0

tm

m!
.

Theorem. For any t ∈ (0,∞) and any nonnegative integer n we have

(6) P (Nt = n) = e−λ (λt)n

n!
.

Remark. Thus Nt has the Poisson distribution with parameter λt.

Proof. Suppose n is a nonnegative integer. By (3) and (5)

P (Nt = n) =
∫ t

0

(∫ ∞

t

e−λ(tn+1 − tn) dtn+1

)
λne−λtn

tn−1
n

(n− 1)!
dtn = e−λt (λt)n

n!
.

Theorem. Suppose s, t ∈ (0,∞) and m, n are nonnegative integers. Then

(7) P (Ns+t = m + n,Ns = m) = P (Ns = m)P (Nt = n).

Proof. This will follow from (5) and (4).
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Suppose n > 1. If g is as in (4) we have from (5) that

g(tm+n+1, tm+n, tm+1, tm) = λm+n+1e−λtm+n+1
(tm+n − tm+1)n−2

(n− 2)!
tm−1
m

(m− 1)!

whenever 0 < tm < tm+1 < tm+n+1 < tm+n+1 < ∞. Then

∫ s

0

(∫ s+t

s

(∫ s+t

tm+1

(∫ ∞

s+t

g(tm, tm+1, tm+n, tm+n+1)dtm+n+1

)
dtm+n

)
dtm+1

)
dtm

= λm+n+1

(∫ ∞

s+t

e−λtm+n+1 dtm+n+1

)

(∫ s+t

s

(∫ s+t

tm+1

(tm+n − tm+1)n−2

(n− 2)!
dtm+n

)
dtm+1

)(∫ s

0

tm−1
m

(m− 1)!
dtm

)

= λm+n+1 e−λ(s+t)

λ

tn

n!
sm

m!
.

We leave it to the reader to use similar techniques to handle the case n = 0 or n = 1.

Corollary. Suppose s and t are positive real numbers. Then Ns+t −Ns is independent of Ns and has the
Poisson distribution with parameter λt.

Proof. We have

(1) P (Ns+t −Ns = n,Ns = m) = P (Ns+t = m + n, , Ns = m) = P (Ns = m)P (Nt = n)

for any nonnegative integers m and n. Summing over m in (1) we infer that Ns+t − Ns has the same
distribution as Nt. Substituting P (Nt = n) = (Ns+t − Ns = n) in the right hand side of (1) we infer that
Ns+t −Ns is independent of Ns.

Remark. Suppose m is an integer not less than 2 and 0 < t1 < t2 < · · · < tm < ∞. Applying the preceding
Corollary repeatedly we infer that

Nt1 , Nt2 −Nt1 , . . . , Ntm −Ntm−1

are independent with Poisson distributions with parameters

λt1, λ(t2 − t1), . . . , λ(tm − tm−1),

respectively.
We say the Poisson process has independent increments.
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