The multinomial distribution.

Let n and r be positive integers and let

be such that

$$0 \le p_{\alpha} \le 1$$
 and $\sum_{\alpha=1}^{r} p_{\alpha} = 1.$

 p_1,\ldots,p_r

Let

be the set of r-tuples (n_1, \ldots, n_r) of nonnegative integers such that $\sum_{\alpha=1}^r = n$. The discrete random vector (N_1, \ldots, N_r) is said to have the r-nomial (multinomial in the book) distribution with parameters n and p_1, \ldots, p_r if

 $\mathbf{M}(n,r)$

$$p_{N_1,\dots,N_n}(n_1,\dots,n_r) = \begin{cases} \binom{n}{n_1\cdots n_r} p_1^{n_1}\cdots p_r^{n_r} & \text{if } (n_1,\dots,n_r) \in \mathbf{M}(n,r), \\ 0 & \text{else.} \end{cases}$$

Note that

$$1 = (p_1 + \dots + p_r)^n = \sum_{(n_1, \dots, n_r) \in \mathbf{M}(n, r)} {\binom{n}{n_1 \cdots n_r}} p_1^{n_1} \cdots p_r^{n_r}$$

by the multinomial theorem.

Example. An urn contain 3 red balls, 4 white balls and 5 blue balls. A ball is drawn from the urn 10 times with replacement. Let R, W and B be the number of red, white and blue balls drawn, respectively. Then, as we shall see below, (R, W, B) will have the 3-nomial distribution with parameters n = 10 and

$$p_1 = \frac{3}{3+4+5}, \quad p_2 = \frac{4}{3+4+5}, \quad p_2 = \frac{5}{3+4+5}.$$

Note that the range of (R, B, W) is the set of 3-tuples (n_r, n_w, n_b) of nonnegative integers such that $n_r + n_w + n_b = 10$.

Here is how such a random vector arises. Let

$$O = \{o_1, \ldots, o_r\}$$

be a set containing exactly r elements; O is the set of *outcomes*. Let

$$X_i, \ i=1,\ldots,n,$$

be independent identically distributed random variables with the same range O such that

$$P(X_i = o_\alpha) = p_\alpha$$
 whenever $i \in \{1, \dots, n\}$ and $\alpha \in \{1, \dots, r\}$.

For each $\alpha \in \{1, \ldots, r\}$ let

$$N_{\alpha} = \sum_{i=1}^{n} \mathbb{1}_{\{X_i = o_{\alpha}\}};$$

thus N_{α} is the number of times the α -th outcome o_{α} occurs in n tries. Evidently,

$$\sum_{\alpha=1}^{r} N_{\alpha} = n$$

Note that N_{α} , being the sum of *n* independent Bernoulli variables with parameter p_{α} , is binomial with parameters n = n and $p = p_{\alpha}$. We let

$$\mathbf{A}(n,r)$$

be the family of ordered r-tuples (A_1, \ldots, A_r) of subsets of $\{1, \ldots, n\}$ such that $A_i \cap A_j = \emptyset$ and, for each $A \in \mathbf{A}(n, r)$, we let

$$E_A = \bigcap_{\alpha=1}^r \bigcap_{i \in A_\alpha} \{X_i = o_\alpha\}$$

and observe that, by the independence of the X_i ,

(2)
$$P(E_A) = \prod_{\alpha=1}^r p_{\alpha}^{|A_{\alpha}|}.$$

If (n_1, \ldots, n_r) is an r-tuple of nonnegative integers summing to n we find that

$$P(N_1 = n_1, \dots, N_r = n_r) = P(\bigcup_{A \in \mathbf{A}(n,r), |A_{\alpha}| = n_{\alpha}, \alpha = 1, \dots, r} E_A) = \binom{n}{n_1 \cdots n_r} p_1^{n_1} \cdots p_r^{n_r}$$

so (1) holds.

Theorem. Suppose q is a integer, 1 < q < r, $\tilde{p} = \sum_{\alpha=1}^{q} p_{\alpha}$ and

$$\tilde{p}_{\alpha} = \frac{p_{\alpha}}{\tilde{p}} \quad \text{whenever } \alpha = 1, \dots, q.$$

Then

$$P(N_1 = n_1, \dots, N_q = n_q | N_{q+1} = n_{q+1}, \dots, N_r = n_r) = {\binom{\sum_{\alpha=1}^q n_\alpha}{n_1 \cdots n_q}} \tilde{p}_1^{n_1} \cdots \tilde{p}_q^{n_q}$$

whenever $(n_1, \ldots, n_r) \in \mathbf{M}(n, r)$.

Remark. This says that the conditional distribution of (N_1, \ldots, N_q) given $\{N_{q+1} = n_{q+1}, \ldots, N_r = n_r\}$ is *q*-nomial with parameters $n - \sum_{\alpha=q+1}^r n_{\alpha}$ and $\tilde{p}_1, \ldots, \tilde{p}_q$ whenever (n_{q+1}, \ldots, n_r) is a (r-q)-tuple of nonnegative integers whose sum does not exceed *n*. In particular, if $\alpha \in \{1, \ldots, q\}$ we find that the conditional distribution of N_{α} given $\{N_{q+1} = n_{q+1}, \ldots, N_r = n_r\}$ is binomial with parameters $n = n - \sum_{\alpha=q+1}^r n_{\alpha}$ and $p = \tilde{p}_{\alpha}$.

Proof. Suppose $(n_1, \ldots, n_r) \in \mathbf{M}(n, r)$. Let

$$E = \bigcap_{\alpha=1}^{q} \{ N_{\alpha} = n_{\alpha} \} \text{ and let } F = \bigcap_{\beta=q+1}^{r} \{ N_{\beta} = n_{\beta} \}.$$

Let $\tilde{n} = \sum_{\alpha=1}^{q} n_{\alpha}$.

Let $\overline{\mathbf{B}}$ be the family of q-tuples (B_1, \ldots, B_q) of subsets of $\{1, \ldots, n\}$ such that $|B_{\alpha}| = n_{\alpha}$ whenever $\alpha \in \{1, \ldots, q\}$ and $B_{\alpha} \cap B_{\beta} = \emptyset$ whenever $\alpha, \beta \in \{1, \ldots, q\}$ and $\alpha \neq \beta$. For each $B \in \mathbf{B}$ let

$$E_B = \bigcap_{\alpha=1}^q \bigcap_{i \in B_\alpha}^n \{X_i = o_\alpha\}.$$

Let **B'** be the set of those $(B_1, \ldots, B_q) \in \mathbf{B}$ such that $B_\alpha \subset \{1, \ldots, \tilde{n}\}$ whenever $\alpha \in \{1, \ldots, q\}$.

Let **C** be the family of (r-q)-tuples (C_{q+1}, \ldots, C_r) of subsets of $\{1, \ldots, n\}$ such that $|C_{\beta}| = n_{\beta}$ whenever $\beta \in \{q+1, \ldots, r\}$ and $C_{\beta} \cap C_{\gamma} = \emptyset$ whenever $\beta, \gamma \in \{q+1, \ldots, r\}$ and $\beta \neq \gamma$. Let \tilde{C} be that member of **B** such that

$$\tilde{C}_{\beta} = \{\sum_{\gamma=1}^{\beta-1} n_{\gamma} + 1, \dots, \sum_{\gamma=1}^{\beta} n_{\gamma}\}, \ \beta = q+1, \dots, r.$$

For each $B \in \mathbf{B}$ let

$$F_B = \bigcap_{\beta=q+1}^r \bigcap_{i\in C_\beta}^n \{X_i = o_\beta\}.$$

One may easily verify that

$$P(F_C) = P(F_D)$$
 and $P(E|F_C) = P(E|F_D)$ whenever $C, D \in \mathbb{C}$.

By an earlier result we have that

$$P(E|F) = P(E|F_{\tilde{C}}).$$

Moreover,

$$\begin{split} P(E|F_{\tilde{C}}) &= \sum_{(B_1,...,B_q)\in\mathbf{B}} P(E_B|F_{\tilde{C}}) \\ &= \sum_{(B_1,...,B_q)\in\mathbf{B}} \frac{P(E_B\cap F_{\tilde{C}})}{P(F_{\tilde{C}})} \\ &= \sum_{(B_1,...,B_q)\in\mathbf{B'}} \frac{P(E_B\cap F_{\tilde{C}})}{P(F_{\tilde{C}})} \\ &= \sum_{(B_1,...,B_q)\in\mathbf{B'}} \frac{p_1^{n_1}\dots p_q^{n_q}p_{q+1}^{n_{q+1}}\dots p_r^{n_r}}{\tilde{p}^{\tilde{n}}p_{q+1}^{n_{q+1}}\dots p_r^{n_r}} \\ &= \binom{\tilde{n}}{n_1\dots n_q} \tilde{p}_1^{n_1}\dots \tilde{p}_q^{n_q}. \end{split}$$