The multinomial distribution.

Let n and r be positive integers and let

$$
p_{1}, \ldots, p_{r}
$$

be such that

$$
0 \leq p_{\alpha} \leq 1 \quad \text { and } \quad \sum_{\alpha=1}^{r} p_{\alpha}=1
$$

Let

$$
\mathbf{M}(n, r)
$$

be the set of r-tuples $\left(n_{1}, \ldots, n_{r}\right)$ of nonnegative integers such that $\sum_{\alpha=1}^{r}=n$. The discrete random vector $\left(N_{1}, \ldots, N_{r}\right)$ is said to have the r-nomial (multinomial in the book) distribution with parameters n and p_{1}, \ldots, p_{r} if

$$
p_{N_{1}, \ldots, N_{n}}\left(n_{1}, \ldots, n_{r}\right)= \begin{cases}\binom{n}{n_{1} \cdots n_{r}} p_{1}^{n_{1}} \cdots p_{r}^{n_{r}} & \text { if }\left(n_{1}, \ldots, n_{r}\right) \in \mathbf{M}(n, r) \\ 0 & \text { else }\end{cases}
$$

Note that

$$
1=\left(p_{1}+\cdots+p_{r}\right)^{n}=\sum_{\left(n_{1}, \ldots, n_{r}\right) \in \mathbf{M}(n, r)}\binom{n}{n_{1} \cdots n_{r}} p_{1}^{n_{1}} \cdots p_{r}^{n_{r}}
$$

by the multinomial theorem.

Example. An urn contain 3 red balls, 4 white balls and 5 blue balls. A ball is drawn from the urn 10 times with replacement. Let R, W and B be the number of red, white and blue balls drawn, respectively. Then, as we shall see below, (R, W, B) will have the 3 -nomial distribution with parameters $n=10$ and

$$
p_{1}=\frac{3}{3+4+5}, \quad p_{2}=\frac{4}{3+4+5}, \quad p_{2}=\frac{5}{3+4+5}
$$

Note that the range of (R, B, W) is the set of 3 -tuples $\left(n_{r}, n_{w}, n_{b}\right)$ of nonnegative integers such that $n_{r}+$ $n_{w}+n_{b}=10$.

Here is how such a random vector arises. Let

$$
O=\left\{o_{1}, \ldots, o_{r}\right\}
$$

be a set containing exactly r elements; O is the set of outcomes. Let

$$
X_{i}, i=1, \ldots, n
$$

be independent identically distributed random variables with the same range O such that

$$
P\left(X_{i}=o_{\alpha}\right)=p_{\alpha} \quad \text { whenever } i \in\{1, \ldots, n\} \text { and } \alpha \in\{1, \ldots, r\}
$$

For each $\alpha \in\{1, \ldots, r\}$ let

$$
N_{\alpha}=\sum_{i=1}^{n} 1_{\left\{X_{i}=o_{\alpha}\right\}}
$$

thus N_{α} is the number of times the α-th outcome o_{α} occurs in n tries. Evidently,

$$
\sum_{\alpha=1}^{r} N_{\alpha}=n
$$

Note that N_{α}, being the sum of n independent Bernoulli variables with parameter p_{α}, is binomial with parameters $n=n$ and $p=p_{\alpha}$. We let

$$
\mathbf{A}(n, r)
$$

be the family of ordered r-tuples $\left(A_{1}, \ldots, A_{r}\right)$ of subsets of $\{1, \ldots, n\}$ such that $A_{i} \cap A_{j}=\emptyset$ and, for each $A \in \mathbf{A}(n, r)$, we let

$$
E_{A}=\cap_{\alpha=1}^{r} \cap_{i \in A_{\alpha}}\left\{X_{i}=o_{\alpha}\right\}
$$

and observe that, by the independence of the X_{i},

$$
\begin{equation*}
P\left(E_{A}\right)=\prod_{\alpha=1}^{r} p_{\alpha}^{\left|A_{\alpha}\right|} \tag{2}
\end{equation*}
$$

If $\left(n_{1}, \ldots, n_{r}\right)$ is an r-tuple of nonnegative integers summing to n we find that

$$
P\left(N_{1}=n_{1}, \ldots, N_{r}=n_{r}\right)=P\left(\cup_{A \in \mathbf{A}(n, r),\left|A_{\alpha}\right|=n_{\alpha}, \alpha=1, \ldots, r} E_{A}\right)=\binom{n}{n_{1} \cdots n_{r}} p_{1}^{n_{1}} \cdots p_{r}^{n_{r}}
$$

so (1) holds.

Theorem. Suppose q is a integer, $1<q<r, \tilde{p}=\sum_{\alpha=1}^{q} p_{\alpha}$ and

$$
\tilde{p}_{\alpha}=\frac{p_{\alpha}}{\tilde{p}} \quad \text { whenever } \alpha=1, \ldots, q
$$

Then

$$
P\left(N_{1}=n_{1}, \ldots, N_{q}=n_{q} \mid N_{q+1}=n_{q+1}, \ldots, N_{r}=n_{r}\right)=\binom{\sum_{\alpha=1}^{q} n_{\alpha}}{n_{1} \cdots n_{q}} \tilde{p}_{1}^{n_{1}} \cdots \tilde{p}_{q}^{n_{q}}
$$

whenever $\left(n_{1}, \ldots, n_{r}\right) \in \mathbf{M}(n, r)$.
Remark. This says that the conditional distribution of $\left(N_{1}, \ldots, N_{q}\right)$ given $\left\{N_{q+1}=n_{q+1}, \ldots, N_{r}=n_{r}\right\}$ is q-nomial with parameters $n-\sum_{\alpha=q+1}^{r} n_{\alpha}$ and $\tilde{p}_{1}, \ldots, \tilde{p}_{q}$ whenever $\left(n_{q+1}, \ldots, n_{r}\right)$ is a $(r-q)$-tuple of nonnegative integers whose sum does not exceed n. In particular, if $\alpha \in\{1, \ldots, q\}$ we find that the conditional distribution of N_{α} given $\left\{N_{q+1}=n_{q+1}, \ldots, N_{r}=n_{r}\right\}$ is binomial with parameters $n=n-\sum_{\alpha=q+1}^{r} n_{\alpha}$ and $p=\tilde{p}_{\alpha}$.

Proof. Suppose $\left(n_{1}, \ldots, n_{r}\right) \in \mathbf{M}(n, r)$. Let

$$
E=\cap_{\alpha=1}^{q}\left\{N_{\alpha}=n_{\alpha}\right\} \quad \text { and let } \quad F=\cap_{\beta=q+1}^{r}\left\{N_{\beta}=n_{\beta}\right\} .
$$

Let $\tilde{n}=\sum_{\alpha=1}^{q} n_{\alpha}$.
Let \mathbf{B} be the family of q-tuples $\left(B_{1}, \ldots, B_{q}\right)$ of subsets of $\{1, \ldots, n\}$ such that $\left|B_{\alpha}\right|=n_{\alpha}$ whenever $\alpha \in\{1, \ldots, q\}$ and $B_{\alpha} \cap B_{\beta}=\emptyset$ whenever $\alpha, \beta \in\{1, \ldots, q\}$ and $\alpha \neq \beta$. For each $B \in \mathbf{B}$ let

$$
E_{B}=\cap_{\alpha=1}^{q} \cap_{i \in B_{\alpha}}^{n}\left\{X_{i}=o_{\alpha}\right\}
$$

Let \mathbf{B}^{\prime} be the set of those $\left(B_{1}, \ldots, B_{q}\right) \in \mathbf{B}$ such that $B_{\alpha} \subset\{1, \ldots, \tilde{n}\}$ whenever $\alpha \in\{1, \ldots, q\}$.
Let \mathbf{C} be the family of $(r-q)$-tuples $\left(C_{q+1}, \ldots, C_{r}\right)$ of subsets of $\{1, \ldots, n\}$ such that $\left|C_{\beta}\right|=n_{\beta}$ whenever $\beta \in\{q+1, \ldots, r\}$ and $C_{\beta} \cap C_{\gamma}=\emptyset$ whenever $\beta, \gamma \in\{q+1, \ldots, r\}$ and $\beta \neq \gamma$. Let \tilde{C} be that member of \mathbf{B} such that

$$
\tilde{C}_{\beta}=\left\{\sum_{\gamma=1}^{\beta-1} n_{\gamma}+1, \ldots, \sum_{\gamma=1}^{\beta} n_{\gamma}\right\}, \beta=q+1, \ldots, r .
$$

For each $B \in \mathbf{B}$ let

$$
F_{B}=\cap_{\beta=q+1}^{r} \cap_{i \in C_{\beta}}^{n}\left\{X_{i}=o_{\beta}\right\} .
$$

One may easily verify that

$$
P\left(F_{C}\right)=P\left(F_{D}\right) \quad \text { and } \quad P\left(E \mid F_{C}\right)=P\left(E \mid F_{D}\right) \quad \text { whenever } C, D \in \mathbf{C}
$$

By an earlier result we have that

$$
P(E \mid F)=P\left(E \mid F_{\tilde{C}}\right)
$$

Moreover,

$$
\begin{aligned}
P\left(E \mid F_{\tilde{C}}\right)= & \sum_{\left(B_{1}, \ldots, B_{q}\right) \in \mathbf{B}} P\left(E_{B} \mid F_{\tilde{C}}\right) \\
= & \sum_{\left(B_{1}, \ldots, B_{q}\right) \in \mathbf{B}} \frac{P\left(E_{B} \cap F_{\tilde{C}}\right)}{P\left(F_{\tilde{C}}\right)} \\
= & \sum_{\left(B_{1}, \ldots, B_{q}\right) \in \mathbf{B}^{\prime}} \frac{P\left(E_{B} \cap F_{\tilde{C}}\right)}{P\left(F_{\tilde{C}}\right)} \\
= & \sum_{\left(B_{1}, \ldots, B_{q}\right) \in \mathbf{B}^{\prime}} \frac{p_{1}^{n_{1}} \cdots p_{q}{ }^{n_{q}} p_{q+1}{ }^{n_{q+1} \cdots p_{r}{ }^{n_{r}}}}{\tilde{p}^{\tilde{n}} p_{q+1} n_{q+1} \cdots p_{r}{ }^{n_{r}}} \\
= & \binom{\tilde{n}}{n_{1} \cdots n_{q}} \tilde{p}_{1}^{n_{1} \cdots \tilde{p}_{q}^{n_{q}} .}
\end{aligned}
$$

