
Integrating the Gaussian.

For each real x we let

φ(x) =
1√
2π

e−
x2
2

and we let

Φ(x) =
∫ x

−infty

φ(w) dw.

φ is called the standard Gaussian (I think) and Φ is called the standard error function.

Theorem. We have ∫ ∞
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φ(x) dx = 1.

One of many proofs. We have
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Definition. We say the random variable X is standard normal if FX = Φ. This implies that X is
continuous with fX = φ.

Theorem. Suppose X is standard normal. Then X has mean 0 and variance 1.

Proof. We have

E(X) =
1√
2π

∫ ∞

−infty

xe−
x2
2 dx = 0
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because x 7→ xe−
x2
2 is odd. Also, √

2πE(X2) =
∫ ∞

−∞
x2e−
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2 dx

= −
∫ ∞
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xd
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∫ ∞
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=
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Definition. Suppose −∞ < µ < ∞ and 0 < σ < ∞. We say the random variable X is normally
distibuted with parameter µ and σ2 or normally distributed with mean µ and variance σ if

X − µ

σ

is standard normal; if this is the case we immediately infer that the mean of X is µ and the variance of X
is σ2.
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