Linear transformations and Gaussian random vectors.

Remember, n-vectors are the same as $n \times 1$ matrices.
Let \mathbf{X} a random n-vector. We let

$$
\mathrm{E}(\mathbf{X})
$$

be the n-vector whose i-th entry is $\mathrm{E}\left(X_{i}\right)$. If \mathbf{Y} is a random n-vector we let

$$
\operatorname{Cov}(\mathbf{X}, \mathbf{Y})
$$

be the $n \times n$ matrix whose i, j entry is $\operatorname{Cov}\left(X_{i}, Y_{j}\right)$ and we let

$$
\operatorname{Var}(\mathbf{X})=\operatorname{Cov}(\mathbf{X}, \mathbf{X})
$$

We have already proved the simple
Proposition. Suppose \mathbf{X} is a random n-vector, A is an $n \times n$ matrix, \mathbf{b} is an n-vector and

$$
\mathbf{Y}=A \mathbf{X}+\mathbf{b}
$$

Then

$$
\mathrm{E}(\mathbf{Y})=A \mathrm{E}(\mathbf{X})+\mathbf{b}
$$

and

$$
\operatorname{Var}(\mathbf{Y})=A \operatorname{Cov}(\mathbf{X}) A^{T}
$$

Definition. We say the random vector \mathbf{X} is standard normal if its components X_{1}, \ldots, X_{n} are independent and standard normal. Evidently, this is the case if and only if \mathbf{X} is continuous and

$$
f_{\mathbf{X}}(\mathbf{x})=(2 \pi)^{-n / 2} e^{-|\mathbf{x}|^{2} / 2} \quad \text { for any } n \text {-vector } \mathbf{x}
$$

We say the random vector \mathbf{Y} is Gaussian if

$$
\mathbf{Y}=A \mathbf{X}+\mathbf{b}
$$

for some standard normal \mathbf{X} and nonsingular A. Note that

$$
\mathrm{E}(\mathbf{Y})=\mathbf{b} \quad \text { and } \quad \operatorname{Var}(\mathbf{Y})=A A^{T}
$$

Discussion. Let \mathbf{X} be standard normal and suppose

$$
\mathbf{Y}=A \mathbf{X}+\mathbf{b}
$$

for some nonsingular A, so that \mathbf{Y} is Gaussian. Let $B=\sqrt{A A^{T}}=\sqrt{\operatorname{Var}(\mathbf{Y})} ; B$ is well defined because $A A^{T}$ is symmetric positive definite. If $\mathbf{y}=A \mathbf{x}+\mathbf{b}$ we have

$$
f_{\mathbf{Y}}(\mathbf{y})=(2 \pi)^{-n / 2} e^{-|\mathbf{x}|^{2} / 2}|\operatorname{det} A|^{-1}=(2 \pi)^{-n / 2}|\operatorname{det} A|^{-1} e^{-\left|A^{-1}(\mathbf{y}-\mathbf{b})\right|^{2} / 2}
$$

But

$$
\begin{aligned}
\left|A^{-1}(\mathbf{y}-\mathbf{b})\right|^{2} & =\left(A^{-1}(\mathbf{y}-\mathbf{b})\right)^{T} A^{-1}(\mathbf{y}-\mathbf{b}) \\
& =(\mathbf{y}-\mathbf{b})^{T}\left(A A^{T}\right)^{-1}(\mathbf{y}-\mathbf{b}) \\
& =\left(B^{-1}(\mathbf{y}-\mathbf{b})\right)^{T} B^{-1}(\mathbf{y}-\mathbf{b}) \\
& =\left|B^{-1}(\mathbf{y}-\mathbf{b})\right|^{2}
\end{aligned}
$$

and

$$
\operatorname{det} A=\sqrt{\operatorname{det} A A^{T}}=\operatorname{det} B
$$

Thus we have the following
Theorem. Suppose \mathbf{Y} is a random n-vector. Then \mathbf{Y} is Gaussian if and only if $\operatorname{Var}(\mathbf{Y})$ is positive definite and

$$
f_{\mathbf{Y}}(\mathbf{y})=(2 \pi)^{-n / 2}(\operatorname{det} \sqrt{\operatorname{Var}(\mathbf{Y})})^{-1} e^{-\mid(\sqrt{\operatorname{Var}(\mathbf{Y})})^{-1}\left(\mathbf{y}-\left.\mathrm{E}(\mathbf{Y})\right|^{2} / 2\right.}
$$

for any n-vector \mathbf{y} in which case

$$
\mathbf{X}=(\sqrt{\operatorname{Var} \mathbf{Y}})^{-1}(\mathbf{y}-\mathrm{E}(\mathbf{Y}))
$$

is standard normal.

