
Linear transformations and Gaussian random vectors.

We fix a positive integer n.

1. Symmetric matrices; psd matrices.

When we write x ∈ Rn we mean that

x =




x1

...
xn


 .

Let

Sym(n)

be the vector space of n by n symmetric matrices. We say the n by n matrix B is
positive definite symmetric (psd) if B is symmetric and

(1) xT Bx > 0 whenever x ∈ Rn.

If the n by n matrix B is symmetric then (1) is equivalent to the statement that the
eigenvalues of B are positive.Remember, n-vectors are the same as n× 1 matrices.

Suppose B ∈ Sym(n). Then there are n by n matrices P , D such that P is
orthogonal (which means P is invertible and P−1 = PT ), D = diag (λ1, . . . , λn)
and

B = PDP−1.

This amounts to saying that, for each j = 1, . . . , n,

BPj = λjPj

where Pj is the jth column of B; in other words, Pj is a (nonzero) eigenvector of
B with eigenvalue λj .

Theorem 1.1. Suppose f : R → R. There is one and only one function, also
denoted by

f : Sym(n) → Sym(n)

(ambiguously denoted by f !) which preserves the matrix operations and such that

f(diag (λ1, . . . , λn) = diag (f(λ1), . . . , f(λn)).

Moreover, if g : R→ R we have

(fg)(B) = f(B)g(B) for B ∈ Sym(n).

Proof. We let

f(B) = Pdiag (f(λ1), . . . , f(λn))P−1

where P,D and λi, i = 1, . . . , n are as above. Note that P, D and λi, i = 1, . . . , n
are not unique; we leave it to the reader that f(B) is, nonetheless, well defined. We
also leave to the reader the simple task of verifying the other asserted properties of
the mapping B → f(B). ¤
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2. Gaussian random vectors.

Let X a random n-vector. Recall the definitions of

E(X), Cov(X,Y);

these are, respectively, a vector in Rn and an n by n symmetric matrix.

Theorem 2.1. Suppose Y is a random vector, B is an n by n psd matrix and
m ∈ Rn. The following are equivalent:

(I) Y =
√

BX + m for some standard normal X.
(II) Y is continuous and

fY = (2π)−n/2
√

detBe−(y−m)T B−1(y−m)/2 for y ∈ Rn.

If these conditions hold then

E(Y ) = m and Cov(Y, Y ) = B.

Proof. Suppose (I) holds. Then Y is continuous and, if x,y ∈ Rn are such that
y =

√
Bx + m then x =

√
B
−1

(y −m) so

|x|2 = xT x = (
√

B
−1

(y −m))T
√

B
−1

(y −m) = (y −m))T B−1(y −m);

thus, by Change of Variables Formula for Random Vectors,

fY(y) = fX(x)
1

det
(√

B
−1

)

= (2π)−n/2
√

detBe−|x|
2/2

= (2π)−n/2
√

detBe−(y−m)T B−1(y−m)/2.

Thus (II) holds.
Suppose (II) holds. Let X =

√
B
−1

(Y −m). Then X is continuous and, if x,y
are as above,

fX(x) = fY(y)
1

det
√

B
−1

= (2π)−n/2
√

detBe−(y−m)T B−1(y−m)/2 1

det
√

B
−1

= (2π)−n/2e−|x|
2/2

by th Change of Variables Formula for Random Vectors. So X is standard normal.
The assertion about the mean and covariance follow from straightforward home-

work exercises. ¤
Theorem 2.2. Suppose Y is Gaussian, A is a nonsingular n by n matrix and
b ∈ Rn. Then AY + b is Gaussian.

Proof. Exercise for the reader; just turn the crank using the Change of Variables
Formula for Random Vectors. ¤


