Linear transformations and Gaussian random vectors.

We fix a positive integer n.

1. Symmetric matrices; PSD matrices.

When we write $\mathbf{x} \in \mathbb{R}^{n}$ we mean that

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] .
$$

Let

$$
\operatorname{Sym}(n)
$$

be the vector space of n by n symmetric matrices. We say the n by n matrix B is positive definite symmetric ($\mathbf{p s d}$) if B is symmetric and

$$
\begin{equation*}
\mathbf{x}^{T} B \mathbf{x}>0 \quad \text { whenever } \mathbf{x} \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

If the n by n matrix B is symmetric then (1) is equivalent to the statement that the eigenvalues of B are positive.Remember, n-vectors are the same as $n \times 1$ matrices.

Suppose $B \in \boldsymbol{\operatorname { S y m }}(n)$. Then there are n by n matrices P, D such that P is orthogonal (which means P is invertible and $P^{-1}=P^{T}$), $D=\boldsymbol{\operatorname { d i a g }}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and

$$
B=P D P^{-1}
$$

This amounts to saying that, for each $j=1, \ldots, n$,

$$
B P_{j}=\lambda_{j} P_{j}
$$

where P_{j} is the j th column of B; in other words, P_{j} is a (nonzero) eigenvector of B with eigenvalue λ_{j}.

Theorem 1.1. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$. There is one and only one function, also denoted by

$$
f: \operatorname{Sym}(n) \rightarrow \boldsymbol{\operatorname { S y m }}(n)
$$

(ambiguously denoted by $f!$) which preserves the matrix operations and such that

$$
f\left(\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\operatorname{diag}\left(f\left(\lambda_{1}\right), \ldots, f\left(\lambda_{n}\right)\right)\right.
$$

Moreover, if $g: \mathbb{R} \rightarrow \mathbb{R}$ we have

$$
(f g)(B)=f(B) g(B) \quad \text { for } B \in \operatorname{Sym}(n)
$$

Proof. We let

$$
f(B)=P \operatorname{diag}\left(f\left(\lambda_{1}\right), \ldots, f\left(\lambda_{n}\right)\right) P^{-1}
$$

where P, D and $\lambda_{i}, i=1, \ldots, n$ are as above. Note that P, D and $\lambda_{i}, i=1, \ldots, n$ are not unique; we leave it to the reader that $f(B)$ is, nonetheless, well defined. We also leave to the reader the simple task of verifying the other asserted properties of the mapping $B \rightarrow f(B)$.

2. Gaussian random vectors.

Let \mathbf{X} a random n-vector. Recall the definitions of

$$
\mathrm{E}(\mathbf{X}), \quad \operatorname{Cov}(\mathbf{X}, \mathbf{Y}) ;
$$

these are, respectively, a vector in \mathbb{R}^{n} and an n by n symmetric matrix.
Theorem 2.1. Suppose \mathbf{Y} is a random vector, B is an n by n psd matrix and $\mathbf{m} \in \mathbb{R}^{n}$. The following are equivalent:
(I) $\mathbf{Y}=\sqrt{B} \mathbf{X}+\mathbf{m}$ for some standard normal \mathbf{X}.
(II) \mathbf{Y} is continuous and

$$
f_{\mathbf{Y}}=(2 \pi)^{-n / 2} \sqrt{\boldsymbol{\operatorname { d e t }} B} e^{-(\mathbf{y}-\mathbf{m})^{T} B^{-1}(\mathbf{y}-\mathbf{m}) / 2} \quad \text { for } \mathbf{y} \in \mathbb{R}^{n} .
$$

If these conditions hold then

$$
\mathrm{E}(Y)=\mathbf{m} \quad \text { and } \quad \operatorname{Cov}(Y, Y)=B
$$

Proof. Suppose (I) holds. Then \mathbf{Y} is continuous and, if $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ are such that $\mathbf{y}=\sqrt{B} \mathbf{x}+\mathbf{m}$ then $\mathbf{x}=\sqrt{B}^{-1}(\mathbf{y}-\mathbf{m})$ so

$$
\left.|\mathbf{x}|^{2}=\mathbf{x}^{T} \mathbf{x}=\left(\sqrt{B}^{-1}(\mathbf{y}-\mathbf{m})\right)^{T} \sqrt{B}^{-1}(\mathbf{y}-\mathbf{m})=(\mathbf{y}-\mathbf{m})\right)^{T} B^{-1}(\mathbf{y}-\mathbf{m})
$$

thus, by Change of Variables Formula for Random Vectors,

$$
\begin{aligned}
f_{\mathbf{Y}}(\mathbf{y}) & \left.=f_{\mathbf{X}}(\mathbf{x}) \frac{1}{\operatorname{det}(\sqrt{B}}{ }^{-1}\right) \\
& =(2 \pi)^{-n / 2} \sqrt{\operatorname{det} B} e^{-|\mathbf{x}|^{2} / 2} \\
& =(2 \pi)^{-n / 2} \sqrt{\operatorname{det} B} e^{-(\mathbf{y}-\mathbf{m})^{T} B^{-1}(\mathbf{y}-\mathbf{m}) / 2}
\end{aligned}
$$

Thus (II) holds.
Suppose (II) holds. Let $\mathbf{X}=\sqrt{B}^{-1}(\mathbf{Y}-\mathbf{m})$. Then \mathbf{X} is continuous and, if \mathbf{x}, \mathbf{y} are as above,

$$
\begin{aligned}
f_{\mathbf{X}}(\mathbf{x}) & =f_{\mathbf{Y}}(\mathbf{y}) \frac{1}{\operatorname{det} \sqrt{B}}{ }^{-1} \\
& =(2 \pi)^{-n / 2} \sqrt{\operatorname{det} B} e^{-(\mathbf{y}-\mathbf{m})^{T} B^{-1}(\mathbf{y}-\mathbf{m}) / 2} \frac{1}{\operatorname{det} \sqrt{B}}{ }^{-1} \\
& =(2 \pi)^{-n / 2} e^{-|\mathbf{x}|^{2} / 2}
\end{aligned}
$$

by th Change of Variables Formula for Random Vectors. So X is standard normal.
The assertion about the mean and covariance follow from straightforward homework exercises.

Theorem 2.2. Suppose Y is Gaussian, A is a nonsingular n by n matrix and $\mathbf{b} \in \mathbb{R}^{n}$. Then $A \mathbf{Y}+\mathbf{b}$ is Gaussian.

Proof. Exercise for the reader; just turn the crank using the Change of Variables Formula for Random Vectors.

