Mathematics 135.01. Final Exam. Fall 1997.

TO GET FULL CREDIT YOU MUST SHOW ALL WORK!
I have neither given nor received aid in the completion of this test. Signature:

1. 10 pts. Suppose the events A, B, C, D, E, F are mutually independent with probabilities a, b, c, d, e, f, respectively. Calculate

$$
P((A \cup B) \cap(C \cup D) \cap(E \cup F))
$$

in terms of a, b, c, d, e, f.

Solution. Since the events $A \cap B, C \cap D, E \cap F$ are independent we have

$$
P(A \cup B) \cap(C \cup D) \cap(E \cup F))=P(A \cup B) P(C \cup D) P(E \cup F) .
$$

Since the events A and B are independent we have

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)=P(A)+P(B)-P(A) P(B)=a+b-a b .
$$

One treats $P(C \cup D)$ and $P(E \cup F)$ similarly. Thus

$$
P((A \cup B) \cap(C \cup D) \cap(E \cup F))=(a+b-a b)(c+d-c d)(e+f-e f) .
$$

2. 10 pts. Suppose X is uniform on $(0,1), Y$ is exponential with parameter 1 and X and Y are independent. Compute the pdf of X / Y.

Solution. Since X and Y are independent we have that (X, Y) is continuous and $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$. Thus

$$
f_{X, Y}(x, y)= \begin{cases}e^{-y} & \text { if } 0<x<1 \text { and } 0<y \\ 0 & \text { else } .\end{cases}
$$

Let $Z=X / Y$ and note that the range of Z is $(0, \infty)$. For $z \in(0, \infty)$ we let $R_{z}=\{(x, y): x / z \leq y\}$ and calculate

$$
\begin{aligned}
P(Z \leq z) & =P(X / Y \leq z) \\
& =\iint_{R_{z}} f_{X, Y}(x, y) d x d y \\
& =\int_{0}^{1}\left(\int_{x / z}^{\infty} e^{-y} d y\right) d x \\
& =\int_{0}^{1} e^{-x / z} d x \\
& =z\left(1-e^{-\frac{1}{z}}\right) .
\end{aligned}
$$

Differentiating this we find that

$$
f_{Z}(z)= \begin{cases}1-e^{-\frac{1}{z}}\left(1+\frac{1}{z}\right) & \text { if } z>0 \\ 0 & \text { else }\end{cases}
$$

3. 10 pts. Suppose (X, Y) is uniformly distributed over $\{(x, y): 0<x<y<1\}$. Compute $\operatorname{Cov}(X, Y)$.

Solution. Note that the area of $\{(x, y): 0<x<y<1\}$ is 2 so

$$
f_{X, Y}(x, y)= \begin{cases}2 & \text { if } 0<x<y<1 \\ 0 & \text { else }\end{cases}
$$

We have

$$
\begin{aligned}
\mathrm{E}(X) & =\int_{0}^{1}\left(\int_{x}^{1} x 2 d x\right) d y=\frac{1}{3} \\
\mathrm{E}(Y) & =\int_{0}^{1}\left(\int_{x}^{1} y, 2 d x\right) d y=\frac{2}{3} \\
\mathrm{E}(X Y & =\int_{0}^{1}\left(\int_{x}^{1} x y, 2 d x\right) d y=\frac{1}{4}
\end{aligned}
$$

Thus $\operatorname{Var}(X Y)=\frac{1}{4}-\frac{1}{3} \frac{2}{3}=\frac{1}{36}$.
4. 10 pts. Suppose Y is what comes up when a fair die is rolled and suppose X is chosen uniformly from the nonnegative integers not exceeding twice Y. Compute the pmf of (X, Y).

Suggestion: Compute $p_{X \mid Y}$ first.

Solution. For each $y=1,2,3,4,5,6$ we have

$$
p_{X \mid Y}(x \mid y)= \begin{cases}\frac{1}{2 y+1} & \text { if } x=0,1,2, \ldots, 2 y \\ 0 & \text { else }\end{cases}
$$

For these same y we have $p_{X, Y}(x, y)=p_{X \mid Y}(x \mid y) p_{Y}(y)$ for any x so

$$
p_{X, Y}(x, y)= \begin{cases}\frac{1}{6(2 y+1)} & \text { if } y=1,2,3,4,5,6 \text { and } x=0,1,2, \ldots, 2 y \\ 0 & \text { else }\end{cases}
$$

5. 10 pts. Suppose X is uniformly distributed on $(0,1)$. Calculate the probability density function of $1 / X$.

Solution. Let $Y=1 / X$ and note that the range of Y is $(1, \infty)$. Given $y \in(1, \infty)$ we have

$$
F_{Y}(y)=P(Y \leq y)=P(1 / X \leq y)=P(1 / y \leq X)=1-1 / y
$$

Differentiating, we conclude that

$$
f_{Y}(y)= \begin{cases}\frac{1}{y^{2}} & \text { if } 1<y \\ 0 & \text { else }\end{cases}
$$

6. 15 pts. A certain device consists of n components of a certain type which operate independently of each other and each of whose time to failure is exponentially distributed with parameter $\lambda>0$. The device functions as long as least two of the components are functioning. Compute the pdf of the time to failure of the device.

Hint: Let T be the time to failure of the device. Let $E_{i, j}, 1 \leq i<j \leq n$, be the event that components i and j are the last two components to fail. Given $t>0$, what is $P\left(T>t \mid E_{i, j}\right)$?

Solution. The Hint is dumb. It could lead you an incorrect solution of the Problem. However, I did warn you that I was suspicious of the Hint during the test.

For each $i=1, \ldots, n$ let X_{i} be the time to failure of the i-the component. Suppose $t>0$. Then $\{T \leq t\}$ is the disjoint union of the event that all of the X_{i} have failed by time t whose probability is $\left(1-e^{-\lambda t}\right)^{n}$ with the event that exactly one of the X_{i} is still functioning at time t whose probability is $n e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{n-1}$. Thus

$$
F_{T}(t)=P(T \leq t)=\left(1-e^{-\lambda t}\right)^{n}+n e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{n-1}
$$

Differentiating, we find that

$$
f_{T}(t)= \begin{cases}\lambda n(n-1) e^{-2 \lambda t}\left(1-e^{-\lambda t}\right)^{n-1} & \text { if } t>0 \\ 0 & \text { else }\end{cases}
$$

7. 10 pts. Suppose (X, Y, Z) is uniformly distributed on $(0,1) \times(0,1) \times(0,1)$. Compute $P\left(X<Y<Z^{2}\right)$.

Solution. The answer is the volume of $\left\{(x, y, z): 0<x<y<z^{2}<1\right\}$ which is

$$
\int_{0}^{1} \operatorname{Area}\left\{(x, y): 0<x<y<z^{2}\right\} d z=\int_{0}^{1} \frac{z^{4}}{2} d z=\frac{1}{10}
$$

8. 15 pts. Suppose X is uniform on $(0,1)$ and Y is uniform on $\left(0, X^{2}\right)$. Compute the joint pdf of (X, Y).

Hint: Compute $f_{Y \mid X}$ first.

Solution. For $x \in(0,1)$ we have

$$
f_{Y \mid X}(y \mid x)= \begin{cases}\frac{1}{x^{2}} & \text { if } 0<y<x^{2} \\ 0 & \text { else }\end{cases}
$$

For these same x we have $f_{X, Y}=f_{Y \mid X}(y \mid x) f_{X}(x)$ for any y. Thus

$$
f_{X, Y}(x, y)= \begin{cases}\frac{1}{x^{2}} & \text { if } 0<x<1 \text { and } 0<y<x^{2} \\ 0 & \text { else }\end{cases}
$$

9. 20 pts. Suppose N is the number of flips of a fair coin until the first head. Suppose Y is uniform on $(0, N)$. Suppose X is exponential with parameter \sqrt{Y}. Compute the expectation of X.

Suggestion: Use the conditional expectation formula.

Remark: The answer is an infinite series which is not to hard to sum; you don't have to sum it to get full credit.

Solution. We first note that We have

$$
\mathrm{E}(X)=\mathrm{E}(\mathrm{E}(X \mid Y))=\mathrm{E}\left(\frac{1}{\sqrt{Y}}\right)=\mathrm{E}\left(\mathrm{E}\left(\left.\frac{1}{\sqrt{Y}} \right\rvert\, N\right)\right) .
$$

Now for any positive integer n we have

$$
\mathrm{E}\left(\left.\frac{1}{\sqrt{Y}} \right\rvert\, N=n\right)=\frac{1}{n} \int_{0}^{n} \frac{1}{\sqrt{y}} d y=\frac{2}{\sqrt{n}} .
$$

Thus $\mathrm{E}\left(\left.\frac{1}{\sqrt{Y}} \right\rvert\, N\right)=\frac{2}{\sqrt{N}}$ so

$$
\mathrm{E}(X)=\mathrm{E}\left(\frac{2}{\sqrt{N}}\right)=2 \sum_{n=1}^{\infty} \frac{1}{\sqrt{n} 2^{n}} .
$$

I don't know how to sum this. It turns that I had intended to have Y uniform on $\left(0, N^{2}\right)$ and not $(0, N)$, but I made a typo. If you take what I intended then, by the same method, you get

$$
\mathrm{E}(X)=2 \sum_{n=1}^{\infty} \frac{1}{n 2^{n}}=2 \ln 2 .
$$

10. 20 pts. Suppose S is number of heads in 100 flips of a fair coin. Suppose T is the number of heads in 200 flips of a coin where the probability of getting heads on a given flip is $\frac{1}{4}$. Use the Central Limit Theorem to compute approximately the probability that $S<T+10$.

Hint: For each $i=1,2, \ldots, 100$ let X_{i} be the indicator random variable for the event the i-th flip of the first coin is a head, and for each $i=1,2, \ldots, 200$ let Y_{i} be the indicator random variable for the event the i-th flip of the second coin is a head. Note that $S-T=\sum_{i=1}^{100} S_{i}-T_{2 i-1}-T_{2 i}$. If you think this is kloogy, and you very well might, you could use the version of the Central Limit Theorem on page 406.

Solution. For each $i=1,2, \ldots$ let $Z_{i}=X_{i}-Y_{2 i-1}-Y_{2 i}$. We have that

$$
\mathrm{E}\left(Z_{i}\right)=\mathrm{E}\left(X_{i}\right)-\mathrm{E}\left(Y_{2 i-1}\right)-\mathrm{E}\left(Y_{2 i}\right)=\frac{1}{2}-\frac{1}{4}-\frac{1}{4}=0
$$

and, by our independence assumptions, that

$$
\operatorname{Var}\left(Z_{i}\right)=\operatorname{Var}\left(X_{i}\right)+\operatorname{Var}\left(Y_{2 i-1}\right)+\operatorname{Var}\left(Y_{2 i}\right)=\frac{1}{2} \frac{1}{2}+\frac{1}{4} \frac{3}{4}+\frac{1}{4} \frac{3}{4}=\frac{5}{8} .
$$

Note that the Z_{i} 's are independent. Using the Central Limit Theorem we find that

$$
\begin{aligned}
P(S<T+10) & =P\left(\sum_{i=1}^{100} Z_{i}<10.5\right) \\
& =P\left(\frac{\sum_{i=1}^{100} Z_{i}-100 \cdot 0}{\sqrt{100 \cdot \frac{5}{8}}}<\frac{10.5-100 \cdot 0}{\sqrt{100 \cdot \frac{5}{8}}}\right) \\
& \approx \Phi\left(\frac{10.5-100 \cdot 0}{\sqrt{100 \cdot \frac{5}{8}}}\right) \\
& \approx \Phi(1.33) \\
& \approx .9082 .
\end{aligned}
$$

