Expectation

Suppose \mathcal{E} is an experiment the set of possible outcomes of which is the sample space S. Let E be an event, which is to say that $E \subset S$. Let us recall the relative frequency interpretation of $P(E)$, the probability of E. Let

$$
s_{1}, s_{2}, \ldots, s_{n}, \ldots
$$

be the outcomes of a never ending sequence of independent repetitions of \mathcal{E}. Let $\nu(E, n), n=1,2 \ldots$ be the number of occurrences of E in the first n repetitions of \mathcal{E}; that is, $\nu(E, n)$ is the number of $i \in\{1, \ldots, n\}$ such that $s_{i} \in E$. Then

$$
P(E)=\lim _{n \rightarrow \infty} \frac{\nu(E, n)}{n}
$$

Now suppose X is a random variable on S with finite range x_{1}, \ldots, x_{N}. We define the expectation $E(X)$ of X to be

$$
\lim _{n \rightarrow \infty} \frac{X\left(s_{1}\right)+X\left(s_{2}\right)+\cdots+X\left(s_{n}\right)}{n}
$$

which is just the limit of the running average values of X on the sequence of outcomes $s_{1}, s_{2}, \ldots, s_{n}, \ldots$ I claim that

$$
E(X)=\sum_{i=1}^{N} x_{i} P\left(X=x_{i}\right)
$$

Indeed,

$$
\begin{aligned}
\frac{X\left(s_{1}\right)+X\left(s_{2}\right)+\cdots+X\left(s_{n}\right)}{n} & =\frac{\sum_{i=1}^{N} x_{i} \nu\left(X=x_{i}, n\right)}{n} \\
& =\sum_{i=1}^{N} \frac{x_{i} \nu\left(X=x_{i}, n\right)}{n} \\
& \rightarrow \sum_{i=1}^{N} x_{i} P\left(X=x_{i}\right)
\end{aligned}
$$

$n \rightarrow \infty$.
Now suppose X is a continuous random variable with range equal to (a, b). For each $N=1,2, \ldots$ define the discrete random variable X_{N} by requiring that

$$
X_{N}=a+\frac{j}{N}(b-a)
$$

if

$$
a+\frac{j-1}{N}(b-a) \leq X<a+\frac{j}{N}(b-a), \quad j=1, \ldots, N .
$$

Since $\left|X-X_{N}\right| \leq \frac{1}{N}$ for $N=1,2, \ldots, X_{N}$ is a better and better approximation to X as $N \rightarrow \infty$. Now

$$
\begin{aligned}
E\left(X_{N}\right) & =\sum_{j=1}^{N}\left(a+\frac{j}{N}(b-a)\right) P\left(\frac{j-1}{N} \leq X<\frac{j}{N}\right) \\
& =\sum_{j=1}^{N}\left(a+\frac{j}{N}(b-a)\right) \int_{a+\frac{j-1}{N}(b-a)}^{a+\frac{j}{N}(b-a)} f_{X}(x) d x \\
& \rightarrow \int_{a}^{b} x f_{X}(x) d x
\end{aligned}
$$

as $N \rightarrow \infty$. Thus it seems reasonable to define

$$
E(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

whenever X is a continuous random variable and to expect that the expectation operator will have all of the properties it has in the discrete case.

Some of these properties are:

$$
\begin{aligned}
& E(c)=c ; \\
& E(c X)=c E(X) ; \\
& E(X+Y)=E(X)+E(Y) ; \\
& E\left(\phi\left(X_{1}, \ldots, X_{n}\right)\right)=\sum_{x_{1}, \ldots, x_{n}} \phi\left(x_{1}, \ldots, x_{n}\right) p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) \\
& \quad \text { if }\left(X_{1}, \ldots, X_{n}\right) \text { is discrete } ; \\
& E\left(\phi\left(X_{1}, \ldots, X_{n}\right)\right)=\iint \ldots \int \phi\left(x_{1}, \ldots, x_{n}\right) f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n} \\
& \text { if }\left(X_{1}, \ldots, X_{n}\right) \text { is continuous. }
\end{aligned}
$$

