Computing expectation by conditioning.

Let (S, \mathcal{E}, P) be a probability space, let $F \in \mathcal{E}$ be such that

$$
P(F)>0
$$

Suppose X is a discrete random variable. We let

$$
E(X \mid F)
$$

be the expectation of X with respect to the probability $P(\cdot \mid F)$. It follows that

$$
\begin{equation*}
E(X \mid F)=\sum_{x} x P(X=x \mid F) \tag{1}
\end{equation*}
$$

Moreover, if $F_{1}, \ldots, F_{n} \in \mathcal{E}$ are such that $F_{i} \cap F_{j}=\emptyset$ whenever $i \neq j$ and $S=\cup_{i=1}^{n} F_{i}$ then, as one may easily verify,

$$
\begin{equation*}
E(X)=\sum_{i=1}^{n} E\left(X \mid F_{i}\right) P\left(F_{i}\right) \tag{2}
\end{equation*}
$$

Example. Let $X_{1}, X_{2}, X_{3}, \ldots$ be a sequence of independent Bernoulli random variable with parameter $p>0$. Let $q=1-0$ and let

$$
G=\min \left\{n: X_{n} \neq 0\right\}
$$

so G is geometric with parameter p.

Proposition. We have
(3) $\quad P\left(G=n \mid X_{1}=0\right)=P(G+1=n) \quad$ and $\quad P\left(G=n \mid X_{1}=1\right)=P(1=n) \quad$ for any positive integer n.

Proof. We have

$$
P\left(G=1 \mid X_{1}=1\right)=P\left(X_{1}=1 \mid X_{1}=1\right)=1=P(1=1)
$$

and

$$
P\left(G=1 \mid X_{1}=0\right)=P\left(X_{1}=1 \mid X_{1}=0\right)=0=P(G+1=1)
$$

so these equations hold if $n=1$. If $n>1$ we have

$$
P\left(G=n \mid X_{1}=1\right)=P\left(X_{1}=0, \ldots, X_{n-1}=0, X_{n}=1 \mid X_{1}=1\right)=0=P(1=n)
$$

and

$$
\begin{aligned}
P\left(G=n \mid X_{1}=0\right) & =P\left(X_{1}=0, \ldots, X_{n-1}=0, X_{n}=1 \mid X_{1}=1\right) \\
& =\frac{P\left(X_{1}=0, \ldots, X_{n-1}=0, X_{n}=1, X_{1}=0\right)}{P\left(X_{1}=0\right)} \\
& =\frac{P\left(X_{1}=0\right) \cdots P\left(X_{n-1}=0\right) P\left(X_{n}=1\right)}{P\left(X_{1}=0\right)} \\
& =q^{n-2} p \\
& =P(G=n-1) \\
& =P(G+1=n) .
\end{aligned}
$$

We infer that

$$
E\left(G \mid X_{1}=0\right)=E(G+1)=E(G)+1 \quad \text { and } \quad E\left(G \mid X_{1}=1\right)=E(1)=1 .
$$

It follows from (2)that

$$
E(G)=E\left(G \mid X_{1}=0\right) P\left(X_{1}=0\right)+E\left(G \mid X_{1}=1\right) P\left(X_{1}=1\right)=(E(G)+1) q+1 p
$$

which gives

$$
E(G)=\frac{1}{p} .
$$

We obtain from (3) that, for any positive integer n,

$$
P\left(G^{2}=n^{2} \mid X_{1}=0\right)=P\left(G=n \mid X_{1}=0\right)=P\left(G+1=n \mid X_{1}=0\right)=P\left((G+1)^{2}=n^{2} \mid X_{1}=0\right)
$$

and

$$
P\left(G^{2}=n^{2} \mid X_{1}=1\right)=P\left(G=n \mid X_{1}=1\right)=P(1=n)=P\left(1=n^{2}\right)
$$

It follows from (2) that

$$
E\left(G^{2}\right)=E\left(G^{2} \mid X_{1}=0\right) P\left(X_{1}=0\right)+E\left(G^{\mid} X_{1}=1\right) P\left(X_{1}=1\right)=\left(E\left(G^{2}\right)+2 E(G)+1\right) q+p
$$

which gives

$$
E(G)=\frac{1}{p} \quad \text { and } \quad E\left(G^{2}\right)=\frac{2-p}{p^{2}} .
$$

In particular,

$$
\operatorname{Var}(G)=E\left(G^{2}\right)-E(G)^{2}=\frac{q}{p^{2}}
$$

