Computing expectation by conditioning.

Let (S, \mathcal{E}, P) be a probability space, let $F \in \mathcal{E}$ be such that

Suppose X is a discrete random variable. We let

be the expectation of X with respect to the probability $P(\cdot|F)$. It follows that

(1)
$$E(X|F) = \sum_{x} xP(X = x|F).$$

Moreover, if $F_1, \ldots, F_n \in \mathcal{E}$ are such that $F_i \cap F_j = \emptyset$ whenever $i \neq j$ and $S = \bigcup_{i=1}^n F_i$ then, as one may easily verify,

(2)
$$E(X) = \sum_{i=1}^{n} E(X|F_i)P(F_i).$$

Example. Let $X_1, X_2, X_3, ...$ be a sequence of independent Bernoulli random variable with parameter p > 0. Let q = 1 - 0 and let

$$G = \min\{n : X_n \neq 0\}$$

so G is geometric with parameter p.

Proposition. We have

(3)
$$P(G = n | X_1 = 0) = P(G + 1 = n)$$
 and $P(G = n | X_1 = 1) = P(1 = n)$ for any positive integer n .

Proof. We have

$$P(G = 1|X_1 = 1) = P(X_1 = 1|X_1 = 1) = 1 = P(1 = 1)$$

and

$$P(G = 1|X_1 = 0) = P(X_1 = 1|X_1 = 0) = 0 = P(G + 1 = 1)$$

so these equations hold if n = 1. If n > 1 we have

$$P(G = n | X_1 = 1) = P(X_1 = 0, ..., X_{n-1} = 0, X_n = 1 | X_1 = 1) = 0 = P(1 = n)$$

and

$$P(G = n | X_1 = 0) = P(X_1 = 0, \dots, X_{n-1} = 0, X_n = 1 | X_1 = 1)$$

$$= \frac{P(X_1 = 0, \dots, X_{n-1} = 0, X_n = 1, X_1 = 0)}{P(X_1 = 0)}$$

$$= \frac{P(X_1 = 0) \cdots P(X_{n-1} = 0) P(X_n = 1)}{P(X_1 = 0)}$$

$$= q^{n-2}p$$

$$= P(G = n - 1)$$

$$= P(G + 1 = n).$$

We infer that

$$E(G|X_1 = 0) = E(G+1) = E(G) + 1$$
 and $E(G|X_1 = 1) = E(1) = 1$.

It follows from (2)that

$$E(G) = E(G|X_1 = 0)P(X_1 = 0) + E(G|X_1 = 1)P(X_1 = 1) = (E(G) + 1)q + 1p$$

which gives

$$E(G) = \frac{1}{p}.$$

We obtain from (3) that, for any positive integer n,

$$P(G^2 = n^2 | X_1 = 0) = P(G = n | X_1 = 0) = P(G + 1 = n | X_1 = 0) = P((G + 1)^2 = n^2 | X_1 = 0)$$

and

$$P(G^2 = n^2 | X_1 = 1) = P(G = n | X_1 = 1) = P(1 = n) = P(1 = n^2)$$

It follows from (2) that

$$E(G^2) = E(G^2|X_1 = 0)P(X_1 = 0) + E(G^1|X_1 = 1)P(X_1 = 1) = (E(G^2) + 2E(G) + 1)q + p$$

which gives

$$E(G) = \frac{1}{p}$$
 and $E(G^2) = \frac{2-p}{p^2}$.

In particular,

$$Var(G) = E(G^2) - E(G)^2 = \frac{q}{p^2}.$$