Problem. Suppose (X, Y) is uniformly distributed on the square $S=\{(x, y): 0<x<1$ and $0<y<1\}$. Ascertain wheter or not $X Y$ is continuous and if it is calculate its pdf.

Solution. Let $Z=X Y$ and let $g(x, y)=x y$ for $(x, y) \in \mathbf{R}^{2}$. We have $\nabla g(x, y)=(y, x)$ for $(x, y) \in \mathbf{R}^{2}$ so

$$
P((X, Y) \in\{(x, y): \nabla g(x, y)=(0,0)\}=P((X, Y)=(0,0))=0
$$

Thus Z is continuous and

$$
f_{Z}(z)=\int_{\{(x, y): x y=z\}} f_{(X, Y)}(x, y) /|\nabla g(x, y)| d(x, y)
$$

Inasmuch as

$$
f_{(X, Y)}(x, y)= \begin{cases}1 & \text { if }(x, y) \in S \\ 0 & \text { else }\end{cases}
$$

we see that the above integral equals 0 when $z<0$ or $1<z$ and that it equals

$$
\int_{\{(x, y) \in S: x y=z\}} 1 /|\nabla g(x, y)| d(x, y)
$$

otherwise. Now fix z with $0<z<1$ and observe that

$$
\{(x, y) \in S: x y=z\}=\{(x, z / x): z<x<1\}
$$

Since $\frac{\partial g}{\partial y}(x, y)=x$ we have

$$
f_{Z}(z)=\int_{z}^{1} 1 / x d x=-\ln (z)
$$

Putting this all together we have

$$
f_{Z}(z)= \begin{cases}-\ln (z) & \text { if } 0<z<1 \\ 0 & \text { else }\end{cases}
$$

