Counting.

Whenever X is a set we let
| X|

be the number of members of X if X is finite and we let it be oo if X is infinite. Here are some basic counting
principles.

1. Unions. Suppose X is a disjointed family of finite sets. Then

(1) Jxl= > IXL.

Xex
For example, if m is a positive integer and Xi, ..., X,, are finite sets such that
(2) X,iNnX; =0 whenever 1 <i < j<m
we can let X = {X3,..., X,,} and obtain
(3) Uil =>_1xil
i=1 i=1
Even if (2) does not hold we have the inclusion-exclusion priciple
(4) Jxil = > (-1 > | X, N0 X
i=1 j=1 1<ip <<y <m

which can be proved by induction on m.

2. Summing over the range of a function. Here is an important special case of (1). If f: X — Y, we
may set
X={{zeX:flx)=y}t:yeY}={f"{y}]:yeY}

in (1) to obtain

() X = > HeeX:flz) =y}

yey
3. Products. Suppose m is a positive integer and X7, ..., X,, are sets. Then
X1 X x Xy,
is, by definition, the set of m-tuples
(1, Tm)
such that z; € X;, i =1,...,m. We have
(6) [ X1 X x X | = [Xa| - [ X

with the understanding that 0 times oo is 0.



4. Exponentiation. If X and Y are sets we let
yX
be the set of functions whose domain equals X and whose range is a subset of Y. If X and Y are finite then

(7) Y| = |y~

5. Families of subsets. Suppose X is a set. Whenever m is a nonnegative integer not exceeding | X| we
let
X
= {A:AC X and |A] =m}.
m

That is, (i ) is the family of m-member subsets of X. Whenever my, ..., m; are nonnegative integers such

that
k
> mi=|X]|
i=1

we let

< X >_{(A1,...,Ak)ZAiCX, |A1|:mzz:1,,kandAiﬂA]:®71§z<j§k}
ml --.mk

6. Nonrepeating sequences. Whenever X is a set and m is a positive integer not exceeding | X| we let

(X)m = {(z1,...,2m) € X x -+ x X 1 2; # x; whenever 1 <i < j < m}.

m times

7. Some basic definitions of counts. We let

() G )
G 10, )l 100l

respectively, where X = {1,...,n}.

equal

Theorem. We have
n n! n n! n!
®) <m> — m!(n—m)!’ <m1~-~mk>_m1!-~-mk!’ (n)m_(n—m)!'

Proof. Let X = {1,...,n}. One proves the third formula by induction on n making use of (5) applied to
the function f : (X),, — X which sends (x1,...,2m) to &, to show that (n),, =n(n — 1),,—1. One proves
the first formula by making use of (5) and the third formula applied to the function from (X),, to (i ) which
sends (21,...,2Zm) to {x1,...,2, . To prove the second formula we induct on k making use of (5) applied

to the function
X X
I -
my -+ My mp
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which sends (Ay,---, Ag) to Ay to infer that

(o 2o) = G ) )

8. Example. Suppose A = {a,b, c,d} where a,b, c,d are distinct objects. Then

A
( ) = if nis an integer greater than 4;

A
4
A
3

= {{a7 b,c, d}}?
={{a,b,c},{a,b,d},{a,c,d}, {b,c,d}}
{{a,b},{a, c},{a,d},{b,c},{b,d},{c,d}};

N

{{a}, {0}, {c}, {d}};

—_

/\/\/\:}/‘\/—\ <
O
~— N~

I

Note that the family

is disjointed with union 24; in particular

= () () )+ () 6)

or
16=1+4+6+4+1.
Poker.
Here are some definitions.
Kinds = {2,3,4,5,6,7,8,9,10, J,Q, K, A};
Suits = {C, D, H, S};
Deck = Kinds x Suits;
PokerHands = (DZCk)
Thus

13|]4 2
|PokerHands| = (| 351| |> = <55) = 2,598, 960.

There is a natural univalent map from OnePair onto

o Kinds ~
{(k,S,T,U) : k € Kinds, S € (Su;tb), T e ( mdbg {k}> and U € Suits®}.
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Thus

OnePair| = ) (3) (132) 43 =13 <;l) (132> 43 = 1,098, 240.

keKinds

There is a natural univalent map from TwoPair onto

. oo\ 2
{(R,S,¢): R € <K1nd)7 S € <Su1ts> , ¢ € (Kinds ~ R) x Suits}.

2 2
Thus
, 4\ 2 13\ /4)\2
|TwoPair| = 1%: ) (2) 11-4 = <2> <2) 11-4 = 123,552.
Re(M)

There is a natural univalent map from ThreeOfAKind onto

3 2

o A\ 12\ o (A [12) o
| ThreeOfAKind| = ) (3)(2>4 _13<3><2>4 = 54,912.

keKinds
There is a natural map from StraightUStraighFlush onto

o Kinds ~
{(k,T,U,s) : k € Kinds, T € (Smtb) U e ( inds {k}> and s € Suits®}.

Thus

{A,2,3,4,5,6,7,8,9,10,} x Suits’.
Thus, as Straight is disjoint from StraightFlush,
|Straight| + |StraightFlush| = 10-4° = 10,240

S0
|Straight| = 11,264 — |StraightFlush|

There is a natural univalent map from FlushUStraightFlush onto (Ki?ds) X Suits. Thus, as Flush is
disjoint from StraighFlush,

13
|Flush| 4 [StraightFlush| = (5> 4 = 5,148

SO
|[Flush| = 5,148 — |StraightFlush|.
There is a natural univalent map from FullHouse onto
Suit Suit
{(S,T,U) : S € (Kinds)s, T € ( 1§S> and U € ( ‘;S>}.
Thus
4\ (/4
|FullHouse| = 1312 3)\y) = 3,744.
There is natural univalent map from FourOfAKind to
{(k,1,s) : k € Kind, [ € Kind ~ {k} and s € Suit}
so that

[FourOfAKind| = »  12-4 = 13-12-4 = 624.
reKind
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There is a natural univalent map from StraightFlush onto

{A,2,3,4,5,6,7,8,9,10} x Suits

so that
|StraightFlush| = 10-4 = 40.
It is obvious that
|RoyalFlush = 4.
Thus 1,008,240
P(OnePair) = — 2227 499
(OnePair) = 508, 960 0
123, 552
P(TwoPair) = —222 o4
(TwoPair) 5,598,960 0475
54,912
P(ThrecOfAKind) = ——22%_ ~ 0211
(ThreeOfAKind) 5,598, 960 02113
10,024 — 40
P(Straight) = ——— =~ 00392
(Straight) 5. 598, 960 0039
5,148 — 40
P(Flush) = 220"« 001
(Flush) = 5 —=o8 960 ~ ‘001966
3,744
P(FullH = 2L 00144
(FullHouse) = 50560 ~ 00
P(FourOfAKind) 624 0002401
r 110 = — ).
b 2,598,960
40
P(StraightFlush) = —— ~ 00001
(StraightFlush) 5,598,960 0000153
4
P(RoyalFlush) = ——— ~ .000001539.
(RoyalFlush) = 550~ 000001539



