
Counting.

Whenever X is a set we let
|X|

be the number of members of X if X is finite and we let it be ∞ if X is infinite. Here are some basic counting
principles.

1. Unions. Suppose X is a disjointed family of finite sets. Then

(1)
∣∣ ⋃

X
∣∣ =

∑

X∈X
|X|.

For example, if m is a positive integer and X1, . . . , Xm are finite sets such that

(2) Xi ∩Xj = ∅ whenever 1 ≤ i < j ≤ m

we can let X = {X1, . . . , Xm} and obtain

(3) |
m⋃

i=1

Xi| =
m∑

i=1

|Xi|.

Even if (2) does not hold we have the inclusion-exclusion priciple

(4) |
m⋃

i=1

Xi| =
m∑

j=1

(−1)j−1
∑

1≤i1<···<ij≤m

|Xi1 ∩ · · · ∩Xij |.

which can be proved by induction on m.

2. Summing over the range of a function. Here is an important special case of (1). If f : X → Y , we
may set

X = {{x ∈ X : f(x) = y} : y ∈ Y } = {f−1[{y}] : y ∈ Y }
in (1) to obtain

(5) |X| =
∑

y∈Y

|{x ∈ X : f(x) = y}|.

3. Products. Suppose m is a positive integer and X1, . . . , Xm are sets. Then

X1 × · · · ×Xm

is, by definition, the set of m-tuples
(x1, . . . , xm)

such that xi ∈ Xi, i = 1, . . . , m. We have

(6) |X1 × · · · ×Xm| = |X1| · · · |Xm|

with the understanding that 0 times ∞ is 0.
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4. Exponentiation. If X and Y are sets we let

Y X

be the set of functions whose domain equals X and whose range is a subset of Y . If X and Y are finite then

(7) |Y X | = |Y ||X|.

5. Families of subsets. Suppose X is a set. Whenever m is a nonnegative integer not exceeding |X| we
let (

X

m

)
= {A : A ⊂ X and |A| = m}.

That is,
(
X
m

)
is the family of m-member subsets of X. Whenever m1, . . . , mk are nonnegative integers such

that
k∑

i=1

mi = |X|

we let
(

X

m1 · · · mk

)
= {(A1, . . . , Ak) : Ai ⊂ X, |Ai| = mi i = 1, . . . , k and Ai ∩Aj = ∅, 1 ≤ i < j ≤ k}.

6. Nonrepeating sequences. Whenever X is a set and m is a positive integer not exceeding |X| we let

(X)m = {(x1, . . . , xm) ∈ X × · · · ×X︸ ︷︷ ︸
m times

: xi 6= xj whenever 1 ≤ i < j ≤ m}.

7. Some basic definitions of counts. We let
(

n

m

)
,

(
n

m1 · · · mk

)
, (n)m

equal

|
(

X

m

)
|, |

(
X

m1 · · · mk

)
|, |(X)m|,

respectively, where X = {1, . . . , n}.

Theorem. We have

(8)
(

n

m

)
=

n!
m! (n−m)!

,

(
n

m1 · · · mk

)
=

n!
m1! · · · mk!

, (n)m =
n!

(n−m)!
.

Proof. Let X = {1, . . . , n}. One proves the third formula by induction on n making use of (5) applied to
the function f : (X)m → X which sends (x1, . . . , xm) to xm to show that (n)m = n (n− 1)m−1. One proves
the first formula by making use of (5) and the third formula applied to the function from (X)m to

(
X
m

)
which

sends (x1, . . . , xm) to {x1, . . . , xm}. To prove the second formula we induct on k making use of (5) applied
to the function

f :
(

X

m1 · · · mk

)
→

(
X

mk

)
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which sends (A1, · · · , Ak) to Ak to infer that
(

n

m1 · · · mk

)
=

(
n−mk

m1 · · · mk−1

)(
n

mk

)
.

8. Example. Suppose A = {a, b, c, d} where a, b, c, d are distinct objects. Then
(

A

n

)
= ∅ if n is an integer greater than 4;

(
A

4

)
= {{a, b, c, d}};

(
A

3

)
= {{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}};

(
A

2

)
= {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}};

(
A

1

)
= {{a}, {b}, {c}, {d}};

(
A

0

)
= {∅}.

Note that the family {(
A

4

)
,

(
A

3

)
,

(
A

2

)
,

(
A

1

)
,

(
A

0

)}

is disjointed with union 2A; in particular

24 =
(

4
4

)
+

(
4
3

)
+

(
4
2

)
+

(
4
1

)
+

(
4
0

)

or
16 = 1 + 4 + 6 + 4 + 1.

Poker.

Here are some definitions.

Kinds = {2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q, K,A};

Suits = {C,D, H, S};
Deck = Kinds× Suits;

PokerHands =
(

Deck
5

)
.

Thus

|PokerHands| =
(|13||4|

5

)
=

(
52
5

)
= 2, 598, 960.

There is a natural univalent map from OnePair onto

{(k, S, T, U) : k ∈ Kinds, S ∈
(

Suits
2

)
, T ∈

(
Kinds ∼ {k}

3

)
and U ∈ Suits3}.
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Thus

|OnePair| =
∑

k∈Kinds

(
4
2

)(
12
3

)
43 = 13

(
4
2

)(
12
3

)
43 = 1, 098, 240.

There is a natural univalent map from TwoPair onto

{(R, S, c) : R ∈
(

Kind
2

)
, S ∈

(
Suits

2

)2

, c ∈ (Kinds ∼ R)× Suits}.

Thus

|TwoPair| =
∑

R∈(Kind
2 )

(
4
2

)2

11 · 4 =
(

13
2

)(
4
2

)2

11 · 4 = 123, 552.

There is a natural univalent map from ThreeOfAKind onto

{(k, T, U, s) : k ∈ Kinds, T ∈
(

Suits
3

)
, U ∈

(
Kinds ∼ {k}

2

)
and s ∈ Suits2}.

Thus

|ThreeOfAKind| =
∑

k∈Kinds

(
4
3

)(
12
2

)
42 = 13

(
4
3

)(
12
2

)
42 = 54, 912.

There is a natural map from Straight∪StraighFlush onto

{A, 2, 3, 4, 5, 6, 7, 8, 9, 10, } × Suits5.

Thus, as Straight is disjoint from StraightFlush,

|Straight|+ |StraightFlush| = 10 · 45 = 10, 240

so
|Straight| = 11, 264− |StraightFlush|

There is a natural univalent map from Flush∪StraightFlush onto
(Kinds

5

) × Suits. Thus, as Flush is
disjoint from StraighFlush,

|Flush|+ |StraightFlush| =
(

13
5

)
4 = 5, 148

so
|Flush| = 5, 148− |StraightFlush|.

There is a natural univalent map from FullHouse onto

{(S, T, U) : S ∈ (Kinds)2, T ∈
(

Suits
3

)
and U ∈

(
Suits

2

)
}.

Thus

|FullHouse| = 13 12
(

4
3

)(
4
2

)
= 3, 744.

There is natural univalent map from FourOfAKind to

{(k, l, s) : k ∈ Kind, l ∈ Kind ∼ {k} and s ∈ Suit}

so that
|FourOfAKind| =

∑

k∈Kind
12 · 4 = 13 · 12 · 4 = 624.
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There is a natural univalent map from StraightFlush onto

{A, 2, 3, 4, 5, 6, 7, 8, 9, 10} × Suits

so that
|StraightFlush| = 10 · 4 = 40.

It is obvious that
|RoyalFlush = 4.

Thus
P (OnePair) =

1, 098, 240
2, 598, 960

≈ .4226

P (TwoPair) =
123, 552

2, 598, 960
≈ .0475

P (ThreeOfAKind) =
54, 912

2, 598, 960
≈ .02113

P (Straight) =
10, 024− 40
2, 598, 960

≈ .00392

P (Flush) =
5, 148− 40
2, 598, 960

≈ .001966

P (FullHouse) =
3, 744

2, 598, 960
≈ .00144

P (FourOfAKind) =
624

2, 598, 960
≈ .0002401

P (StraightFlush) =
40

2, 598, 960
≈ .0000153

P (RoyalFlush) =
4

2, 598, 960
≈ .000001539.
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