
Conditional distributions. The continuous case.

Suppose Y is a continous random vector.

For any event E we let
FE,Y (y) = P (E ∩ {Y ≤ y}), y ∈ R.

We let
fE,Y = F ′E,Y

with the understanding that the domain of fE,Y is the set of y ∈ R such that F ′E,Y exists at y. It follows
from real variable theory that fE,Y is locally integrable. Since

m∑

i=1

FE,Y (yi)− FE,Y (yi−1) == P (E ∩ {y0 < Y ≤ ym}) ≤ P (y0 < Y ≤ ym) =
∫ ym

y0

fY (y) dy

whenever −∞ < y0 ≤ y1 ≤ · · · ≤ ym < ∞ it follows from real variable theory that

(1) FE,Y (y) =
∫ y

−∞
fE,Y (w) dw, y ∈ R.

Note that if y ∈ R then P (E|Y = y) is undefined because P (Y = y) = 0 since Y is continous. Let us
define

P (E|Y = y) =

{
limh↓0 P (E|y < Y ≤ y + h) if fY (y) > 0 and this limit exists,

0 if fY (y) = 0.

Suppose y ∈ R and fY (y) > 0 and fE,Y (y) = F ′E,Y (y) exists. Then for h > 0 we have

P (E|y < Y ≤ y + h) =
P (E ∩ {y < Y ≤ y + h})

P (y < Y ≤ y + h)

=
FE,Y (y + h)− FE,Y (y)

h

h

P (Y ≤ y + h)− P (Y ≤ y)

→ fE,Y (y)
fY (y)

.

Thus,

(2) P (E|Y = y) =

{ fE,Y (y)
fY (y) if fY (y) > 0 and fE,Y (y) is defined,

0 if fY (y) = 0.

It follows from (1) and (2) that

(3) P (E ∩ {Y ≤ y}) =
∫ y

∞
P (E|Y = y)fY (w) dw whenever y ∈ R.

We shall not make this precise, but P (·|Y = y) behaves like a probability for essentially all y ∈ R.

Suppose X is a random variable such that (X, Y ) is a continuous random vector.
For (x, y) ∈ R2 we let

FX|Y (x|y) = P ({X ≤ x}|Y = y)

and we let
fX|Y (x|y) =

d

dx
FX|Y (x|y).
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We have

f{X≤x},Y (y) = lim
h↓0

P (X ≤ x, y < Y ≤ y + h)
h

= lim
h↓0

1
h

∫ y+h

y

(∫ x

−∞
fX,Y (v, w) dv

)
dw

=
∫ x

−∞
fX,Y (v, y) dv

provided

(4) R 3 y′ 7→
∫ y′

−∞

(∫ x

−∞
fX,Y (v, w) dv

)
dw is continuous at y.

Thus, by (2),

(5) FX|Y (x|y) =





∫ x

−∞
fX,Y (v,y) dv

fY (y) if fY (y) > 0 and (4) holds,

0 if fY (y) = 0

If, in addition to (4), R 3 v 7→ fX,Y (v, y) is continuous at x we find that

(6) fX|Y (x|y) =
d

dx
FX|Y (x|y) =

{ fX,Y (x,y)
fY (y) if fY (y) > 0,

0 if fY (y) = 0.

It follows that
FX|Y (x|y) =

∫ x

−∞
fX|Y (w|y) dw whenever (4) holds.

It seems natural to define

E(X|Y = y) =
∫ ∞

−∞
xfX|Y (x|y) dx whenever (4) holds;

had we made precise our previously made assertion that E(·|Y = y) behave like a probability this would be
a theorem and not a definition. It is true that

E(X|Y = y) = lim
h↓0

E(X|y < Y ≤ y + h);

we leave the proof as an exercise for the reader.

We let
E(X|Y ),

the conditional expectation of X given Y , be the random variable such that

E(X|Y ) =

{
E(X|Y = y) if Y = y and fY (y) > 0,

0 else.
We have the fundamental formula

(7) E(E(X|Y )) = E(X)

which follows because
E(E(X|Y )) =

∫ ∞

−∞
E(X|Y = y)fY (y) dy

=
∫ ∞

−∞

(∫ ∞

−∞
xfX|Y (x|y) dx

)
fY (y) dy

=
∫ ∫

R2
xfX,Y (x, y) dxdy

= E(X).
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