An explanation of Example 5c on p. 279 .

Suppose (X, Y) is a random vector such that
(1) Y is discrete and
(2) there is a function

$$
\operatorname{rng} X \times\left\{y \in \mathbf{r n g} Y: p_{Y}(y)>0\right\} \ni(x, y) \mapsto f_{X \mid Y}(x \mid y) \in \mathbf{R}
$$

such that

$$
P(a<X \leq b \mid Y=y)=\int_{a}^{b} f_{X \mid Y}(x \mid y) d x \quad \text { whenever }-\infty<a<b<\infty \text { and } p_{Y}(y)>0
$$

It follows that X is continuous, that

$$
f_{X}(x)=\sum_{p_{Y}(y)>0} f_{X \mid Y}(x \mid y) p_{Y}(y)
$$

and that

$$
f_{X \mid Y}(x \mid y)=\frac{\lim _{h \downarrow 0} \frac{1}{2 h} P(x-h \leq X \leq x+h, Y=y)}{P(Y=y)}
$$

Moreover, if we set

$$
p_{Y \mid X}(y \mid x)=\lim _{h \downarrow 0} \frac{P(x-h \leq X \leq x+h, Y=y)}{P(x-h \leq X \leq x+h)}
$$

then

$$
f_{X \mid Y}(x \mid y) p_{Y}(y)=p_{Y \mid X}(y \mid x) f_{X}(x) \quad \text { whenever } p_{Y}(y)>0
$$

Here is the mass function from p.296. n.2.(a) that you need to do p.300. n.29.

X_{1}	X_{2}	$p_{X_{1}, X_{2}}$
0	0	$\frac{3}{8} \frac{2}{7}=\frac{3}{28}$
0	1	$\frac{3}{8} \frac{5}{7}=\frac{15}{56}$
1	0	$\frac{3}{8} \frac{3}{7}=\frac{9}{56}$
1	1	$\frac{5}{8} \frac{4}{7}=\frac{5}{14}$

