A very useful formula.

Let (S, \mathcal{E}, P) be a probability space.

Proposition. Suppose
(i) F_{1}, \ldots, F_{n} are disjoint events with positive probability and

$$
P\left(F_{i}\right)=P\left(F_{j}\right) \quad \text { whenever } i, j \in\{1, \ldots, n\}
$$

(ii) E is an event and

$$
P\left(E \mid F_{i}\right)=P\left(E \mid F_{j}\right) \quad \text { whenever } i, j \in\{1, \ldots, n\} .
$$

Then

$$
P\left(E \mid \cup_{i=1}^{n} F_{i}\right)=P\left(E \mid F_{j}\right) \quad \text { whenever } j \in\{1, \ldots, n\} .
$$

Proof. Suppose $j \in\{1, \ldots, n\}$. We have

$$
P\left(E \cap\left(\cup_{i=1}^{n} F_{i}\right)\right)=P\left(\cup_{i=1}^{n}\left(E \cap F_{i}\right)\right)=\sum_{i=1}^{n} P\left(E \cap F_{i}\right)=\sum_{i=1}^{n} P\left(E \mid F_{i}\right) P\left(F_{i}\right)=n P\left(E \mid F_{j}\right) P\left(F_{j}\right)
$$

and

$$
P\left(\cup_{i=1}^{n} F_{i}\right)=\sum_{i=1}^{n} P\left(F_{i}\right)=n P\left(F_{j}\right)
$$

from which the desired equation immediately follows.

Example. Page 66, n. 2c. In bridge, what is the probability East gets 3 spades given that North and South have 8 spades between them.

Solution. Let E be the event that East gets 3 spades and let F be the event that North and South have 8 spades between them. Let

$$
S=\left(\begin{array}{c}
\text { Cards } \\
13 \\
13 \\
13 \\
13
\end{array}\right)
$$

Evidently

$$
P(\{s\})=P(\{t\}) \quad \text { and } \quad P(E \mid\{s\})=P(E \mid\{t\}) \quad \text { whenever } s \in F
$$

Thus, by the preceding Proposition,

$$
P(E \mid F)=P(E \mid\{s\}) \quad \text { whenever } s \in F
$$

Let $s \in F$. I hope it's clear that

$$
P(E \mid\{s\})=\frac{\binom{5}{3}\binom{21}{10}}{\binom{26}{13}} \simeq .339
$$

