
The central limit theorem.

To prove the central limit theorem we make use of the Fourier transform which is one of the most useful
tools in pure and applied analysis and is therefore interesting in its own right.

We say a f : R → C is summable if

∫
|f(x)| dx < ∞.

For any such function we define its Fourier transform

f̂ : R → C

by setting

f̂(t) =
∫

e−itx f(x) dx for t ∈ R.

Note that f 7→ f̂ is linear.

For a ∈ R set τa(x) = x + a. Then

̂f ◦ τa(t) = eita f̂(t).

Indeed,
̂f ◦ τa(t) =

∫
e−itx f(x + a) dx

=
∫

e−it(y−a)f(y) dy substitute y − a for x

= eita

∫
e−ity f(y) dy

= eita f̂(t).

As a corollary we obtain that if f ′ is summable then

f̂ ′(t) = lim
h→0

̂f ◦ τh − f

h
(t) = lim

h→0

eith − 1
h

f̂(t) = it f̂(t).

For c > 0 set δc(x) = cx. Then

̂f ◦ δc =
1
c

f̂ ◦ δ 1
c
.

Indeed,
̂f ◦ δc(t) =

∫
e−itx f(cx) dx

=
∫

e−it y
c f(y)

dy

c
substitute y

c for x

=
1
c

f̂ ◦ δ 1
c
(t).

If f and g are summable then so is f ∗ g and

̂f ∗ g = f̂ ĝ.
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Indeed,
̂f ∗ g(t) =

∫
e−itx

∫
f(x − y) g(y) dy dx

=
∫ ∫

e−it(x−y)f(x − y) e−ityg(y) dx dy

=
∫ ∫

e−itwf(x) dw e−ityg(y) dy for each y substitute w + y for x

= f̂(t) ĝ(t).

The Fourier inversion formula. Suppose f is twice differentiable and each of f ,f ′ and f ′′ are summable.
Then

f(x) =
1
2π

∫
eitxf̂(t) dt for each t ∈ R.

Remark. You don’t need to assume this much, but the proof gets more technical.

Proof. It will suffice to prove that

(1) f(0) =
1
2π

∫
f̂(t) dt

for all f satisfying the hypotheses because if this is so and x ∈ R we may set g = f ◦ τx and observed that

f(x) = g(0) =
∫

ĝ(t) dt =
1
2π

∫
eitxf̂(t) dt.

To prove (1) we will make use of the

Lemma.

lim
R↑∞

∫ R

0

sinx

x
dx =

π

2
.

Proof. Note that

e−tx sin x =
d

dx

e−tx

t2 + 1
(cos x + t sin x).

We have ∫ R

0

sin x

x
dx =

∫ R

0

sin x

∫ ∞

0

e−txdt dx

=
∫ ∞

0

∫ R

0

e−tx sin x dx dt

=
∫ ∞

0

1
t2 + 1

(1 − e−tR (cos R + t sinR)) dt

→ π

2
as R ↑ ∞.

We have f(x) = f(0) + xq(x) where we have set q(x) =
∫ 1

0
f(λx)dλ. Let

I(R) =
∫

sin R x

x
f(x) dx.
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Then ∫
f̂(t) dt = lim

R→∞

∫ R

−R

∫
e−itxf(x) dx dt =

∫ ∫ R

−R

e−itx dt f(x) dx = I(R).

Now
I(R) = I1(R, ε) + I2(R, ε) + I3(R, ε)

for any ε > 0 where we have set

I1(R, ε) =
∫

|x|>ε

sin Rx
f(x)

x
dx,

I2(R, ε) = f(0)
∫

|x|≤ε

sin Rx

x
dx and

I3(R, ε) =
∫

|x|≤ε

sin Rx q(x) dx.

Approximating x 7→ f(x)
x by step functions on |x| > ε we find that limR↑∞ I1(R, ε) = 0 for each ε > 0.

Substituing w
R for x we find that

I2(R, ε) = 2 f(0)
∫ Rε

0

sin w

w
dw.

Moreover,
|I3(R, ε) ≤ 2 ε sup{|f ′(x)| : |x| ≤ ε}.

It should now be clear that by making R large we can make I(R) as close as we like to

2 f(0) lim
R↑∞

∫ R

0

sinw

w
dw = π f(0).

The Gaussian. Set
g(x) =

1
I

e
−x2

2 for x ∈ R

where we have set
I =

∫
e
−x2

2 dx.

This function is called the Gaussian; let us compute its Fourier transform. We have

d

dt
ĝ(t) =

i

I

∫
e−itx d(e

−x2

2 ) =
t

I

∫
e−itx e

−x2

2 dx = −t ĝ(t)

from which we infer that
ĝ(t) = ĝ(0) e

−t2

2 = I g(t).

From the Fourier inversion formula we obtain

1
I

= g(0) =
1
2π

∫
ĝ(t) dt =

I

2π
,

which implies that
I =

√
2π

and that
ĝ(t) =

√
2π g(t).
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The characteristic function of a random variable. Suppose X is a random variable for which
E(|X|) < ∞. We set

χX(t) = E(eitX) for t ∈ R

and call this function the characteristic function of X. If X is continuous we have

χX(t) =
∫

eitx fX(x) dx = f̂X(−t).

If X is discrete, the characteristic function has a simple Fourier analytic interpretation, but we shall not go
into that.

Now suppose that
E(|X|j) < ∞ for j = 1, 2, 3.

From Taylor’s theorem we obtain for any t 6= 0 that

χX(t) = χX(0) + χ′X(0) t + χ′′X(0)
t2

2
+ χ′′′X(s)

t3

6
for some s ∈ (−|t|, |t|). This gives

|χX(t) − (1 + t E(X) +
t2

2
E(X2))| ≤ |t|3

6
E(|X|3).

Suppose c > 0. We have

fcX(y) = lim
h↓0

P (y − h < cX < y + h)
2 h

= lim
h↓0

1
c

P (y−h
c < cX < y+h

c )
2 h
c

=
1
c

fX(
y

c
).

This implies that

χcX(t) = f̂cX(−t) =
̂1

c
fX ◦ δ 1

c
(−t) =

1
c

c f̂X ◦ δc(−t) = f̂X(−ct) = χX(ct).

The proof of the central limit theorem. Let X1, X2, . . . , Xn, . . . be a sequence of independent identically
distributed random variables, each having mean 0 and variance 1. We will leave it to the reader to spell
out the hypotheses on the Xi’s which will allow us to make use of the foregoing. Let χ be the common
characteristic function of these variables. For each positive integer n let Sn =

∑n
i=1 Xi. We have

χ Sn√
n

(t) = χSn(
t√
n

= χ(
t√
n

)n = (1 − t2

2 n
+ θ(t)

t3

6 n3/2
E(|X|3))n → e

t2
2

where |θ(t)| ≤ 1 for each t. Thus if −∞ < a < b < ∞ we have

P (a <
Sn√

n
< b) =

∫ b

a

f Sn√
n

(x) dx

=
1
2π

∫ b

a

∫
eitxf̂ Sn√

n

(t) dt dx

=
1
2π

∫ b

a

∫
eitxχ(

−t√
n

)n dt dx

→ 1
2π

∫ b

a

∫
eitxe

−t2

2 dt dx as n →∞

=
1√
2π

∫ b

a

ĝ(−x) dx

=
∫ b

a

g(−x) dx

=
∫ b

a

g(x) dx.
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