How many ways can you put m things in n boxes?

The answer is

$$
\binom{n-1+m}{m}
$$

In order to see this, let

$$
S(n, m)
$$

be the set of n-tuples $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of nonnegative integers such that

$$
\sum_{i=1}^{n} \alpha_{i}=m
$$

I hope it's clear that our assertion is equivalent to the following
Theorem.

$$
|S(n, m)|=\binom{n-1+m}{m}
$$

Proof. Induct on $n+m$. If $n+m=1$ it's obvious so let us assume that $n+m>1$. Note that

$$
\left|\left\{\alpha \in S(n, m): \alpha_{n}=0\right\}\right|=|S(n-1, m)|
$$

and that

$$
\left|\left\{\alpha \in S(n, m): \alpha_{n}>0\right\}\right|=|S(n, m-1)|
$$

The first of these assertions is obvious and the second follows by associating to each $\alpha \in\{\alpha \in S(n, m)$: $\left.\alpha_{n}>0\right\}$ the element

$$
\left(\alpha_{1}, \ldots, \alpha_{n}-1\right) \in S(n, m-1)
$$

Thus

$$
|S(n, m)|=|S(n-1, m)|+|S(n, m-1)|=\binom{n-2+m}{m}+\binom{n-1+m-1}{m-1}=\binom{n-1+m}{m}
$$

The second of these equations is the inductive step and the third is something we have already shown.
Remark. The form of the answer suggests yet another proof.

