Definition. Suppose $0 \leq p \leq 1$ and n is a positive integer. We say a random variable X has the binomial distribution

$$
b(n, p)
$$

(see p.63) if

$$
p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad \text { for } i=0,1, \ldots, n
$$

Discussion. Consider an experiment \mathcal{E} which has two outcomes: success with probability p and failure with probability $1-p$. Let n be a positive integer. Let \mathcal{E}_{n} be the experiment obtained by performing $\mathcal{E} n$ times in succession. A sample space for \mathcal{E}_{n} can be

$$
S=\{s: s \subset\{0,1, \ldots, n\}\}
$$

if we think of $s \in S$ as being the set of thoses indices $i=1, \ldots, n$ which correspond to success. For each $i=1, \ldots, n$ we have random variables

$$
X_{i}: S \longrightarrow\{0,1\}
$$

defined by

$$
X_{i}(s)=\left\{\begin{array}{ll}
1 & \text { if } i \in s \\
0 & \text { else }
\end{array} \quad \text { for } s \in S\right.
$$

Thus $P\left(X_{i}=1\right)=p$ and $P\left(X_{i}=0\right)=1-p$ and the events

$$
\left\{X_{i}=a_{i}\right\}, \quad i=1, \ldots, n
$$

are independent no matter what the a_{i} 's are. Let

$$
X=\sum_{i=1}^{n} X_{i}
$$

Note that

$$
X(s)=|s| \quad \text { for } s \in S
$$

which is to say that X is the number of successes in n trials. For any $s \in S$ we have

$$
\{s\}=\bigcap_{i \in s}\left\{X_{i}=1\right\} \cap \bigcap_{i \notin S}\left\{X_{i}=0\right\}
$$

so, by independence,

$$
P(\{s\})=p^{|s|}(1-p)^{n-|s|}=p^{X(s)}(1-p)^{n-X(s)}
$$

for $s \in S$. Thus, for any $k \in\{0,1, \ldots, n\}$,

$$
P(X=k)=\sum_{\{s \in S:|s|=k\}} p^{k}(1-p)^{n-k}=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Thus X has the binomial distribution $b(n, p)$.

