Bayes' Rule. Suppose B_{1}, \ldots, B_{n} are disjoint events each of which with positive probability and whose union is the entire sample space. Then for any event A and any $j \in\{1, \ldots, n\}$ we have

$$
P\left(B_{i} \mid A\right)=\frac{P\left(A \mid B_{j}\right) P\left(B_{j}\right)}{\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)}
$$

Proof. We have already shown that the denominator of the right hand side equals $P(A)$. Then numerator equals $P\left(A \cap B_{i}\right)$.

So you don't get prize for proving Bayes' Rule. It's interesting because of the way it can be applied.

Example 3d, page 72. A laboratory blood test is 95 percent effective in detecting a certain disease when it is, in fact, present. However, the test also yields a "false positive" result for 1 percent of the healthy persons tested. If .5 percent of the population actually has the disease, what is the probability that a person has the disease given that the test is positive?

Solution. Let B_{1} be the event that a person has the disease, let B_{2} be the event that a person does not have the disease and let A be the event that the test result is positive. Then

$$
\begin{gathered}
P\left(B_{1}\right)=.005, \quad P\left(B_{2}\right)=1-P\left(B_{1}\right)=.995 \\
P\left(A \mid B_{1}\right)=.95, \quad P\left(A \mid B_{2}\right)=.01
\end{gathered}
$$

so

$$
P\left(B_{1} \mid A\right)=\frac{P\left(A \mid B_{1}\right) P\left(B_{1}\right)}{P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right)}=\frac{(.95)(.005)}{(.95)(.005)+(.01)(.995)}=\frac{95}{294} \simeq .323
$$

More generally, we could set

$$
p=P\left(B_{1}\right), \quad R=\frac{P\left(A \mid B_{2}\right)}{P\left(A \mid B_{1}\right)}
$$

and obtain

$$
P\left(B_{1} \mid A\right)=\frac{p}{p+R(1-p)}
$$

Think of R as badness ratio; the higher R the worse the test is. The badness ration of this test is

$$
\frac{.01}{.95}=.0105
$$

