1. Lines and planes in \mathbb{R}^n .

Definition 1.1. We say a subset *L* of \mathbb{R}^n is a **line** if there are $\mathbf{r}_0, \mathbf{v} \in \mathbb{R}^n$ such that $\mathbf{v} \neq \mathbf{0}$ and

$$L = \{\mathbf{r}(t) : t \in \mathbb{R}\}$$

where we have set

(1) $\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v} \quad \text{for } t \in \mathbb{R}.$

Remark 1.1. Thus

 $\mathbf{r}:\mathbb{R}
ightarrow\mathbb{R}^{n}$

and

$$\mathbf{rng} \, \mathbf{r} = L.$$

The function \mathbf{r} is called a **parameterization of** L**.** It is obviously **univalent**; this means that

$$t_1, t_2 \in \mathbb{R}$$
 and $\mathbf{r}(t_1) = \mathbf{r}(t_2) \Rightarrow t_1 = t_2$.

Theorem 1.1. Suppose

- (i) L is a line in \mathbb{R}^n ;
- (ii) $\mathbf{a}, \mathbf{b} \in L$ and $\mathbf{a} \neq \mathbf{b}$;
- (iii) \mathbf{r} is as in (1) with $\mathbf{v} = \mathbf{b} \mathbf{a}$.

Then

- (iv) \mathbf{r} is a parameterization of L;
- (v) all parameterizations of L arise in this way;
- (vi) if K is a line in \mathbb{R}^n and $\mathbf{a}, \mathbf{b} \in K$ then K = L.

Proof. Once you understand what all this means it's obvious.

Definition 1.2. We say a subset P of \mathbb{R}^n is a **plane** if there are $\mathbf{r}_0, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ such that $\mathbf{v} \not\parallel \mathbf{w}$ and

$$P = \{\mathbf{r}(t, u) : (t, u) \in \mathbb{R}^2\}$$

where we have set

(2)
$$\mathbf{r}(t,u) = \mathbf{r}_0 + t\mathbf{v} + u\mathbf{w} \quad \text{for } (t,u) \in \mathbb{R}^2.$$

Remark 1.2. Thus

$$\mathbf{r}: \mathbb{R}^2 \to \mathbb{R}^n$$

and

$$\mathbf{rng}\,\mathbf{r}=P.$$

The function \mathbf{r} is called a **parameterization of** P**.** It is obviously univalent; this means that

$$(t_1, u_1), (t_2, u_2) \in \mathbb{R}^2$$
 and $\mathbf{r}(t_1, u_1) = \mathbf{r}(t_2, u_2) \Rightarrow (t_1, u_1) = (t_2, u_2)$

Definition 1.3. We say a set S of points in \mathbb{R}^n is **collinear** if there is a line L in \mathbb{R}^n such that $S \subset L$. We say S is **noncollinear** if S is not **collinear**. Note that a noncollinear set has at least three points.

Remark 1.3. Suppose $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^3$. Then $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ is noncollinear if and only if

$$0 \neq (\mathbf{b} - \mathbf{a}) \times (\mathbf{c} - \mathbf{a})$$

= $(\mathbf{b} - \mathbf{a}) \times \mathbf{c} - (\mathbf{b} - \mathbf{a}) \times \mathbf{a}$
= $\mathbf{b} \times \mathbf{c} - \mathbf{a} \times \mathbf{c} - \mathbf{b} \times \mathbf{a} + \mathbf{a} \times \mathbf{a}$
= $\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}$.

Theorem 1.2. Suppose

(i) P is a plane in \mathbb{R}^n ;

- (ii) $\mathbf{a}, \mathbf{b}, \mathbf{c} \in P$ and $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ is noncollinear;
- (iii) \mathbf{r} is as in (2) with $\mathbf{v} = \mathbf{b} \mathbf{a}$ and $\mathbf{w} = \mathbf{c} \mathbf{a}$.

Then

- (iv) \mathbf{r} is a parameterization of P;
- (v) all parameterizations of P arise in this way;
- (vi) if O is a plane in \mathbb{R}^n and $\mathbf{a}, \mathbf{b}, \mathbf{c} \in O$ then O = P.

Proof. Once you understand what all this means it's obvious.

Remark 1.4. Can you see what how to define higher dimensional analogues of lines and planes?

Definition 1.4. Whenever $S \subset \mathbb{R}^n$ and $\mathbf{a} \in \mathbb{R}^n$ we let

$$\mathbf{a} + S = \{\mathbf{a} + \mathbf{x} : \mathbf{x} \in S\}$$

and call this set the **translation of** S by **a**. We say a pair of lines or planes in \mathbb{R}^N are **parallel** if one is a translation of the other.

Definition 1.5. Suppose S is a line or a plane in \mathbb{R}^n . We let

$$S^{\perp} = \{ \mathbf{n} \in \mathbb{R}^n : (\mathbf{x} - \mathbf{y}) \bullet \mathbf{n} = 0 \text{ whenever } \mathbf{x}, \mathbf{y} \in S. \}$$

We say a vector $\mathbf{n} \in S^{\perp}$ is **normal to** S. Note the following:

- (i) $0 \in S^{\perp}$;
- (ii) if $c \in \mathbb{R}$ and $\mathbf{x} \in S^{\perp}$ then $c\mathbf{x} \in S^{\perp}$.

(iii) if
$$\mathbf{x}, \mathbf{y} \in S^{\perp}$$
 then $\mathbf{x} + \mathbf{y} \in S^{\perp}$

A set with these three properties is called a **linear subspace of** \mathbb{R}^n . Note that a line or a plane is a linear subspace if and only if it contains **0**.

Theorem 1.3. Two lines or planes in \mathbb{R}^n are parallel if and only if they have the same normal space.

Proof. Exercise for the reader.

Theorem 1.4. Suppose L is a line in \mathbb{R}^2 , **r** is as in (1) and $\mathbf{n} = \mathbf{v}^{\perp}$. Then

$$L = \{ \mathbf{x} \in \mathbb{R}^2 : (\mathbf{x} - \mathbf{a}) \bullet \mathbf{n} = 0 \}$$

and

$$L^{\perp} = \{t\mathbf{n} : t \in \mathbb{R}\}:$$

in particular, L^{\perp} is a line in \mathbb{R}^2 .

Moreover, if $\mathbf{n} \in \mathbb{R}^2$, $\mathbf{n} \neq \mathbf{0}$, $c \in \mathbb{R}$ and

$$L = \{ \mathbf{x} \in \mathbb{R}^2 : \mathbf{x} \bullet \mathbf{n} = c \}$$

then L is a line in \mathbb{R}^2 ; **n** is a normal to L; $c\mathbf{n}/|\mathbf{n}|^2 \in L$ and is the closest point in L to **0**; and $|c|/|\mathbf{n}|$ is the distance from **0** to L.

3

Proof. Not hard at all. We'll do it in class.

Theorem 1.5. Suppose P is a plane in \mathbb{R}^3 , **r** is as in (2) and $\mathbf{n} = \mathbf{v} \times \mathbf{w}$. Then

$$P = \{ \mathbf{x} \in \mathbb{R}^3 : (\mathbf{x} - \mathbf{a}) \bullet \mathbf{n} = 0 \}$$

and

$$P^{\perp} = \{ t\mathbf{n} : t \in \mathbb{R} \};$$

in particular, P^{\perp} is a line in \mathbb{R}^3 .

Moreover, if $\mathbf{n} \in \mathbb{R}^3$, $\mathbf{n} \neq \mathbf{0}$, $c \in \mathbb{R}$ and

$$P = \{ \mathbf{x} \in \mathbb{R}^2 : \mathbf{x} \bullet \mathbf{n} = c \}$$

then P is a plane in \mathbb{R}^3 ; **n** is a normal to P; $c\mathbf{n}/|\mathbf{n}|^2 \in P$ and is the closest point in P to **0**; and $|c|/|\mathbf{n}|$ is the distance from **0** to P.

Proof. Not hard at all. We'll do it in class.

Theorem 1.6. Suppose L is a line in \mathbb{R}^3 and **r** is as in (1). Then

$$L^{\perp} = \{ \mathbf{x} \in \mathbb{R}^3 : \mathbf{x} \bullet \mathbf{v} = 0 \};$$

in particular, L^{\perp} is a plane in \mathbb{R}^3 .

Moreover, if $\mathbf{n}_i \in L^{\perp}$, $i = 1, 2, \mathbf{n}_1 \not| \mathbf{n}_2$ and

$$P_i = \{ \mathbf{x} \in \mathbb{R}^3 : (\mathbf{x} - \mathbf{a}) \bullet \mathbf{n}_i = 0 \}, \quad i = 1, 2,$$

then P_1 and P_2 are planes in \mathbb{R}^3 with normal \mathbf{v} and

$$L = P_1 \cap P_2.$$

Proof. Not hard at all. We'll do it in class.

Remark 1.5. Suppose

(3) $\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v}, \quad t \in \mathbb{R},$

parameterizes the line L in \mathbb{R}^3 . Let

 x_0, y_0, z_0 and a, b, c

be scalars such that

$$\mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle$$
 and $\mathbf{v} = \langle a, b, c \rangle$.

Let

 $x: \mathbb{R} \to \mathbb{R}, \quad y: \mathbb{R} \to \mathbb{R}, \quad z: \mathbb{R} \to \mathbb{R}$

be such that

$$\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle \quad \text{for } t \in \mathbb{R}.$$

Then (3) amounts to

$$x(t) = x_0 + at$$
, $y(t) = y_0 + bt$, $z(t) = z_0 + at$

which, when each equation is solved for t, amounts to

$$\frac{x(t) - x_0}{a} = \frac{y(t) - y_0}{b} = \frac{z(t) - z_0}{c}$$

provided none of a, b, c are zero.

Remark 1.6. Suppose a, b, c are scalars, $\langle a, b \rangle \neq \langle 0, 0 \rangle$,

$$P = \{(x, y) \in \mathbb{R}^2 : ax + by = c\}.$$

Then P is a line with normal $\langle a, b \rangle$ at distance

$$\frac{|c|}{\sqrt{a^2 + b^2}}$$

to the origin.

The point here is that if $\mathbf{n} = \langle a, b \rangle$ then

$$P = \{ \mathbf{x} \bullet \mathbf{n} = c \}.$$

Remark 1.7. Suppose a, b, c, d are scalars, $\langle a, b, c \rangle \neq \langle 0, 0, 0 \rangle$, $P = \{(x, y, z) \in \mathbb{R}^3 : ax + by + cz = d\}.$

Then P is a plane with normal $\langle a, b, c \rangle$ at distance

$$\frac{|d|}{\sqrt{a^2 + b^2 + c^2}}$$

to the origin.

The point here is that if $\mathbf{n} = \langle a, b, c \rangle$ then

$$P = \{\mathbf{x} \bullet \mathbf{n} = d\}.$$