1. Lines and planes in \mathbb{R}^{n}.

Definition 1.1. We say a subset L of \mathbb{R}^{n} is a line if there are $\mathbf{r}_{0}, \mathbf{v} \in \mathbb{R}^{n}$ such that $\mathbf{v} \neq 0$ and

$$
L=\{\mathbf{r}(t): t \in \mathbb{R}\}
$$

where we have set

$$
\begin{equation*}
\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v} \quad \text { for } t \in \mathbb{R} \tag{1}
\end{equation*}
$$

Remark 1.1. Thus

$$
\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{n}
$$

and

$$
\mathbf{r n g} \mathbf{r}=L
$$

The function \mathbf{r} is called a parameterization of L. It is obviously univalent; this means that

$$
t_{1}, t_{2} \in \mathbb{R} \text { and } \mathbf{r}\left(t_{1}\right)=\mathbf{r}\left(t_{2}\right) \Rightarrow t_{1}=t_{2}
$$

Theorem 1.1. Suppose
(i) L is a line in \mathbb{R}^{n};
(ii) $\mathbf{a}, \mathbf{b} \in L$ and $\mathbf{a} \neq \mathbf{b}$;
(iii) \mathbf{r} is as in (1) with $\mathbf{v}=\mathbf{b}-\mathbf{a}$.

Then
(iv) \mathbf{r} is a parameterization of L;
(v) all parameterizations of L arise in this way;
(vi) if K is a line in \mathbb{R}^{n} and $\mathbf{a}, \mathbf{b} \in K$ then $K=L$.

Proof. Once you understand what all this means it's obvious.
Definition 1.2. We say a subset P of \mathbb{R}^{n} is a plane if there are $\mathbf{r}_{0}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ such that $\mathbf{v} \nmid \mathbf{w}$ and

$$
P=\left\{\mathbf{r}(t, u):(t, u) \in \mathbb{R}^{2}\right\}
$$

where we have set

$$
\begin{equation*}
\mathbf{r}(t, u)=\mathbf{r}_{0}+t \mathbf{v}+u \mathbf{w} \quad \text { for }(t, u) \in \mathbb{R}^{2} \tag{2}
\end{equation*}
$$

Remark 1.2. Thus

$$
\mathbf{r}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{n}
$$

and

$$
\mathbf{r n g} \mathbf{r}=P
$$

The function \mathbf{r} is called a parameterization of P. It is obviously univalent; this means that

$$
\left(t_{1}, u_{1}\right),\left(t_{2}, u_{2}\right) \in \mathbb{R}^{2} \text { and } \mathbf{r}\left(t_{1}, u_{1}\right)=\mathbf{r}\left(t_{2}, u_{2}\right) \Rightarrow\left(t_{1}, u_{1}\right)=\left(t_{2}, u_{2}\right)
$$

Definition 1.3. We say a set S of points in \mathbb{R}^{n} is collinear if there is a line L in \mathbb{R}^{n} such that $S \subset L$. We say S is noncollinear if S is not collinear. Note that a noncollinear set has at least three points.

Remark 1.3. Suppose $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^{3}$. Then $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ is noncollinear if and only if

$$
\begin{aligned}
\mathbf{0} & \neq(\mathbf{b}-\mathbf{a}) \times(\mathbf{c}-\mathbf{a}) \\
& =(\mathbf{b}-\mathbf{a}) \times \mathbf{c}-(\mathbf{b}-\mathbf{a}) \times \mathbf{a} \\
& =\mathbf{b} \times \mathbf{c}-\mathbf{a} \times \mathbf{c}-\mathbf{b} \times \mathbf{a}+\mathbf{a} \times \mathbf{a} \\
& =\mathbf{a} \times \mathbf{b}+\mathbf{b} \times \mathbf{c}+\mathbf{c} \times \mathbf{a} .
\end{aligned}
$$

Theorem 1.2. Suppose
(i) P is a plane in \mathbb{R}^{n};
(ii) $\mathbf{a}, \mathbf{b}, \mathbf{c} \in P$ and $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ is noncollinear;
(iii) \mathbf{r} is as in (2) with $\mathbf{v}=\mathbf{b}-\mathbf{a}$ and $\mathbf{w}=\mathbf{c}-\mathbf{a}$.

Then
(iv) \mathbf{r} is a parameterization of P;
(v) all parameterizations of P arise in this way;
(vi) if O is a plane in \mathbb{R}^{n} and $\mathbf{a}, \mathbf{b}, \mathbf{c} \in O$ then $O=P$.

Proof. Once you understand what all this means it's obvious.
Remark 1.4. Can you see what how to define higher dimensional analogues of lines and planes?
Definition 1.4. Whenever $S \subset \mathbb{R}^{n}$ and $\mathbf{a} \in \mathbb{R}^{n}$ we let

$$
\mathbf{a}+S=\{\mathbf{a}+\mathbf{x}: \mathbf{x} \in S\}
$$

and call this set the translation of S by a. We say a pair of lines or planes in \mathbb{R}^{N} are parallel if one is a translation of the other.

Definition 1.5. Suppose S is a line or a plane in \mathbb{R}^{n}. We let

$$
S^{\perp}=\left\{\mathbf{n} \in \mathbb{R}^{n}:(\mathbf{x}-\mathbf{y}) \bullet \mathbf{n}=0 \text { whenever } \mathbf{x}, \mathbf{y} \in S\right.
$$

We say a vector $\mathbf{n} \in S^{\perp}$ is normal to S. Note the following:
(i) $\mathbf{0} \in S^{\perp}$;
(ii) if $c \in \mathbb{R}$ and $\mathbf{x} \in S^{\perp}$ then $c \mathbf{x} \in S^{\perp}$.
(iii) if $\mathbf{x}, \mathbf{y} \in S^{\perp}$ then $\mathbf{x}+\mathbf{y} \in S^{\perp}$.

A set with these three properties is called a linear subspace of \mathbb{R}^{n}. Note that a line or a plane is a linear subspace if and only if it contains $\mathbf{0}$.
Theorem 1.3. Two lines or planes in \mathbb{R}^{n} are parallel if and only if they have the same normal space.

Proof. Exercise for the reader.
Theorem 1.4. Suppose L is a line in $\mathbb{R}^{2}, \mathbf{r}$ is as in (1) and $\mathbf{n}=\mathbf{v}^{\perp}$. Then

$$
L=\left\{\mathbf{x} \in \mathbb{R}^{2}:(\mathbf{x}-\mathbf{a}) \bullet \mathbf{n}=0\right\}
$$

and

$$
L^{\perp}=\{t \mathbf{n}: t \in \mathbb{R}\}
$$

in particular, L^{\perp} is a line in \mathbb{R}^{2}.
Moreover, if $\mathbf{n} \in \mathbb{R}^{2}, \mathbf{n} \neq \mathbf{0}, c \in \mathbb{R}$ and

$$
L=\left\{\mathbf{x} \in \mathbb{R}^{2}: \mathbf{x} \bullet \mathbf{n}=c\right\}
$$

then L is a line in $\mathbb{R}^{2} ; \mathbf{n}$ is a normal to $L ; \mathbf{n} /|\mathbf{n}|^{2} \in L$ and is the closest point in L to $\mathbf{0}$; and $|c| /|\mathbf{n}|$ is the distance from $\mathbf{0}$ to L.

Proof. Not hard at all. We'll do it in class.
Theorem 1.5. Suppose P is a plane in $\mathbb{R}^{3}, \mathbf{r}$ is as in (2) and $\mathbf{n}=\mathbf{v} \times \mathbf{w}$. Then

$$
P=\left\{\mathbf{x} \in \mathbb{R}^{3}:(\mathbf{x}-\mathbf{a}) \bullet \mathbf{n}=0\right\}
$$

and

$$
P^{\perp}=\{t \mathbf{n}: t \in \mathbb{R}\}
$$

in particular, P^{\perp} is a line in \mathbb{R}^{3}.
Moreover, if $\mathbf{n} \in \mathbb{R}^{3}, \mathbf{n} \neq \mathbf{0}, c \in \mathbb{R}$ and

$$
P=\left\{\mathbf{x} \in \mathbb{R}^{2}: \mathbf{x} \bullet \mathbf{n}=c\right\}
$$

then P is a plane in $\mathbb{R}^{3} ; \mathbf{n}$ is a normal to $P ; c \mathbf{n} /|\mathbf{n}|^{2} \in P$ and is the closest point in P to $\mathbf{0}$; and $|c| /|\mathbf{n}|$ is the distance from $\mathbf{0}$ to P.

Proof. Not hard at all. We'll do it in class.
Theorem 1.6. Suppose L is a line in \mathbb{R}^{3} and \mathbf{r} is as in (1). Then

$$
L^{\perp}=\left\{\mathbf{x} \in \mathbb{R}^{3}: \mathbf{x} \bullet \mathbf{v}=0\right\}
$$

in particular, L^{\perp} is a plane in \mathbb{R}^{3}.
Moreover, if $\mathbf{n}_{i} \in L^{\perp}, i=1,2, \mathbf{n}_{1} \forall \mathbf{n}_{2}$ and

$$
P_{i}=\left\{\mathbf{x} \in \mathbb{R}^{3}:(\mathbf{x}-\mathbf{a}) \bullet \mathbf{n}_{i}=0\right\}, \quad i=1,2
$$

then P_{1} and P_{2} are planes in \mathbb{R}^{3} with normal \mathbf{v} and

$$
L=P_{1} \cap P_{2}
$$

Proof. Not hard at all. We'll do it in class.
Remark 1.5. Suppose

$$
\begin{equation*}
\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}, \quad t \in \mathbb{R} \tag{3}
\end{equation*}
$$

parameterizes the line L in \mathbb{R}^{3}. Let

$$
x_{0}, y_{0}, z_{0} \quad \text { and } a, b, c
$$

be scalars such that

$$
\mathbf{r}_{0}=<x_{0}, y_{0}, z_{0}>\quad \text { and } \quad \mathbf{v}=<a, b, c>
$$

Let

$$
x: \mathbb{R} \rightarrow \mathbb{R}, \quad y: \mathbb{R} \rightarrow \mathbb{R}, \quad z: \mathbb{R} \rightarrow \mathbb{R}
$$

be such that

$$
\mathbf{r}(t)=<x(t), y(t), z(t)>\quad \text { for } t \in \mathbb{R}
$$

Then (3) amounts to

$$
x(t)=x_{0}+a t, \quad y(t)=y_{0}+b t, \quad z(t)=z_{0}+a t
$$

which, when each equation is solved for t, amounts to

$$
\frac{x(t)-x_{0}}{a}=\frac{y(t)-y_{0}}{b}=\frac{z(t)-z_{0}}{c}
$$

provided none of a, b, c are zero.

Remark 1.6. Suppose a, b, c are scalars, $\langle a, b\rangle \neq<0,0\rangle$,

$$
P=\left\{(x, y) \in \mathbb{R}^{2}: a x+b y=c\right\} .
$$

Then P is a line with normal $\langle a, b\rangle$ at distance

$$
\frac{|c|}{\sqrt{a^{2}+b^{2}}}
$$

to the origin.
The point here is that if $\mathbf{n}=<a, b>$ then

$$
P=\{\mathbf{x} \bullet \mathbf{n}=c\}
$$

Remark 1.7. Suppose a, b, c, d are scalars, $\langle a, b, c\rangle \neq<0,0,0\rangle$,

$$
P=\left\{(x, y, z) \in \mathbb{R}^{3}: a x+b y+c z=d\right\}
$$

Then P is a plane with normal $\langle a, b, c\rangle$ at distance

$$
\frac{|d|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

to the origin.
The point here is that if $\mathbf{n}=<a, b, c>$ then

$$
P=\{\mathbf{x} \bullet \mathbf{n}=d\}
$$

