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Abstract

Let
F(R2) = {f ∈ L∞(R2) ∩ L1(R2) : f ≥ 0}.

Suppose s ∈ F(R2) and γ : R→ [0,∞). Suppose γ is zero at zero, positive
away from zero and convex. For f ∈ F(Ω) let

F (f) =

Z

Ω

γ(f(x)− s(x)) dL2x;

L2 here is Lebesgue measure on R2. In the denoising literature F would
be called a fidelity in that it measures how much f differs from s which
could be a noisy grayscale image. Suppose 0 < ε < ∞ and let

nloc
ε (F )

be the set of those f ∈ F(R2) such that TV(f) < ∞ and

εTV(f) + F (f) ≤ εTV(g) + F (g) for g ∈ k(f);

here TV(f) is the total variation of f and k(f) is the set of g ∈ F(R2)

such that g = f off some compact subset of R2. A member of mloc
ε (F ) is

called a total variation regularization of s (with smoothing parameter ε).
Rudin, Osher and Fatemi in [ROF] and Chan and Esedoglu in [CE] have
studied total variation regularizations of F where γ(y) = y2 and γ(y) = y,
y ∈ R, respectively.

Our purpose in this paper is to determine mloc
ε (F ) when s is the in-

dicator function of a compact convex subset of R2.
While taking s = 1S , S compact and convex, is certainly not repre-

sentative of the functions s which occur in image denoising, we hope this
result sheds some light on the nature of total variation regularizations.
In addition, one can test computational schemes for total variation reg-
ularization against these examples. Examples where S is not convex will
appear in a later paper.
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1 Introduction.

1.1 Total variation.

This work is based on the notion of the total variation of a locally summable
function on R2, which we now define.

Definition 1.1. Suppose f ∈ Lloc
1 (R2). We let

TV(f) = sup
{∫

fdiv X dL2 : X ∈ X (R2) and |X| ≤ 1
}

and call this nonnegative extended real number the total variation of f ; here
X (R2) is the vector space of smooth compactly supported vector fields on R2

and and L2 is Lebesgue measure on R2.

In particular, if f is continuously differentiable on R2 then

TV(f) =
∫
|∇f | dL2. (1)

Moreover, if E a Lebesgue measurable subset of R2 with Lipschitz boundary
then TV(E) equals the length of the boundary; here and in what follows we
frequently identify a subset E of R2 with its indicator function 1E.

1.2 Total variation regularization.

We let
F(R2) = {f ∈ L1(R2) ∩ L∞(R2) : f ≥ 0}.

∗Supported in part by Los Alamos National Laboratory.
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Definition 1.2. Suppose F : F(R2) → R and 0 < ε < ∞. We let

Fε(g) = εTV(g) + F (g) for g ∈ F(R2)

and we let

mloc
ε (F ) = {f ∈ F(R2) : TV(f) < ∞ and Fε(f) ≤ Fε(g) for g ∈ k(f)};

here k(f) is the set of g ∈ F(R2) such that, for some compact subset K of R2,
g(x) = f(x) for L2 almost all x ∈ R2 ∼ K.

Suppose

(i) s ∈ F(R2);

(ii) γ : R→ [0,∞), γ is convex, γ(0) = 0 and γ(y) > 0 if y ∈ R ∼ {0};
(iii) F (f) =

∫
R2 γ(f(x)− s(x)) dL2x for f ∈ F(R2).

Here s could be a grayscale representation of a degraded image which we
wish to denoise. In the context of denoising F would be called a fidelity; it is
a measure of how much f differs from s. If 0 < ε < ∞ the members of mε(F )
would be called total variation regularizations of s (with respect to the
fidelity F and smoothing parameter ε).

In the literature Fε is often replaced by Fε/ε and λ = 1/ε is thought of as a
Lagrange multiplier.

For a very informative discussion of the use of total variation regularizations
in the field of image processing see the Introduction of [CE]. We will not discuss
image processing any further except to note that the notion of total variation
regularization in image processing is useful for other purposes besides denoising.

For the remainder of this paper let ε be a positive real number, let γ be as in
(ii) above, let S be a compact convex subset of R2 such the L2(S) > 0 and let
s = 1S. Our main purpose in this paper is to determine mloc

ε (F ).
While taking s = 1S , S compact and convex, is certainly not representative

of the functions s which occur in image denoising, we hope this result sheds
some light on the nature of total variation regularizations. In addition, one
can test computational schemes for total variation regularization against these
examples. Examples where S is not convex will appear in [AW2]

1.3 The main theorem.

For reasons which will become clear shortly we introduce the following termi-
nology.

Let

β(y) = lim sup
z↓y

γ(z)− γ(y)
z − y

for y ∈ R.

Note that β is nonincreasing and negative on (−∞, 0) and nondecreasing and
positive on (0,∞).
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1.4 The sets Tr, 0 < r < ∞, and the function Φ.

Definition 1.3. Whenever a ∈ R2 and 0 < r < ∞ we let

U(a, r) = {x ∈ R2 : |x− a| < r} we let B(a, r) = {x ∈ R2 : |x− a| ≤ r}.

Definition 1.4. Suppose 0 < r < ∞. Let

Cr = {c ∈ S : {x ∈ R2 : B(c, r) ⊂ S}

and let
Tr = ∪{B(c, r) : c ∈ Cr} = {x ∈ R2 : dist (x,Cr) ≤ r}.

Evidently,
0 < r ≤ s < ∞ ⇔ Ts ⊂ Tr;

Let
R = sup{r ∈ (0,∞) : Tr 6= ∅}.

Since S is compact with nonempty interior it follows that 0 < R < ∞ and

Tr 6= ∅ ⇔ 0 < r ≤ R.

Suppose 0 < r < ∞ and b is a boundary point of Tr which is interior to S;
among other things, we will show below that there are an open neighborhood
G of b and c ∈ Cr such

Tr ∩G = B(c, r) ∩G.

Let

Φ(r) = TV(Tr)− L2(Tr)
r

for 0 < r ≤ R.

We will prove various facts about Tr, 0 < r ≤ R, and Φ in Section 4 below,
among which is the following.

Proposition 1.1. Φ is increasing and continuous.

Remark 1.1. In fact, as the reader may want to try to show after reading the
proof of Proposition 1.1, Φ is Lipschitzian on any interval (0, r), 0 < r < R.

1.5 The functions η and Ψ.

For each y ∈ (0, 1) let

η(y) = − ε

β(y − 1)
and let Wy = Tη(y).

Note that η is nondecreasing.
For example, if γ(y) = |y|, y ∈ R, then

β(y) =

{
−1 if −∞ < y < 0,
1 if 0 ≤ y < ∞ so η(y) = ε for 0 < y < 1
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and if γ(y) = y2/2, y ∈ R, then

β(y) = y so η(y) =
ε

1− y
for 0 < y < 1.

Let
I = {y ∈ (0, 1) : 0 < η(y) ≤ R} = {y ∈ (0, 1) : Wy 6= ∅}.

Note that I is an interval, possibly empty. Let

Ψ(y) = εTV(Wy) + β(y − 1)L2(Wy) = εΦ(η(y)) for y ∈ I;

since η and Φ are nondecreasing it follows that Ψ is nondecreasing Let

I− = {y ∈ I : Ψ(y) < 0}, I0 = {y ∈ I : Ψ(y) = 0}, I+ = {y ∈ I : Ψ(y) > 0};
since Ψ is nonincreasing we find that I−, I0, I+ are intervals, that y− < y0 if
y− ∈ I− and y0 ∈ I0 and that y0 < y+ if y0 ∈ I0 and y+ ∈ I+. Note that if γ is
strictly convex then Ψ is increasing in which case I0 contains at most one point.

1.6 Statement of the Main Theorem.

Let

J =





{0} if I− ∪ I0 = ∅;
{sup I−} if I− 6= ∅ and I0 = ∅;
[inf I0, sup I0] if I0 6= ∅.

Our purpose in this paper is to prove the following Theorem.

Theorem 1.1. f ∈ mloc
ε (F ) if and only for some Y ∈ J we have

f(x) = L1([0, Y ] ∩ {y ∈ (0, 1) : x ∈ Wy}) for L2 almost all x. (2)

See [AW1, 1.11] for the case when S is a square and, for some p ∈ [1,∞),
γ(y) = |y|p/p, y ∈ R.

1.7 Acknowledgments.

It is a pleasure to acknowledge useful conversations with Kevin Vixie and Selim
Esedoglu.

2 Functionals on sets.

It will be useful to extend the foregoing notions to functionals defined on sets,
as follows.

We let
M(R2) =

{
D : D ⊂ R2 and 1D ∈ F(R2)

}
;

thus a subset D of R2 belongs to M(R2) if and only if D is Lebesgue measurable
and Ln(D) < ∞.
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Suppose M : M(R2) → R and 0 < ζ < ∞. We let

Mζ(E) = ζTV(E) + M(E) for E ∈M(R2)

and we let
nloc

ζ (M)

be the family of those D ∈M(R2) such that TV(D) < ∞ and Mζ(D) ≤ Mζ(E)
whenever E ∈M(Ω) and 1E ∈ k(1D).

Let
Σ(D, E) = L2((D ∼ E) ∪ (E ∼ D)) =

∫
|1D − 1E | dL2

whenever D, E are Lebesgue measurable subsets of R2.
Now fix X ∈M(R2) and let

MX(E) = Σ(X,E) for E ∈M(R2).

In [CE] Chan and Esedoglu study

nloc
ζ (MX);

their work was the starting point for the results of [AW1], this paper and [AW2].
Let

VX(E) = −L2(E ∩X) + L2(E ∼ X) for E ∈M(R2).

Since MX(E) = VX(E)− L2(X) for E ∈M(R2) we find that

nloc
ζ (MX) = nloc

ζ (VX).

Since VX(∅) = 0 we find it easier to work with VX than with MX .

2.1 Characterization of nloc
ε (VS).

In Section 6 we will prove the following theorem.

Theorem 2.1. Suppose D ∈M(R2) and 0 < ε < ∞. Then

D ∈ nloc
ε (VS) ⇔





Σ(D, Tε) = 0 if Φ(ε) < 0;
Σ(D, Tε) = 0 or Σ(D, ∅) = 0 if Φ(ε) = 0;
Σ(D, ∅) = 0 if Φ(ε) > 0;

It will turn out that Theorem 4.2 will follow rather directly from this The-
orem together with Theorems 1.6.1 and 1.6.2 of [AW1].
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3 Some useful definitions and notations.

Whenever a ∈ R2 and 0 < r < ∞ we let

C(a, r) = {x ∈ R2 : |x− a| = r} = bdryU(a, r).

We let
int, cl, and bdry

stand for “interior”, “closure” and “boundary”, respectively.
We let

S1 = {x ∈ R2 : |x| = 1}
and we let

e1 = (1, 0) ∈ S1, e2 = (0, 1) ∈ S1.

We let
H1

be one dimensional Hausdorff measure on R2.
Whenever A ⊂ R2 and a is an accumulation point of A we let

Tan(A, a) =
⋂

0<r<∞
cl {t(x− a) : 0 < t < ∞ and x ∈ A ∩ (B(a, r) ∼ {a})}

and we let
Nor(A, a) =

⋂

w∈Tan(A,a)

{v ∈ R2 : v • w ≤ 0}.

Whenever a ∈ R2 and v ∈ R2 ∼ {0} we set

h(a, v) = {x ∈ R2 : (x− a) • v ≤ 0} and l(a, v) = {x ∈ R2 : (x− a) • v = 0}.
For each θ ∈ R we let

u(θ) = (cos θ, sin θ).

Whenever a, b ∈ R2 we let

(a, b) = {(1−t)a+tb : 0 < t < 1} and we let [a, b] = {(1−t)a+tb : 0 ≤ t ≤ 1}.

4 The sets Tr, 0 < r ≤ ∞.

Let Tr, 0 < r < ∞, and R be as in Section 1.3
Suppose r ∈ (0, R]. Let

Br = bdry Tr and let δr(x) = dist (x,Br) for x ∈ R2.

Let

Ur = {x ∈ R2 : δr(x) < r};
ξr = {(x, b) ∈ Ur ×Br : |x− b| = δr(x)};
νr = {(b, u) ∈ Br × S1 : B(b− ru, r) ⊂ Tr}.
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Let
Br

be the family of connected components of Br ∼ bdry S and let

γr = sup
{H1(A)

r
: A ∈ Br

}
.

4.1 Basic theory for Tr, 0 < r < R.

Proposition 4.1. Suppose 0 < r ≤ R. The following statements hold:

(i) Cr and Tr are compact convex subsets of S.

(ii) Br is a continuously differentiable compact one dimensional submanifold
of R2.

(iii) νr is a function with domain Br.

(iv) Nor(Tr, b) = {tνr(b) : 0 ≤ t < ∞} and Nor(Br, b) = {tνr(b) : t ∈ R} for
any b ∈ Br.

(v) For any y, b ∈ Br we have

|νr(y)− νr(y)| ≤ |y − b|
r

.

(vi) ξr is a function with domain Ur which retracts Ur onto Br.

(vii) For any x ∈ Ur we have

x =

{
ξr(x) + δr(x)νr(ξr(x)) if x ∈ Ur ∼ Tr,
ξr(x)− δr(x)νr(ξr(x)) if x ∈ Ur ∩ Tr.

(viii) Whenever 0 < s < r, x, a ∈ Ur and max{δr(x), δr(a)} ≤ s we have

|ξr(x)− ξr(a)| ≤ r

r − s
|x− a|.

Remark 4.1. See [FE2]. In particular, (vi) implies that if 0 < r < ∞ then the
reach of Br in the sense of [FE2] is at least r. The proof of (viii) was inspired
by the proof of [FE2, 4.8(8)].

Proof. It is evident that Cr and Tr are compact since S is compact. If c, c′ ∈ Cr

then the convex hull of B(c, r)∪B(c′, r) equals ∪{B((1−t)c+tc′, r) : 0 ≤ t ≤ 1}
and is a subset of S; the convexity of Cr and Tr follow. Thus (i) holds.

Suppose (b, u) ∈ Br × S1. It is evident that

(b, u) ∈ νr ⇔ (b− y) • u ≤ 1
2r
|y − b|2 for y ∈ Br. (3)
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Suppose (b, u) ∈ νr. Then

h(b, u) = Tan(B(b− ru, r), b) ⊂ Tan(Tr, b);

since Tr is convex we infer that

Tan(Tr, b) = h(b, u). (4)

Thus (iv) holds and νr is a function.
Suppose b ∈ Br. Choose sequences a in Tr and c in Cr such that ai ∈ B(ci, r)

for each positive integer i and ai → b as i → ∞. Passing to a subsequence if
necessary we obtain c∞ ∈ Cr such that ci → c∞ as i → ∞. It follows that
|b− c∞| ≤ r and B(c∞, q) ⊂ Tr whenever 0 < q < r which in turn implies that
B(c∞, r) ⊂ Tr since Tr is closed. Were it the case that |b− c∞| < r the point b
would have to be interior to Tr so |b− c∞| = r. It follows that B(b− ru, r) ⊂ Tr

where u ∈ S1 is such that b− c∞ = |b− c∞|u. Thus b is in the domain of νr.
Suppose b, y ∈ Br, u = νr(b), v = νr(y) and z = (b − ru) + rv ∈ Tr. Then

from (3), (4) and the convexity of Tr we infer that

r

2
|v − u|2 = r(v − u) • v = (z − y) • v + (y − b) • v ≤ 1

2r
|y − b|2

so (v) holds. It is an elementary consequence of the convexity of Tr that Br is
a rectifiable curve so, in view of (v), (ii) holds.

Suppose a ∈ Ur ∼ Br. Let b ∈ Br be such that δr(x) = |a − b|. Then
Tan(Br, b) = l(b, b − a) = l(b, νr(b). Since B(b − rνr(b), r) ⊂ Tr and δr(a) < r
we infer that B(a, δr(a)) = {b}. (vi) and (vii) follow.

Suppose s, x, a are as in (viii). Then, following the proof of , we find that

|x− a||ξr(x)− ξr(a)|
≥ (x− a) • (ξr(x)− ξr(a))
= [(x− ξr(x))− (a− ξr(a)) + (ξr(x)− ξr(a))] • (ξr(x)− ξr(a))

≥
(
−ρr(x)

2r
− ρr(a)

2r
+ 1

)
|ξr(x)− ξr(a)|2

so (viii) holds.

Theorem 4.1. The following statements hold:

(i) γR ≤ π/2.

(ii) γr < π/2 if 0 < r < R.

(iii) Each member of Br is an arc of a circle of radius r for each r ∈ (0, R].

(iv) If 0 < q < r < R then

sup{δr(x) : x ∈ Bq} ≤ (sec γr)(r − q).
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(v) (0, R] 3 r 7→ γr is increasing.

Proof. Suppose 0 < r ≤ R and b ∈ C ∈ Br. Let c = b − rνr(b) and A is the
connected component of b in C(c, r). Were it the case that C(c, r)∩bdry S = ∅
there would exist s ∈ (r,∞) such that U(c, s) ⊂ S and this would force b to be
interior to Tr. Applying a rigid motion to S if necessary we may assume c = 0
and that there are γ ∈ (0, π) and α ∈ [0, γ) such that b = ru(α), νr(b) = u(α),
B(0, r) ⊂ S, d± = ru(±γ) ∈ C ∩ bdry S, and

A = {ru(θ) : |θ| < γ} ∩ bdry S = ∅.
Owing to the convexity of S we have

S ⊂ W = h(d−, νr(d−)) ∩ h(d+, νr(d+)).

Suppose γ were greater that π/2. Choose β ∈ (π/2, γ) and note that compact
set {ru(θ) : |θ| ≤ β} does not meet bdry S. Thus

B(te1, |ru(β)− te1|) ⊂ S

for t sufficiently small and positive and, since |ru(β) − te1| > r whenever 0 <
t < ∞, this forces b to be interior to Br. Thus γ ≤ π/2.

Suppose γ = π/2. Then d± = ±re2 and W = {x ∈ R2 : |x2| ≤ r}. Thus
no ball of radius greater than r is contained in S so r = R. Let b′ ∈ clC be
such that |b′| ≥ |x| whenever x ∈ C and let s = |b′| > R. Then b′ = sνr(b) and
B((s−R)νr(b), R) ⊂ S ⊂ W . Thus νr(b) = e1. But this implies b is interior to
Tr. Thus, in case γ = π/2, C = A.

Suppose 0 < q ≤ r < R, let C ′ = W ∩ (Bq ∼ bdry S) and let b′ ∈ C ′ be
such that

|b′| ≥ |x| whenever x ∈ C ′.

Note that |b′| ≥ r since otherwise b′ would be interior to B(0, r) which is a subset
of Tq. Let β ∈ (−γ, γ) be such that b′ = |b′|u(β) and note that νq(b′) = u(β).
Since B(b′ − qu(β), q) ⊂ S ⊂ W we find that

(((b′ − qu(β)) + qu(±γ))− ru(±γ)) • u(±γ) ≤ 0

which amounts to
(|b′| − q) cos(±γ − β) ≤ r − q. (5)

In case β ≥ 0 we have cos γ ≤ cos(γ − β) and in case β < 0 we have
cos γ ≤ cos(−γ − β) so that (5) implies

(|b′| − q) cos γ ≤ r − q.

Suppose q = r. Were it the case that |b′| > r we would have β 6= γ which
is impossible in view of (5). Thus C = A. Moreover γ equals the length of C
divided by r. Thus we have established (i)-(iv).

Suppose 0 < q < r ≤ R and C ′ ∈ Bq and C ′ ⊂ W . Then there are c′ and
d′± ∈ bdry S ∩ clC ′ such that d′± − c′ = qνq(d′±). The convexity of S implies
that the length of C ′ divided by q is less than the length of C divided by r and
this establishes (v).
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Proposition 4.2. We have

lim
r↑R

sup{δR(x) : x ∈ Br} = 0.

Proof. Suppose the Proposition were false. Then there would exist a sequences
r in (0, R) and b, d in S such that bi ∈ Bri , di ∈ BR and |bi − di| = sup{δR(x) :
x ∈ Bri

} for each positive integer i, such that limi→∞ ri = R but such that
η = limi→∞ |bi − di| > 0.

Suppose i is a positive integer. We have bi − di ∈ Nor(Tri
, bi) so bi − di =

|bi − di|νri(bi). We we also have bi − di ∈ Nor(BR, di) since Tan(BR, di) is a
line so νR(di) = νri

(bi). Thus

B(di −RνR(di), R) ∪B(bi − riνR(di), ri) ⊂ S.

Passing to a subsequence if necessary we obtain b∞ ∈ S, d∞ ∈ BR and
u∞ ∈ S1 such that (bi, di, νR(di)) → (b∞, d∞, u∞) as i →∞ which implies that
b∞ = d∞ + ηu∞. Since S is closed we have that that Z∞ ⊂ S where Z∞ is the
convex hull of B(d∞−Ru∞, R)∪B(b∞−Re∞u∞, R). Since d∞ ∈ intZ∞ ⊂ S
we infer that d∞ ∈ intTR which is incompatible with d∞ ∈ BR.

Corollary 4.1. For any r ∈ (0, R] we have

lim
(0,R]∈s→r

sup{δr(x) : x ∈ Bs} = 0.

Proof. When r = R this is the statement of the preceding Proposition. If
0 < r < R this is a straightforward consequence of Theorem 4.1.

4.2 Proof of Proposition 1.1.

The continuity of Φ follows from Proposition 4.1 and Corollary 4.1.
Suppose 0 < r < R. By Corollary 4.1 there is η > 0 such that

r − η < s < r + η ⇒ 0 < s ≤ R and Tr ∼ Ts ⊂ Ur.

Suppose r < s < r + η. For each A ∈ Bs we let cA be the center of the circle
containing A, we let

Br,A = (Br ∼ Ts) ∩ {cA + t(x− cA) : 1 < t < ∞ and x ∈ A}

and we let

Tr,A = (Tr ∼ Ts) ∩ {cA + t(x− cA) : 1 < t < ∞ and x ∈ A}.

Then
Br ∼ Ts = ∪A∈BsBr,A and Tr ∼ Ts = ∪A∈BsTr,A.

Let Xr : Ur → R2 be such that

Xr(x) = νr(ξr(x)) for x ∈ Ur.
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Then X is Lipschitzian and

0 < div X(x) ≤ 1
r −∆s

whenever x ∈ Tr ∼ Ts and X is differentiable at x and where we have set
∆s = sup{δr(x) : x ∈ Bs}.

Suppose A ∈ Bs. Then

H1(Br,A) =
∫

Br,A

X • νr dH1 and H1(A) ≥
∫

A

X • νs dH1

and follows from the Gauss-Green Theorem (see [FE1, 4.5.6]) that

H1(A)−H1(Br,A) ≥
(∫

A

X • νs dH1 −
∫

Br,A

X • νr dH1

)

= −
∫

Tr,A

div X dL2

≥ − 1
r −∆s

L2(Tr,A).

Summing over Bs we find that

TV(Ts)−TV(Tr) ≥ −
(

1
r −∆s

)
L2(Tr ∼ Ts).

Consequently,

Φ(s)− Φ(r) = TV(Ts)−TV(Tr) +
L2(Tr ∼ Ts)

r
+

(
1
r
− 1

s

)
L2(Ts)

≥
(

1
r
− 1

r −∆s

)
L2(Tr ∼ Ts) +

s− r

rs
L2(Ts)

= − ∆s

r(r −∆s)
L2(Tr ∼ Ts) +

s− r

rs
L2(Ts).

It follows from Theorem 4.1 that

lim sup
s↓r

L2(Tr ∼ Ts)
s− r

< ∞

and it follows from Proposition 4.1 that lims↓r ∆s = 0. Thus

lim inf
s↓r

Φ(s)− Φ(r)
s− r

≥ L2(Tr)
r2

.
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5 Some facts about C1(R2).

We will need some results on the space C1(R2) which was defined in [AW1,
1.5.1].

We let
w(m) =

√
1 + m2 for m ∈ R.

Note that if I is an open interval in R and f : I → R is twice differentiable then
(w′ ◦ f ′)′(t) is the curvature of f at (t, f(t)) whenever t ∈ I.

5.1 A “thickness” theorem.

Lemma 5.1. Suppose

(i) E ∈ C1(R2) and E equals the support of the generalized function corre-
sponding to 1E ;

(ii) a ∈ bdry E, u, v ∈ S1, u ∈ Tan(bdry E, a) and −v ∈ Nor(E, a);

(iii) C is the connected component of a in {x ∈ bdry E : |(x− a) • u| < 1}.
Then there is a continuously differentiable function

f : (−1, 1) → R

such that

(iv) |f(t)| ≤ 1−√1− t2 and |f ′(t)| ≤ |t|/√1− t2 whenever −1 < t < 1;

(v) Lip (w′ ◦ f ′) ≤ 1;

(vi) C = {a + tu + f(t)v : −1 < t < 1}.
Proof. We may assume without loss of generality that a = 0, u = e1 and v = e2.

Let G be the family of ordered pairs (J, g) such that J is a subinterval of
(−1, 1) containing 0, g : J → R is continuously differentiable, and g ⊂ C. Owing
to the regularity of bdry E as stated in [AW1, 1.5.1] we find that if (Ji, gi) ∈ G,
i = 1, 2, then (J1 ∪ J2, g1 ∪ g2) ∈ G from which it follows that there is (I, f) ∈ G
such that g ⊂ f whenever (J, g) ∈ G.

By [AW1, 5.4.1] we find that Lip (w′ ◦ f ′) ≤ 1. This implies that

w′(|f ′(t)|) = |w′(f ′(t))−w′(f ′(0))| ≤ |t| for t ∈ I;

since w′ is increasing we find that

|f ′(t)| ≤ v(|t|) =
|t|√

1− t2
for t ∈ I (6)

where v is the function inverse to w′. This in turn implies that

|f(t)| ≤ 1−
√

1− t2 for t ∈ I. (7)
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Let tL = inf I and let tR = sup I. Owing to (6) we find that the limits

xL = lim
t↓tL

(t, f(t)) and xR = lim
t↑tR

(t, f(t))

exist and are in bdry E. Owing to the regularity properties of bdry E and the
estimate (6) we find that if either −1 < tL or tR < 1 the maximality of I is
contradicted.

Theorem 5.1. Suppose C ∈ C1(R2), C is compact and convex, a ∈ bdry C
and

v ∈ S1 ∩Nor(C, a).

Then
B(a− v, 1) ⊂ C.

Proof. It will suffice to consider the case a = 0 and v = −e2.
Let a− = inf{x1 : x ∈ C}, a+ = sup{x1 : x ∈ C} and b = sup{x2 : x ∈ C}

and let
f± : [a−, a+] → [0, b]

be such that

f−(t) = inf{u : (t, u) ∈ C} and f+(t) = sup{u : (t, u) ∈ C}
for a− ≤ t ≤ a+. Then f− is convex, f+ is concave, f− ≤ f+ and

C = {(x1, x2) ∈ [a−, a+]× R : f−(x1) ≤ x2 ≤ f+(x1)}.
Let c be such that (c, b) ∈ C.
Applying Lemma 5.1 with a = 0, u = e1 and v = e2 we find that a− ≤ −1,

that 1 ≤ a+, that

|(t, f−(t))− (0, 1)| ≥ 1 for a− ≤ t ≤ a+.

Applying Lemma 5.1 with a = (a+, f−(a+)), u = e2 and v = −e1 we find
that f−(a+) ≥ 1, that b ≥ f+(a+) + 1 ≥ f−(a+) + 1 ≥ 2, that

|(t, f−(t))− (a+ − 1, f−(a+))| ≥ 1 for a+ − 1 ≤ t ≤ a+.

and that

|(t, f+(t))− (a+ − 1, f+(a+))| ≥ 1 for a+ − 1 ≤ t ≤ a+.

Applying Lemma 5.1 with a = (a−, f−(a−)), u = e2 and v = e1 we find
that f−(a−) ≥ 1, that b ≥ f+(a−) + 1 ≥ f−(a−) + 1 ≥ 2, that

|(t, f−(t))− (a− + 1, f−(a−))| ≥ 1 for a− ≤ t ≤ a− − 1.

and that

|(t, f+(t))− (a− + 1, f+(a−))| ≥ 1 for a− ≤ t ≤ a− − 1.

That the Theorem holds should now be clear.
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6 Proof of Theorem 2.1.

In this section we prove Theorem 2.1. Owing to the way various quantities
change with respect to transformation by homotheties, we may assume that
ε = 1.

Suppose D ∈M(R2), L2(D) > 0 and

D ∈ nloc
1 (VS).

We need to show that
Σ(D,T1) = 0.

Owing to the regularity results of [AW1, 1.5.1] we may assume that D equals the
support of the generalized function corresponding to 1D. From [AW1, Theorem
10.1] we find that

D ⊂ S.

We also know from [AW1, 1.5.1] that for each b ∈ bdry D there are open
intervals I and J containing 0; a continuously differentiable function g : I → J ;
and an isometry Φ : R2 → R2 such that

g(0) = 0, g′(0) = 0, Φ(b) = 0 (8)

Φ[E] ∩ (I × J) = {(u, v) ∈ I × J : v ≤ g(u)}. (9)

Let A be the family of connected components bdry D ∩ intS. We know
from [AW1, 8.1] that if A ∈ A then A is an open arc of a circle of radius 1 and
that the length of A does not exceed π; moreover, if a ∈ A and c is the center
of the circle containing A there is δ > 0 such that

B(c, 1) ∩U(a, δ) = D ∩U(a, δ). (10)

For each A ∈ A let
ends(A) = (clA) ∼ A

and note that ends(A) has exactly two members.

6.1 The proof.

The Theorem will follow from the following Lemmas and Propositions.

Proposition 6.1. Suppose a ∈ D ∩ (bdry S). Then a ∈ bdry D and

D ⊂ S ⊂ a + Tan(D, a).

Moreover, if A ∈ A, a ∈ ends(A) and c is the center of the circle containing A
then

Tan(D, a) = h(a, a− c).
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Proof. Since D ⊂ S we infer that Tan(D, a) ⊂ Tan(S, a). Since a ∈ bdry S
and S is convex Tan(S, b) is contained in a closed halfspace. Thus Tan(S, b) =
Tan(D, b). This in turn implies b ∈ bdry D. The final assertion of the Propo-
sition follows directly from (8) and (9).

Lemma 6.1. Suppose Ai ∈ A, ai ∈ ends(Ai) and ci is the center of the circle
containing Ai, i = 1, 2. Then

(ai − ci) • (cj − ci) ≤ 0 whenever {i, j} = {1, 2}.
Proof. Suppose {i, j} = {1, 2}. From the preceding Proposition and the fact
that |ai − ci| = |aj − cj | we obtain

0 ≥ (aj − ai) • (ai − ci)
= (cj + (aj − cj)− (ci + (ai − ci)) • (ai − ci)

= (cj − ci) • (ai − ci) + (aj − cj) • (ai − ci)− |ai − ci|2
≥ (cj − ci) • (ai − ci).

Proposition 6.2. Suppose a, b, c, A are such that A ∈ A, A ⊂ C(c, r), ends(A) =
{a, b}; and V = {t(x− c) : x ∈ clA and t > 1}.

Then exactly one of the following holds:

(i) D ∩ V = ∅.
(ii) The length of A equals π and there are a′, b′, c′, A′ such that A′ ∈ A,

A′ ⊂ C(c′, r), ends(A′) = {a′, b′} and such that, for some q > 2,

a′ = a + q(d− c), b′ = b + q(d− c), c′ = c + q(d− c)

where d is the midpoint of A.

Furthermore, if (ii) holds we have

D ∩G = ∅ and G ⊂ S

where G is the union of the segments (e, e′) such that e ∈ A, e′ ∈ A′ and (e, e′)
is parallel to the line containing c and c′.

Proof. Since S is compact and convex, whenever L is a line and y ∈ L ∩ intS
there are unique x, z, t such that {x, z} ⊂ L ∩ bdry S, 0 < t < 1 and y =
(1− t)x + tz. Since A ⊂ intS it follows that there is one and only one function
υ : A → intV ∩ bdry S such that

bdry S ∩ {c + t(x− c) : 1 < t < ∞} = {υ(x)} for x ∈ A.

Owing to the convexity of S we find that

(iii) c + u ∈ A whenever x ∈ A and and u ∈ S1 ∩Nor(S, υ(x)).
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Suppose D ∩ V 6= ∅. Owing to the compactness and regularity properties of
D there exists d′ ∈ V ∩ bdry D such that

|d′ − c| = min{|x− c| : x ∈ D ∩ V } > 1.

It follows from (10) that

(v) Nor(D, d′) = {t(c− d′) : 0 ≤ t < ∞}.
From Proposition 6.1 we have

d′ ∈ D ⊂ h(a, a− c) ∩ h(b, b− c).

Since d′ 6∈ {a, b} this implies d′ ∈ intV so there is d ∈ A such that d′ = c+t(d−c)
for some t ∈ (1,∞).

Were it the case that d′ ∈ bdry S we could infer from the Proposition
6.1 that Nor(S, d′) = Nor(D, d′) which is incompatible with (iii). Thus d′ 6∈
bdry S. Since d′ ∈ D ⊂ S we infer that d′ ∈ intS. Thus there is A′ ∈ A such
that d′ ∈ A′. It follows from (10) that A′ ⊂ C(c′, 1) where c′ = c + u(d− c) for
some u ∈ (t + r,∞). Thus |c′ − c| > 2.

Let a′, b′ such that ends(A′) = {a′, b′}. From the preceding Proposition we
have

(a′ − c′) • (c− c′) ≤ 0 and (b′ − c′) • (c− c′) ≤ 0.

Since the length of A′ does not exceed π we infer that A′ is a semicircle with
midpoint d′. By a similar argument we find that A is a semicircle with midpoint
d. (ii) now follows.

Let G be as in the final conclusion of the Proposition. From the convexity
of S we infer that the rectangle containing the points a, b, a′, b′ is a subset of
S so G ⊂ intS. Suppose, contrary to the last conclusion of the Proposition,
p ∈ D ∩G. Since p 6∈ bdry S there is B ∈ A such that p ∈ B. Since B cannot
meet A∪A′ we must have ends(B) ⊂ [a, a′]∪ [b, b′]. Since (d, d′)∩bdry D = ∅
we infer that either ends(B) ⊂ [a, b] or ends(B) ⊂ [a′, b′]. This is impossible
since B ∈ A and B meets either (a, b) or (a′, b′) tangentially.

Lemma 6.2. Suppose a, b, c, A are such that A ∈ A, A ⊂ C(c, 1), ends(A) =
{a, b}; and V = {t(x− c) : x ∈ clA and t > 1}.

Then D ∩ V = ∅.
Proof. Suppose D ∩ V 6= ∅. Then there are A′, a′, b′, c′ and G as in (ii) of the
preceding Proposition.

Then D ∩G = ∅ and D ∪G ⊂ S so

VS(D ∪G)− VS(D) = −L2(G) = π − 2|c− c′|;
moreover,

TV(D ∪G)−TV(D) = −2π + 2|c− c′|.
It follows that

0 ≤ (TV(D ∪G) + VS(D ∪G)− (TV(D) + VS(D)) = −π < 0

which is a contradiction.
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Lemma 6.3. D is convex.

Proof. Suppose e ∈ bdry D.
If e ∈ bdry S then D ⊂ S ⊂ e + Tan(S, e).
Suppose e 6∈ bdry S. Then e ∈ intS so there is A ∈ A such that e ∈ A. Let

a, b, c be such that A ⊂ C(c, 1) and ends(A) = {a, b}. Let V = {t(x− c) : x ∈
clA and t > 1}. We have D∩V = ∅ from the preceding Lemma. Since D ⊂ S ⊂
h(a, a− c)∩h(b, b− c) by Proposition 6.1 we find that D ⊂ e +Tan(B(c, 1), e).

It follows that D is convex.

Lemma 6.4. D ⊂ T1.

Proof. Suppose d ∈ D. Let a ∈ bdry D be such that |d−a| = dist (d,bdry D).
In case |d− a| ≥ 1 we have B(d, 1) ⊂ B(d, |d− a|) ⊂ D ⊂ S so d ∈ T1.

Suppose |d− a| < 1. Letting v ∈ S1 be such that d− a = −|d− a|v we find
that v ∈ Nor(D, a) we have from Theorem 5.1 that B(a− v, 1) ⊂ D ⊂ S. Since
|(a− v)− d| = 1− |d− a| < 1 we have d ∈ T1.

Lemma 6.5. Suppose u ∈ S1. Then

sup{x • u : x ∈ S} − inf{x • u : x ∈ S} > 2.

Proof. Let b− = inf{x • u : x ∈ D} and let b+ = sup{x • u : x ∈ D}. Suppose
the Lemma were false. Then, as D ⊂ S, b+ − b− ≤ 2. Let v ∈ S1 be such that
u • v = 0. Let a− = inf{x • v : x ∈ D} and let a+ = sup{x • v} : x ∈ D}. Then
L2(D) ≤ (a+− a−)(b+− b−) ≤ 2(a+− a−). Since D is convex by the preceding
Lemma we have that TV(D) > 2(a+ − a−). Thus

TV(D) + VS(D) = TV(D)− L2(D) > 0 = TV(∅) + VS(∅)

which is a contradiction.

Lemma 6.6. T1 ⊂ D.

Proof. Suppose, to the contrary, there were e ∈ T1 ∼ D. Let d ∈ bdry D be
such that U(e, |d− e|) ∩D = ∅. It follows that

d + Tan(D, d) = h(d, e− d). (11)

Were it the case that d ∈ bdry S we would have d−e ∈ Nor(S, d) and so, by the
convexity of S, S ⊂ d+Tan(S, d) = h(d, d−e)}. But by Tan(S, d) = Tan(D, d)
by Proposition 6.1. Thus d ∈ intS.

Let A ∈ A be such that d ∈ A and let a, b, c be such that A ⊂ C(c, 1) and
ends(A) = {a, b}. Note that e and c are on opp Let J = h(a, a− c)∩h(b, b− c)
and note that S ⊂ J by Proposition 6.1. Since e belongs to a closed ball of
radius 1 which is a subset of S we infer that the length of A equals π. Thus the
lines a + Tan(bdry D, a) and b + Tan(bdry D, b) are parallel with distance 2
between them; this is excluded by Lemma 6.5.
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7 Proof of Theorem 1.1.

We now show that Theorem 2.1 and Theorems 1.6.1 and 1.6.2 of [AW1] imply
Theorem 1.1.

For each y ∈ (0,∞) and E ∈M(R2) we let

Uy(E) =
∫

E

β(y − 1S(x)) dL2x = β(y − 1)L2(E ∩ S) + β(y)L2(E ∼ S).

7.1 The proof.

The Theorem will follow from the following Lemmas and Propositions.

Lemma 7.1. Suppose 0 < ζ < ∞ and either M = VS or 0 < y < 1 and
M = Uy. Then

M(E ∩ S) ≤ M(E) for E ∈M(R2).

Moreover,
D ∈ mζ(M) ⇒ L2(D ∼ S) = 0.

Proof. The first assertion follows easily from [AW1, Proposition 2.2]and the
second follows from [AW1, Proposition 10.2].

Lemma 7.2. Suppose 0 < y < 1. Then

mε(Uy) = mη(y)(VS).

Proof. Note that whenever E ∈M(R2) we have

−β(y − 1) (VS)η(y) (E) = (Uy)ε(E) if L2(E ∼ S) = 0. (12)

Suppose D ∈ mε(Uy). By the preceding Lemma with M = Uy we find that
L2(D ∼ S) = 0 so for any E ∈M(R2) we have

−β(1− y) (VS)η(y) (D) = (Uy)ε(D)

≤ (Uy)ε(E ∩ S)
= −β(1− y) (VS)η(y) (E ∩ S)

≤ −β(1− y) (VS)η(y) (E)

where we have applied the preceding Lemma with M = VS to obtain the last
inequality. Thus D ∈ mη(y) (VS).

By a similar argument one shows that mη(y) (VS) ⊂ mε(Uy).

Lemma 7.3. Suppose 1 ≤ y < ∞ and 0 < ζ < ∞. Then

D ∈ nloc
ζ (Uy) ⇒ L2(D) = 0.
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Proof. Suppose D ∈ nloc
ζ (Uy) and, contrary to the Lemma, L2(D) > 0. Then

(Uy)ε(D) = εTV(D) + β(y − 1)L2(D ∩ S) + β(y)L2(D ∼ S)

≥ min{β(y − 1), β(y)}L2(D)
> 0
= (Uy)ε(∅).

which is a contradiction.

Suppose f ∈ mloc
ε (F ). By [AW1, Theorem 1.6.1] we have

{f > y} ∈ nloc
ε (Uy) whenever 0 < y < ∞.

Let Y = ||f ||L∞(R2) and note that 0 ≤ Y ≤ 1 by the preceding Lemma. If
0 < y < Y then L2({f > y}) > 0 so Σ({f > y},Wy) = 0 and Ψ(y) ≤ 0 by
Theorem 2.1. If Y ≤ y < 1 then L2({f > y}) = 0 so Ψ(y) = 0. It follows that
Y ∈ J and (2) holds.

On the other hand, suppose f is as in (2). Then

Σ({f > y},Wy) = 0 if 0 < y < Y

and
L2({f > y}) = 0 if Y ≤ y < ∞.

From the preceding Lemma and Theorem 2.1 we infer that {f > y} ∈ nloc
ε (Uy)

whenever 0 < y < ∞. It follows from [AW1, Theorem 1.6.2] that f ∈ mloc
ε (F ).
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