Abstract

Let
F(R®) = {f € Loo(R*) N Ly (R?) : f > 0}.

Suppose s € F(R?) and v : R — [0, 00). Suppose 7 is zero at zero, positive
away from zero and convex. For f € F(Q) let

F(f) = / 2 (F (@) — s(x)) dL2;

£? here is Lebesgue measure on R2. In the denoising literature F would
be called a fidelity in that it measures how much f differs from s which
could be a noisy grayscale image. Suppose 0 < € < oo and let

n/’(F)
be the set of those f € F(R?) such that TV (f) < oo and
€TV(f) + F(f) <€TV(g) + F(g) for g € k(f);

here TV (f) is the total variation of f and k(f) is the set of g € F(R?)

such that g = f off some compact subset of R2. A member of mﬁOC(F) is

called a total variation regularization of s (with smoothing parameter €).
Rudin, Osher and Fatemi in [ROF] and Chan and Esedoglu in [CE] have
studied total variation regularizations of F where v(y) = y* and y(y) = v,
y € R, respectively.

Our purpose in this paper is to determine méOC(F) when s is the in-
dicator function of a compact convex subset of R?.

While taking s = 1g, S compact and convex, is certainly not repre-
sentative of the functions s which occur in image denoising, we hope this
result sheds some light on the nature of total variation regularizations.
In addition, one can test computational schemes for total variation reg-
ularization against these examples. Examples where S is not convex will
appear in a later paper.
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1 Introduction.

1.1 Total variation.

This work is based on the notion of the total variation of a locally summable
function on R?, which we now define.

Definition 1.1. Suppose f € L{OC(RZ). We let
TV(f) = sup {/fdide£2 : X € X(R?) and |X| < 1}

and call this nonnegative extended real number the total variation of f; here
X (R?) is the vector space of smooth compactly supported vector fields on R?
and and £2 is Lebesgue measure on R2.

In particular, if f is continuously differentiable on R? then
V() = [ IVrlac® 1)

Moreover, if E a Lebesgue measurable subset of R? with Lipschitz boundary
then TV (E) equals the length of the boundary; here and in what follows we
frequently identify a subset E of R? with its indicator function 1g.

1.2 Total variation regularization.

We let
FR?) ={f € Li(R}) NL,(R?) : f >0}.
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Definition 1.2. Suppose F : F(R?) — R and 0 < € < co. We let
Fe(g) = €TV(g) + F(g) for g € F(R?)
and we let
m(F) = {f € F(R?) : TV(f) < o0 and F(f) < Fi(g) for g € k(/)}:

here k(f) is the set of g € F(R?) such that, for some compact subset K of R?,
g(z) = f(z) for £? almost all x € R? ~ K.

Suppose
(i) s € F(R?);
(ii) v: R — [0,00), v is convex, 7(0) = 0 and v(y) > 0if y € R ~ {0};

(it}) F(f) = fo 7(f () = s(x)) dL2a for | € F(R2).

Here s could be a grayscale representation of a degraded image which we
wish to denoise. In the context of denoising F' would be called a fidelity; it is
a measure of how much f differs from s. If 0 < € < co the members of m.(F)
would be called total variation regularizations of s (with respect to the
fidelity F' and smoothing parameter ¢).

In the literature F. is often replaced by F./e and A = 1/e is thought of as a
Lagrange multiplier.

For a very informative discussion of the use of total variation regularizations
in the field of image processing see the Introduction of [CE]. We will not discuss
image processing any further except to note that the notion of total variation
regularization in image processing is useful for other purposes besides denoising.

For the remainder of this paper let € be a positive real number, let v be as in
(ii) above, let S be a compact convex subset of R? such the L£2(S) > 0 and let

s = 1g. Our main purpose in this paper is to determine mﬁOC(F),

While taking s = 1g, S compact and convex, is certainly not representative
of the functions s which occur in image denoising, we hope this result sheds
some light on the nature of total variation regularizations. In addition, one
can test computational schemes for total variation regularization against these

examples. Examples where S is not convex will appear in [AW2]

1.3 The main theorem.

For reasons which will become clear shortly we introduce the following termi-
nology.
Let

B(y) = timsup 1 =7
zly zZ—Y

for y € R.

Note that B is nonincreasing and negative on (—oo,0) and nondecreasing and
positive on (0,00).



1.4 The sets T,, 0 < r < oo, and the function .

Definition 1.3. Whenever a € R? and 0 < r < oo we let
U(a,r) ={z €R?: |z —a| <r} welet B(a,r)={zcR?:|z—a| <r}.
Definition 1.4. Suppose 0 < r < co. Let

Cr={ceS:{reR?:B(c,r) C S}

and let
T, = U{B(c,7) : c € C,} = {x € R? : dist (z,C,.) < r}.
Evidently,
O<r<s<o & T,CT,
Let

R =sup{r € (0,00) : T)- # 0}.

Since S is compact with nonempty interior it follows that 0 < R < oo and
T.#0 & 0<r<R.

Suppose 0 < r < oo and b is a boundary point of 7;. which is interior to S;
among other things, we will show below that there are an open neighborhood
G of b and ¢ € C, such
T.NG =B(c,r)NG.
Let

L2(T;)

O(r)=TV(T,) — for 0 <r <R.

We will prove various facts about 7;.,, 0 < r < R, and ® in Section 4 below,
among which is the following.

Proposition 1.1. & is increasing and continuous.

Remark 1.1. In fact, as the reader may want to try to show after reading the
proof of Proposition 1.1, ® is Lipschitzian on any interval (0,7), 0 < r < R.

1.5 The functions n and V.
For each y € (0,1) let

€
n(y) = “Bly-1) and let W, = Tp ().

Note that n is nondecreasing.
For example, if v(y) = |y|, v € R, then

-1 if —co<y <0,
B(y) {1 0 <y < oo so n(y) =€ for Y



and if v(y) = y*/2, y € R, then
€
Bly) =y so U(y):m for 0 <y < 1.

Let
I'={yec(0,1):0<n(y) <R} ={ye(0,1): W, #0}.
Note that I is an interval, possibly empty. Let
U(y) = eTV(Wy) + By — 1)L*(W,) = e@(n(y)) for y € I;
since n and ® are nondecreasing it follows that ¥ is nondecreasing Let
I={yel:V(y) <0}, Ih={yel:V¥(y) =0} I, ={yel:¥(y) >0}

since ¥ is nonincreasing we find that I_, Iy, [, are intervals, that y_ < yq if
y— € I_ and yo € Iy and that yo < y4 if yo € Iy and y4 € I. Note that if v is
strictly convex then W is increasing in which case Iy contains at most one point.

1.6 Statement of the Main Theorem.

Let
{0} if Ul =0;
J =< {supl_} if I_ # 0 and Iy = 0;
[mf I(], sup I()] if I() 7£ (Z)

Our purpose in this paper is to prove the following Theorem.
Theorem 1.1. f € meC(F) if and only for some Y € J we have
flz)=L0,YIn{y e (0,1): 2 € W,}) for £ almost all z. (2)

See [AW1, 1.11] for the case when S is a square and, for some p € [1,00),
V() = [ylP/p, y € R.

1.7 Acknowledgments.
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2 Functionals on sets.

It will be useful to extend the foregoing notions to functionals defined on sets,
as follows.
We let
M(R*)={D:D C R? and 1p € F(R?)};

thus a subset D of R? belongs to M(R?) if and only if D is Lebesgue measurable
and L™"(D) < oco.



Suppose M : M(R?) — R and 0 < ¢ < co. We let
Mc(E) = CTV(E) + M(E) for E € M(R?)

and we let ;
IICOC(M)

be the family of those D € M(R?) such that TV (D) < oo and M¢(D) < M¢(E)
whenever E € M(Q) and 15 € k(1p).
Let

E(D,E):Cz((DNE)U(END)):/|1D—1E| dc?

whenever D, E are Lebesgue measurable subsets of R2.
Now fix X € M(R?) and let

Mx(E)=3%(X,E) for E € M(R?).
In [CE] Chan and Esedoglu study
néOC(MX);

their work was the starting point for the results of [AW1], this paper and [AW2].
Let
Vx(E)=-L*(ENX)+L*(E~X) for E€ M(R?).

Since Mx (E) = Vx(E) — L3(X) for E € M(R?) we find that
nl¢(My) = nloc(vy).

Since Vx () = 0 we find it easier to work with Vy than with M.

2.1 Characterization of neloc(VS).

In Section 6 we will prove the following theorem.

Theorem 2.1. Suppose D € M(R?) and 0 < € < co. Then

(D, T.) =0 if ®(e) < 0
DenlC(y) o {S(D,T.)=00r D(D,0) =0 if B(e) = 0;
X(D,0) =0 if ®(e) > 0;

It will turn out that Theorem 4.2 will follow rather directly from this The-
orem together with Theorems 1.6.1 and 1.6.2 of [AW1].



3 Some useful definitions and notations.

Whenever a € R? and 0 < 7 < oo we let
C(a,r) ={x € R?*: |z —a| = r} = bdry U(a, 7).
We let
int, cl, and bdry

stand for “interior”, “closure” and “boundary”, respectively.
We let
S'={zecR?: |z| =1}

and we let
e; =(1,0)€8S', e =(0,1) S
We let
Hl
be one dimensional Hausdorff measure on R2.
Whenever A C R? and a is an accumulation point of A we let

Tan(A,a) = ﬂ c{t(r—a):0<t<ooand z € AN (B(a,r) ~{a})}
0<r<oo

and we let
Nor(4,a) = ﬂ {fveR? :vew <0}
weTan(A,a)

Whenever a € R? and v € R ~ {0} we set
h(a,v) ={z €R?: (z —a)ev <0} and 1(a,v) ={zcR?:(z —a)ev =0}

For each 0 € R we let
u(f) = (cosf,sin ).

Whenever a,b € R? we let

(a,b) ={(1-t)a+tb: 0 <t <1} and welet [a,b] ={(1-t)a+tb:0<t<1}.

4 The sets T, 0 < r < oo.

Let T,, 0 < r < 00, and R be as in Section 1.3
Suppose r € (0, R]. Let

B, =bdryT, andlet §,(x)=dist(x,B,) forz e R
Let
U, ={zxeR?:6.(z) <r};
& ={(z,b) €U, x B, : |z — b = 0,(2)};
vr ={(b,u) € B, x 8" : B(b—ru,r) C T, }.



Let
B,

be the family of connected components of B, ~ bdry S and let

H'(A)

vrzsup{ :AEBT}.

4.1 Basic theory for 7,, 0 <r < R.
Proposition 4.1. Suppose 0 < r < R. The following statements hold:
(i) Cy and T, are compact convex subsets of S.

(ii) B, is a continuously differentiable compact one dimensional submanifold
of R2.

(iii) v is a function with domain B,..

(iv) Nor(T,,b) = {tv,(b) : 0 <t < oo} and Nor(B,,b) = {tv,(b) : t € R} for
any b € B,.

(v) For any y,b € B, we have

)~ (o) < =0,

(vi) & is a function with domain U, which retracts U, onto B;.

(vii) For any = € U, we have

T = fr(f) + 5T(x)l/r(€r(x)) ifxe Ur ~ TT7
& (n) — 6 () (6 () ifz €U NT,.

(viii) Whenever 0 < s < r, z,a € U, and max{d,(x),d.(a)} < s we have

60(@) ~ &nla)] <

|z — al.
s

Remark 4.1. See [FE2]. In particular, (vi) implies that if 0 < r < oo then the
reach of B, in the sense of [FE2] is at least r. The proof of (viii) was inspired
by the proof of [FE2, 4.8(8)].

Proof. 1t is evident that C,. and T} are compact since S is compact. If ¢,c’ € C.,

then the convex hull of B(c, r)UB(c/, r) equals U{B((1—t)c+tcd,r): 0 <t < 1}

and is a subset of S; the convexity of C,. and T, follow. Thus (i) holds.
Suppose (b,u) € B, x St. It is evident that

1
bu) ev, & (b—y)ougg\y—b\2 for y € B,. (3)



Suppose (b, u) € v,.. Then
h(b,u) = Tan(B(b — ru,r),b) C Tan(T,,b);
since T, is convex we infer that
Tan(7,,b) = h(b,u). (4)

Thus (iv) holds and v, is a function.

Suppose b € B,.. Choose sequences a in T, and ¢ in C,. such that a; € B(c¢;, r)
for each positive integer ¢ and a; — b as i — oo. Passing to a subsequence if
necessary we obtain c,, € C, such that ¢; — ¢ as i — oo. It follows that
|b — ¢o| < 7 and B(cwo, q) C T; whenever 0 < ¢ < r which in turn implies that
B(cso,r) C Ty since T, is closed. Were it the case that |b — coo| < r the point b
would have to be interior to T 80 |b— coo| = r. It follows that B(b—ru,r) C T,
where u € S! is such that b — co = |b — coolu. Thus b is in the domain of v;..

Suppose b,y € By, u = v(b), v = v,(y) and z = (b — ru) + rv € T,.. Then
from (3), (4) and the convexity of T, we infer that

1
g|v—u|2:r(v—u)ov:(z—y)ov+(y—b)ov§§|y—b|2

so (v) holds. Tt is an elementary consequence of the convexity of T,. that B, is
a rectifiable curve so, in view of (v), (ii) holds.

Suppose a € U, ~ B,. Let b € B, be such that J,(x) = |a — b|. Then
Tan(B,,b) = 1(b,b — a) = 1(b, v, (b). Since B(b — rv,(b),r) C T, and d,(a) < r
we infer that B(a,d.(a)) = {b}. (vi) and (vii) follow.

Suppose s, x,a are as in (viil). Then, following the proof of , we find that

— (@) + (6(2) — £(@)] » (& (@) — & (a))
n 1) 6 (@) — & (a)?

so (viii) holds. O

Theorem 4.1. The following statements hold:

() v < /2.

(i) v < 7/2if0 <7 < R.

(iii) Each member of B, is an arc of a circle of radius r for each r € (0, R].
)

(iv) If 0 < ¢ < r < R then

sup{d, () : © € Bq} < (secyr)(r — q).



(v) (0,R] > r + 7, is increasing.

Proof. Suppose 0 < r < Rand b € C € B,.. Let ¢ =b—rv,(b) and A is the
connected component of b in C(c,r). Were it the case that C(c,r)Nbdry S = )
there would exist s € (r,00) such that U(c, s) C S and this would force b to be
interior to T;.. Applying a rigid motion to S if necessary we may assume ¢ = 0
and that there are v € (0,7) and « € [0,7) such that b = ru(«), v,.(b) = u(a),
B(0,r) C S, dy =ru(+y) € CNbdry S, and

A={ru(d):10| <y} Nbdry S =190.
Owing to the convexity of .S we have
S cW= l'l(d_7 Vr(d_)) N h(d_;’_, Vr(d+)).

Suppose v were greater that /2. Choose 8 € (7/2,7) and note that compact
set {ru(#) : |0| < 5} does not meet bdry S. Thus

B(tey, [ru(p) —tes|) C S

for t sufficiently small and positive and, since |ru(8) — te;| > r whenever 0 <
t < 00, this forces b to be interior to B,. Thus v < 7/2.

Suppose v = 7/2. Then di = +res and W = {z € R? : |zo| < r}. Thus
no ball of radius greater than r is contained in S so r = R. Let ¥’ € clC be
such that |b'| > |x| whenever z € C and let s = |b’| > R. Then b’ = sv,(b) and
B((s — R)v,y(b),R) C S C W. Thus v,(b) = e;. But this implies b is interior to
T,. Thus, in case v = 7/2, C = A.

Suppose 0 < ¢ <r < R, let C' =W N (B, ~ bdryS) and let ¥’ € C’ be
such that

|b'| > |z| whenever z € C’.

Note that || > r since otherwise b’ would be interior to B(0, r) which is a subset
of T,. Let B € (—v,7) be such that ¥ = |/|u(8) and note that v4(b') = u(f).
Since B(b' — qu(f),q) C S C W we find that

(((t) = qu(B)) + qu(z=y)) — ru(d7)) e u(d7) <0
which amounts to
(Ib'| = @) cos(&y = B) <7 —q. (5)
In case 8 > 0 we have cosy < cos(y — () and in case § < 0 we have
cosy < cos(—y — f3) so that (5) implies

('l = q)cosy <7 —q.

Suppose ¢ = r. Were it the case that |b'| > r we would have 8 # v which
is impossible in view of (5). Thus C = A. Moreover v equals the length of C'
divided by r. Thus we have established (i)-(iv).

Suppose 0 < ¢ < r < R and C' € B, and C' C W. Then there are ¢’ and
d, € bdry SnclC’ such that d, — ¢ = qu,(d'.). The convexity of S implies
that the length of C’ divided by q is less than the length of C divided by r and
this establishes (v). O
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Proposition 4.2. We have

limsup{dgr(z) : x € B,} =0.
rTR

Proof. Suppose the Proposition were false. Then there would exist a sequences
rin (0, R) and b,d in S such that b; € B,,, d; € Br and |b; — d;| = sup{dr(z) :
x € By} for each positive integer i, such that lim; ., r; = R but such that
n =1lim; |bz — dl‘ > 0.

Suppose i is a positive integer. We have b; — d; € Nor(T},,b;) so b; — d; =
|b; — di|vr, (b;). We we also have b; — d; € Nor(Bg,d;) since Tan(Bg, d;) is a
line so vr(d;) = v,,(b;). Thus

B(dl — RVR(dZ‘), R) @] B(bl — TiVR(dZ‘), Ti) cS.

Passing to a subsequence if necessary we obtain b, € S, dow € Bgr and
Uoo € St such that (b;,d;, vr(d;)) — (boo, doo, Uss) as @ — oo which implies that
boo = doo + M. Since S is closed we have that that Z,, C S where Z, is the
convex hull of B(doo — Ruteo, R) UB(bso — Reoolioo, R). Since do, € int Zo, C S
we infer that d., € int Tk which is incompatible with d., € Bg. O

Corollary 4.1. For any r € (0, R] we have

li Or x € Bg} =0.
(O’R}g_wsup{ () }

Proof. When r = R this is the statement of the preceding Proposition. If
0 < 7 < R this is a straightforward consequence of Theorem 4.1. O

4.2 Proof of Proposition 1.1.

The continuity of ® follows from Proposition 4.1 and Corollary 4.1.
Suppose 0 < r < R. By Corollary 4.1 there is > 0 such that

r—-n<s<r4+n =0<s<Rand T, ~Ts; CU,.

Suppose r < s < r+17. For each A € B; we let ¢4 be the center of the circle
containing A, we let

Bra= (B, ~Ts)N{ca+t(x—ca):1<t<ooandze A}
and we let
Tooa= T ~Ts)N{ca+tlx—ca):1<t<ooand z € A}

Then
Br ~ Ts = UAEBSBT,A and Tr ~ Ts = UAEBSTT7A~

Let X, : U, — R? be such that

X, () =v.(&§-(z)) for x € U,.
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Then X is Lipschitzian and

div X (z) <
0 < div (a:)_r_As

whenever z € T, ~ Ty and X is differentiable at x and where we have set
A =sup{d,(z) : € Bs}.
Suppose A € B,. Then
Hl(BT.,A):/ Xev.dH' and H'(A) Z/XoysdHl
Bra A

and follows from the Gauss-Green Theorem (see [FE1, 4.5.6]) that

H(A) — H'(B,.a) > (/ X o v, dH! —
A

=— / div X d(?
TT,A
1

r— A,

Xevy, d'H1>

B’V‘,A

>

L3(T.a)-

Summing over B we find that

1
r— A,

TWn%ﬂwunz—( )ﬁ%n~n»

Consequently,

®(s) — d(r) = TV(T,) — TV(T})

L2(T, ~ T) (1 1
R
T S

: -1 e

1 1 s—r

e T~ Ts (T,

_<T T—AS>L( )+ Tsﬁ(‘)
A —

R BTG (S 8 W

r(r— Ag) rs LT

It follows from Theorem 4.1 that
/JQ(TT ~Ts)

limsup ——— <
sir S—rT

and it follows from Proposition 4.1 that lims), A; = 0. Thus

_ 2
slr sS—r r
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5 Some facts about C;(R?).

We will need some results on the space C;(R?) which was defined in [AW1,
1.5.1].
We let

w(m) =+v1+m2 formeR.

Note that if I is an open interval in R and f : I — R is twice differentiable then
(w' o f')(t) is the curvature of f at (¢, f(¢)) whenever ¢ € I.

5.1 A “thickness” theorem.

Lemma 5.1. Suppose

(i) E € C1(R?) and F equals the support of the generalized function corre-
sponding to 1g;

(ii) a € bdry E, u,v € 8!, u € Tan(bdry E,a) and —v € Nor(E, a);
(iii) C is the connected component of a in {z € bdry E : |(z — a) e u| < 1}.
Then there is a continuously differentiable function
fi(-11)—R

such that

(iv) |f(t) <1—=+v1—1t2and |f'(t)| < |t|/V1 — 12 whenever —1 < t < 1;

(v) Lip(w'o f) <1;

(vi) C={a+tu+ f(t)v: -1 <t <1}

Proof. We may assume without loss of generality that a = 0, v = e; and v = es.
Let G be the family of ordered pairs (J,g) such that J is a subinterval of
(=1,1) containing 0, g : J — R is continuously differentiable, and g C C. Owing
to the regularity of bdry E as stated in [AW1, 1.5.1] we find that if (J;, g;) € G,
i =1,2, then (J1 U J2, g1 Uga) € G from which it follows that there is (I, f) € G
such that g C f whenever (J,g) € G.
By [AW1, 5.4.1] we find that Lip (w’ o f’) < 1. This implies that

Wl @) = W' (f'(1) = w'(f(0) < [t] forteT;

since w’ is increasing we find that

2|
1— 2

/@O < v(lt]) = fort el (6)

where v is the function inverse to w’. This in turn implies that

lf(t) <1—+1—1t2 fortel. (7)

13



Let t;, = inf I and let tg = sup I. Owing to (6) we find that the limits
= 1 = 1.
xr tﬁr: (t7 f(t)) and zp t%?;(t’ f(t))

exist and are in bdry F. Owing to the regularity properties of bdry E and the
estimate (6) we find that if either —1 < ¢ty or tg < 1 the maximality of I is
contradicted. O

Theorem 5.1. Suppose C € C;(R?), C is compact and convex, a € bdry C
and
v e S*NNor(C,a).

Then
B(a—v,1) Cc C.

Proof. Tt will suffice to consider the case a = 0 and v = —es.
Let a= = inf{x, : 2 € C}, a* =sup{z1 : z € C} and b = sup{as : z € C}
and let
fE:la=,aT] —[0,0]
be such that
f () =inf{u: (t,u) € C} and fT(t)=sup{u: (t,u) € C}
fora= <t <a'. Then f~ is convex, f is concave, f~ < f* and

C = {(@1,a2) € [a~,a*] x R f~(01) < w2 < f*(a1)}

Let ¢ be such that (¢, b) € C.
Applying Lemma 5.1 with a =0, u = e; and v = e3 we find that o= < —1,
that 1 < at, that

(L f~ () — (0,1)| > 1 fora~ <t<a.

Applying Lemma 5.1 with a = (a*, f~(a™)), u = ez and v = —e; we find
that f~(a™) > 1, that b > f*(a™)+1> f~(at)+ 1> 2, that

I(t, f~ (1) — (e =1,f(a))|>1 forat —1<t<at.
and that
|(t, fH(t) — (@™ =1, fH(a®))|>1 forat —1<t<ar.

Applying Lemma 5.1 with a = (a7, f~(a7)), u = e2 and v = e; we find
that f~(a”) > 1,that b> fT(a”)+1> f~(a”)+ 1> 2, that

[t f~@)—(a+1,f7(a))|>1 fora” <t<a -1
and that
(t, fT(@) = (@™ +1,fT (@) >1 fora” <t<a™ -1

That the Theorem holds should now be clear. O
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6 Proof of Theorem 2.1.

In this section we prove Theorem 2.1. Owing to the way various quantities
change with respect to transformation by homotheties, we may assume that
e=1.

Suppose D € M(R?), £L2(D) > 0 and

D e nloc(vy).
We need to show that
(D, Ty) = 0.

Owing to the regularity results of [AW1, 1.5.1] we may assume that D equals the
support of the generalized function corresponding to 1p. From [AW1, Theorem
10.1] we find that

DcCS.

We also know from [AW1, 1.5.1] that for each b € bdry D there are open
intervals I and J containing 0; a continuously differentiable function g : I — J;
and an isometry ® : R? — R2 such that

9(0)=0, ¢(0)=0, @(b)=0 (8)

SEINI x J)={(u,v) €I xJ:v<g(u)}. 9)

Let A be the family of connected components bdry D Nint S. We know
from [AW1, 8.1] that if A € A then A is an open arc of a circle of radius 1 and
that the length of A does not exceed 7; moreover, if a € A and c is the center
of the circle containing A there is § > 0 such that

B(c,1) N U(a,8) = D NU(a, d). (10)

For each A € A let
ends(A) = (clA) ~ A

and note that ends(A) has exactly two members.

6.1 The proof.

The Theorem will follow from the following Lemmas and Propositions.

Proposition 6.1. Suppose a € D N (bdry S). Then a € bdry D and
D c S Ca+Tan(D,a).

Moreover, if A € A, a € ends(A) and c is the center of the circle containing A
then
Tan(D,a) = h(a,a — ¢).
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Proof. Since D C S we infer that Tan(D,a) C Tan(S,a). Since a € bdry S
and S is convex Tan(S, b) is contained in a closed halfspace. Thus Tan(S,b) =
Tan(D,b). This in turn implies b € bdry D. The final assertion of the Propo-
sition follows directly from (8) and (9). O

Lemma 6.1. Suppose 4; € A, a; € ends(A;) and ¢; is the center of the circle
containing A;, i = 1,2. Then

(ai —c;) ®(c; —¢;) <0 whenever {i,j} = {1,2}.

Proof. Suppose {i,j} = {1,2}. From the preceding Proposition and the fact
that |a; — ¢;| = |a; — ¢;j| we obtain

0= (a; —a;) e (a; —ci)

= (¢j + (a5 —¢j) = (ci + (a; — ci)) @ (a; — ci)

= (c; — i) o (a; — ci) + (a5 — ¢j) 8 (a; — ¢;) = |ai — ¢
> (¢ —ci)®(a; —¢).

O

Proposition 6.2. Suppose a, b, ¢, A are such that A € A, A C C(c,r), ends(A) =
{a,b};and V ={t(zx —c¢):x € clAand t > 1}.
Then exactly one of the following holds:

(i) DNV =0.

(ii) The length of A equals 7w and there are o/, ¢/, A’ such that A’ € A,
A" C C(d,r), ends(A’) = {d’,b'} and such that, for some ¢ > 2,

ad=a+q(d-c), V=b+qld-c), ¢ =c+q(ld-c)
where d is the midpoint of A.
Furthermore, if (ii) holds we have
DNG=0 and GCS

where G is the union of the segments (e, €’) such that e € A, ¢/ € A" and (e, ¢’)
is parallel to the line containing ¢ and ¢'.

Proof. Since S is compact and convex, whenever L is a line and y € L Nint S
there are unique x,z,¢ such that {z,2} C LNbdryS, 0 <t < 1 and y =
(1 —t)x+tz. Since A C int S it follows that there is one and only one function
v:A—intV Nbdry.S such that

bdry SN{c+t(x—c):1 <t <oo}={v(z)} forze A
Owing to the convexity of S we find that

(iii) c+u €A whenever x € A and and u € S* N Nor(S, v(z)).
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Suppose DNV # (). Owing to the compactness and regularity properties of
D there exists d € V Nbdry D such that

|d'—c| =min{lz —¢|:2€ DNV} > 1.
It follows from (10) that
(v) Nor(D,d") = {t(c—d') : 0 <t < oo}.
From Proposition 6.1 we have
d € D C h(a,a—c)Nh(b,b—c).

Since d’ ¢ {a, b} this implies d’ € int V so there is d € A such that d’ = c+t(d—c)
for some t € (1, 00).

Were it the case that d € bdry S we could infer from the Proposition
6.1 that Nor(S,d’) = Nor(D,d') which is incompatible with (iii). Thus d’ ¢
bdry S. Since d’ € D C S we infer that d’ € int S. Thus there is A’ € A such
that d' € A’. Tt follows from (10) that A’ C C(¢/,1) where ¢ = ¢+ u(d — ¢) for
some u € (t +r,00). Thus |¢/ —¢| > 2.

Let o',V such that ends(A’) = {a’,b’}. From the preceding Proposition we
have

(a=c)e(c—)<0 and (V' —c)e(c—()<0.
Since the length of A’ does not exceed m we infer that A’ is a semicircle with
midpoint d’. By a similar argument we find that A is a semicircle with midpoint
d. (ii) now follows.

Let G be as in the final conclusion of the Proposition. From the convexity
of S we infer that the rectangle containing the points a,b,a’,b’ is a subset of
S so G C int S. Suppose, contrary to the last conclusion of the Proposition,
p € DNG. Since p € bdry S there is B € A such that p € B. Since B cannot
meet AU A" we must have ends(B) C [a,a’]U[b,b']. Since (d,d") Nbdry D =
we infer that either ends(B) C [a,b] or ends(B) C [a’,b]. This is impossible
since B € A and B meets either (a,b) or (a’,b") tangentially. O

Lemma 6.2. Suppose a,b,c, A are such that A € A, A C C(c, 1), ends(A) =
{a,b};and V={t(x —c¢):x € clAand t > 1}.
Then DNV = 0.

Proof. Suppose DNV # (). Then there are A’;a’,b',¢’ and G as in (ii) of the
preceding Proposition.
Then DNG =0 and DUG C S so

Vs(DUG) —Vg(D) = —L*(G) =7 —2|lc—|;

moreover,

TV(DUG) — TV(D) = —271 + 2|c — €.
It follows that
0<(TV(DUG)+Vs(DUG) — (TV(D)+ Vs(D))=—-m <0

which is a contradiction. O
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Lemma 6.3. D is convex.

Proof. Suppose e € bdry D.

If e € bdry S then D C S C e + Tan(S,e).

Suppose e € bdry S. Then e € int S so there is A € A such that e € A. Let
a, b, c be such that A C C(c,1) and ends(A4) = {a,b}. Let V ={t(x —¢): x €
clAand ¢ > 1}. We have DNV = () from the preceding Lemma. Since D C S C
h(a,a—c)Nh(b,b—c) by Proposition 6.1 we find that D C e+ Tan(B(c, 1), e).

It follows that D is convex. O

Lemma 6.4. D C T3.

Proof. Suppose d € D. Let a € bdry D be such that |d—a| = dist (d, bdry D).
In case |d — a| > 1 we have B(d,1) C B(d,|d —a|]) C D C SsodeT.
Suppose |d — a| < 1. Letting v € S! be such that d — a = —|d — a|v we find
that v € Nor(D, a) we have from Theorem 5.1 that B(a—v,1) C D C S. Since
|[(a—v)—d|=1—|d—a|l <1 wehave d € T}. O

Lemma 6.5. Suppose u € S'. Then
sup{zeu:x €S} —inf{reu:z e S} >2.

Proof. Let b~ = inf{zewu:x € D} and let bt = sup{zewu : x € D}. Suppose
the Lemma were false. Then, as D C S, bt — b~ < 2. Let v € S! be such that
uev =0. Let a~ =inf{xev:x € D} and let at = sup{x e v} : z € D}. Then
L2(D) < (a* —a”)(b* —b7) < 2(a™ —a™). Since D is convex by the preceding
Lemma we have that TV(D) > 2(a™ — a™). Thus

TV (D) + Vs(D) = TV(D) — L%(D) > 0 = TV () + Vs(0)
which is a contradiction. O
Lemma 6.6. T} C D.

Proof. Suppose, to the contrary, there were e € T7 ~ D. Let d € bdry D be
such that U(e, |d —e|) N D = 0. It follows that

d+ Tan(D,d) = h(d,e — d). (11)

Were it the case that d € bdry S we would have d—e € Nor(S, d) and so, by the
convexity of S, S C d+Tan(S,d) = h(d,d—e)}. But by Tan(S,d) = Tan(D, d)
by Proposition 6.1. Thus d € int S.

Let A € A be such that d € A and let a,b, ¢ be such that A C C(c,1) and
ends(A) = {a, b}. Note that e and ¢ are on opp Let J = h(a,a —c)Nh(b,b—c)
and note that S C J by Proposition 6.1. Since e belongs to a closed ball of
radius 1 which is a subset of S we infer that the length of A equals w. Thus the
lines a + Tan(bdry D, a) and b + Tan(bdry D, b) are parallel with distance 2
between them; this is excluded by Lemma 6.5. O
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7 Proof of Theorem 1.1.

We now show that Theorem 2.1 and Theorems 1.6.1 and 1.6.2 of [AW1] imply
Theorem 1.1.
For each y € (0,00) and E € M(R?) we let

U)E) = [ Blu=15() de% = By~ DEENS) + B)£*(E ~ 5).

7.1 The proof.

The Theorem will follow from the following Lemmas and Propositions.

Lemma 7.1. Suppose 0 < ¢ < oo and either M = Vg or 0 < y < 1 and
M = U,. Then
M(ENS)< M(E) for E € M(R?).

Moreover,
Dem¢(M) = L*(D~S)=0.

Proof. The first assertion follows easily from [AW1, Proposition 2.2Jand the
second follows from [AW1, Proposition 10.2]. O

Lemma 7.2. Suppose 0 < y < 1. Then
m,(Uy) = my,)(Vs).
Proof. Note that whenever E € M(R?) we have
=By = 1) (Vs)yy) (B) = (Uy)e(E) if L2(E ~ ) =0. (12)

Suppose D € m.(Uy). By the preceding Lemma with M = U, we find that
L2(D ~ 8) =0 so for any E € M(R?) we have

—p(1-y) (Vs)n(y) (D) = (Uy)e(D)
(

)
< (Uy)e(ENS)
= =01 =y) (Vs),(, (ENS)
< =61 =y) (Vs),, (E)

where we have applied the preceding Lemma with M = Vg to obtain the last
inequality. Thus D € m,,) (Vs).
By a similar argument one shows that m,,, (Vs) C m.(U,). O

Lemma 7.3. Suppose 1 <y < oo and 0 < ¢ < co. Then

D enlfw,) = £*D)=o.
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Proof. Suppose D € néOC(Uy) and, contrary to the Lemma, £2(D) > 0. Then

(Uy)e(D) = €TV(D) + By — 1)L (D N S) + By)L*(D ~ 5)

> min{g(y — 1), B(y)}£L*(D)
>0

= (Uy)e(0).
which is a contradiction. O

Suppose f € mlOC(F). By [AW1, Theorem 1.6.1] we have

{f>y} e nﬁOC(Uy) whenever 0 < y < co.

Let Y = [|f|lL.(r2) and note that 0 < Y < 1 by the preceding Lemma. If
0 <y <Y then L2({f > y}) > 0so S({f > y},W,) = 0 and ¥(y) < 0 by
Theorem 2.1. If Y < y < 1 then L2({f > y}) = 0 so ¥(y) = 0. It follows that
Y € J and (2) holds.

On the other hand, suppose f is as in (2). Then

S{f>y,W,) =0 if0<y<Y

and
L2{f>y) =0 ifY <y < oo

From the preceding Lemma and Theorem 2.1 we infer that {f > y} € nfOC(Uy)
whenever 0 < y < oo. It follows from [AW1, Theorem 1.6.2] that f € mlo¢(F).
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