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1. Caveat.

In what follows no hypotheses has been made on the triangulation T . As rela-
tively simple counterexamples show, the results in the paper do not hold as stated.
I have fixed all this and a newer, correct version will appear shortly.

2. Introduction.

Suppose T is a triangulation T of R2 with edges E and vertices V, and suppose
Ω is a bounded open subset of R2. Let

Vin = {v ∈ V : v ∈ Ω}.
In this paper we will give an algorithm which uses Vin and nothing else to construct a
finite disjointed family P of simple closed polygons whose union approximates, in a
sense we shall make precise, the boundary ∂Ω of Ω. Of course we will need to assume
something about Ω; under our assumptions ∂Ω will have a finitely many connected
components equal in number to the number of members of P. Specifically, we
assume that ∂Ω is continuously differentiable and and that, for some positive real
number R, if a ∈ R2 and dist (a, ∂Ω) < R there is a unique point of ∂Ω closest
to a. That is, ∂Ω has reach R in the sense of [?]. If ∂Ω is twice continuously
differentiable it will have positive reach R and if K is the maximum length of the
curvature vector of ∂Ω we have K ≤ 1/R; however, KR can be arbitrarily small.
In particular, R is a constraint on how much ∂Ω can come back on itself.

We will show that if

h = sup{diamT : T ∈ T } < R

then
length (P ) ≤ length (∂Ω) ≤ R

R− h
length (P )

where P = ∪P.
Let Ebdry be the set of E ∈ E such that one vertex of E lies in Vin and the other

does not. Let α, the basic adjacency relation, be the set of (E,F ) ∈ Ebdry×Ebdry

such that E 6= F and E and F have a common vertex and let N be its cardinality.
Our algorithm runs in time O(N2) given α. However, if V = A[Z2] for some affine
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isomorphism of R2 then our algorithm runs in time O(N) with a small constant
and uses only integer arithmetic.

This algorithm has been implemented on the computer and has been run in
situations where ∂Ω is quite irregular. It turns out that P , even in these cases,
appears to be a sparse approximation to ∂Ω, and so may useful even when ∂Ω does
not have positive reach.

As we shall show, P is an affine invariant of Vin even though the length of P
clearly is not. It also turns out P is uniquely determined by Vin.

3. Preliminaries.

We let
N and N+

be the set of nonnegative integers and the set of positive integers, respectively.
Whenever m ∈ Z and n ∈ N we let

I(m,n) = {i ∈ Z : m ≤ i < m + n}.
Whenever f is a function whose domain is a subset of Z and z is in its domain

we will write fz instead of f(z).
Whenever r is a relation and A is a set we let

r[A] = {y : for some x, x ∈ A and (x, y) ∈ r}.
In particular, if X is a set and f is a function with domain X then

f [A] = {f(x) : x ∈ X ∩A}.
We let

R2

be the dual of R2.
Let

e1 = (1, 0) and let e2 = (0, 1);

thus e1 and e2 are the standard basis vectors for R2.
We let

a⊥ = (a1,−a2) whenever a = (a1, a2) ∈ R2.

We let
a× b = a⊥ • b = −a • b⊥ whenever a, b ∈ R2.

Alternatively, if a = (a1, a2) ∈ R2 and b = (b1, b2) ∈ R2 then

a× b = det
[
a1 b1

a2 b2

]
.

Whenever a, b, c ∈ R2 we let

[a, b, c] = (b− a)× (c− a) = a× b + b× c + c× a;

note that [a, b, c] 6= 0 if and only if the points a, b, c are noncollinear as well as that
[π(a), π(b), π(c)] = σ[a, b, c] whenever π is a permutation of {a, b, c} and σ is the
index of π.

We let
H
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be the family of closed halfspaces in R2; thus H ∈ H if and only if for some ω ∈ R2

and z ∈ R we have H = {x ∈ R2 : ω(x) ≤ z}. For a, b ∈ R2 with a 6= b we let

h+(a, b) = {x ∈ R2 : [a, b, x] ≥ 0} ∈ H

and we let
h−(a, b) = {x ∈ R2 : [a, b, x] ≤ 0} ∈ H.

Given N ∈ N+ and a1, . . . , aN ∈ R2 we let

c(a1, . . . , aN ) be the convex hull of {a1, . . . , aN}.
We let

V = {a : a ∈ R2};
E = {c(a, b) : a, b ∈ V and a 6= b};
T = {c(a, b, c) : a, b, c ∈ V and [a, b, c] 6= 0}.

For E ∈ E we let v(E) = {a, b} where a, b are such that E = c(a, b); the members
of v(E) are called vertices of E.

For T ∈ T we let e(T ) = {c({a, b}), c({b, c}), c({c, a})} and we let v(T ) =
{a, b, c} where a, b, c are such that T = c({a, b, c}); the members of e(T ) are called
edges of T and the members of v(T ) are called vertices of T .

4. The triangulation and the set of vertices Vin.

For the remainder of this paper we fix a triangulation

T
of R2; this means, by definition, that

(i) T ⊂ T;
(ii) R2 = ∪T ;
(iii) if T, U ∈ T , T 6= U and T ∩ U 6= ∅ then either there is E ∈ e(T ) ∩ e(U)

such that T ∩ U = E or there is v ∈ v(T ) ∩ v(U) such that T ∩ U = {v};
(iv) {T ∈ T : T ∩K 6= ∅} if finite whenever K is a compact subset of R2.

We let
E = {E : E ∈ e(T ) for some T ∈ T }

and we let
V = ∪{v : v ∈ v(T ) for some T ∈ T }.

For the remainder of this paper we fix nonempty subsets

Vin and Vout

such that
V = Vin ∪ Vout, Vin ∩ Vout = ∅ and Vin is finite.

We let
Ein = {E ∈ E : v(E) ⊂ Vin};
Eout = {E ∈ E : v(E) ⊂ Vout};
Ebdry = E ∼ (Ein ∪ Eout);

Tout = {T ∈ T : v(T ) ⊂ Vout};
Tin = {T ∈ T : v(T ) ⊂ Vin};

Tbdry = T ∼ (Tin ∪ Tout)
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and we note that all of these sets are finite. We let

Vbdry = {v ∈ V : for some E ∈ Ebdry, v ∈ v(E)}.
We define

vin : Ebdry → Vin and vout : Ebdry → Vout

by requiring that vin(E) ∈ Vin, vout(E) ∈ Vout and v(E) = {vout(E),vin(E)} for
each E ∈ Ebdry.

4.1. The adjacency relation α and the permutation σ. We have the basic
adjacency relation α is defined as follows.

Definition 4.1. We let

α = {(E, F ) ∈ Ebdry × Ebdry : {E,F} ⊂ e(T ) for some T ∈ Tbdry}.
The following Proposition is a direct consequence of the definitions.

Proposition 4.1. If T ∈ Tbdry then exactly two edges of T belong to Ebdry.

Definition 4.2. Whenever I, J ∈ Z we let

C(I, J)

be the set of maps E : I(I, J) → Ebdry such that
(i) (Ei, Ei+1) ∈ α whenever {i, i + 1} ⊂ I(I, J);
(ii) Ei 6= Ei+2 whenever {i, i + 1, i + 2} ⊂ I(I, J).

We say a subset F of Ebdry is connected if it equals the range of a chain.

Definition 4.3. Suppose v ∈ Vbdry. We let

S(v) = {E ∈ Ebdry : v ∈ v(E)}
and we let

S(v)
be the collection of maximal connected subsets of S(v). For each F ∈ S(v) we let

B(v,F)

be the set of E ∈ Ebdry such that v 6∈ v(E) and {E} ∪ F is connected.

Definition 4.4. We say γ ∈ Γ is special if the following conditions hold:
(I) if (D, E, F ) ∈ τ and γ(E) ∈ E ∼ v(E) then {γ(D), γ(E), γ(F )} is linear;

(II) if v ∈ Vbdry, F ∈ S(v) and v ∈ {γ(F ) : F ∈ F} then
(a) γ(F ) = v for all F ∈ F ;
(b) if {D, E} = B(v,F) then

F ∩wv(c({γ(E), γ(F )}) = ∅ whenver F ∈ F .

Proposition 4.2. Suppose v ∈ Vbdry and F ∈ S(v). Then exactly one of the
following statements holds:

(i) cardB(v,F) = 2;
(ii) cardB(v,F) = 0 and S(v) = F .

Proposition 4.3. Suppose v,F and v are as in 4.13 (II), E,F are such that
B(v,F) = {E, F}, and I ∈ N+ is such that F = σI [E]. Then

(γ(F )− v)× (v − γ(E))

{
≤ 0 if v ∈ Vout,
≥ 0 if v ∈ Vin.
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The permutation σ which we now define will be useful in what follows.

Definition 4.5. For each E ∈ Ebdry we let

j+(E) = h+(vin(E),vout(E)) and we let j−(E) = h−(vin(E),vout(E)).

We let
σ = {(E, F ) ∈ α : F ⊂ j+(E)}.

Proposition 4.4. σ is a permutation of Ebdry without fixed points and

α = σ ∪ σ−1.

Proof. It follows directly from Proposition 4.1 that σ and σ−1 are functions which
are inverse to each other. It is obvious that α = σ ∪ σ−1. ¤
Definition 4.6. We let

O
be the set of orbits of the action

Z× Ebdry 3 (i, E) 7→ σi[E] ∈ Ebdry

of Z on Ebdry. For each E ∈ Ebdry we let

o(E) = {σi[E] : n ∈ Z};
thus o(E) is the orbit of E under the aforementioned action.

The following two Proposition should be evident.

Proposition 4.5. For any E ∈ Ebdry we have

o(E) = {σn[E] : n ∈ Z}.
Moreover, if E, F ∈ O ∈ O there is one and only one i ∈ Z such that 0 ≤ i < cardO
and F = σi[F ].

Proposition 4.6. Z has cardO connected components each of which is homeo-
morphic to a circle.

Definition 4.7. Suppose E ∈ Ebdry. We let the order of E equal min{n ∈ N+ :
E = σn[E]}. We say E is degenerate if v(E) ∩ v(F ) 6= ∅ whenever F ∈ o(E).

We leave the straightforward proofs of the following two Propositions to the
reader.

Proposition 4.7. Suppose E ∈ Ebdry. Then o(E) has at least three members.

Proposition 4.8. Suppose E ∈ Ebdry and E is degenerate. Then there is v ∈ V
such that ∩{v(F ) : F ∈ o(E)} = {v}.
4.2. The family Γ.

Definition 4.8. We let
Γ

be the set of functions γ : Ebdry → V such that γ(E) ∈ E whenever E ∈ Ebdry; in
other words, Γ is the set of choice functions for Ebdry.

Keeping in mind Proposition 4.1, for each (γ, T ) ∈ Γ× Tbdry we let

p(γ, T ) = c(γ(E), γ(F )) and l(γ, T ) = |γ(E)− γ(F )| = diamp(γ, T )

where {E, F} = Ebdry ∩ e(T ).
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For each γ ∈ Γ we let

p(γ) = ∪T∈Tbdryp(γ, T ) and we let l(γ) =
∑

T∈Tbdry

l(γ, T ).

Definition 4.9. For each t ∈ [0, 1] we define

µt ∈ Γ

by letting µt(E) = (1− t)vin(E) + tvout(E) whenever E ∈ Ebdry, we let

Zt = p(µt).

The following Proposition should be clear.

Proposition 4.9. Suppose t ∈ (0, 1). Then Zt has finitely many connected com-
ponents each of which is a simple closed polygon and the number of which equals
cardO.

Definition 4.10. Suppose γi ∈ Γ, i = 1, 2. We say γ1 is equivalent to γ2 and
write γ1 ≈ γ2 if

E ∈ Ebdry and γ1(E) 6= γ2(E) ⇒ γ1(D) = γ2(D) whenever (D, E) ∈ α.

The following Proposition should be clear.

Proposition 4.10. Suppose γi ∈ Γ, i = 1, 2, and γ1 ≈ γ2. Then p(γ1) = p(γ2)
and l(γ1) = l(γ2).

4.3. If p(γ1) = p(γ2). We show in Theorem 4.1 below that if γi ∈ Γ, i ∈ {1, 2}
and p(γ1) = p(γ2) then γ1 and γ2 are essentially the same.

Lemma 4.1. Suppose U ⊂ Tbdry, U = ∪U and γ ∈ Γ. Then

p(γ) ∩ U = ∪{p(γ, T ) ∩ U : U ∈ U}.
Proof. This follows directly from the fact that if V ∈ T then V ∩U 6= ∅ if and only
if V ∈ U . ¤

The next three Lemmas are geometrically obvious; we leave their proofs to the
reader.

Lemma 4.2. Suppose γ ∈ Γ, T ∈ Tbdry and {E, F} = e(T ) ∩ Ebdry. Then p(γ) ∩
intT is nonempty if and only if either γ(E) 6∈ v(E) and γ(F ) 6∈ E or γ(F ) 6∈ v(E)
and γ(E) 6∈ F .

Lemma 4.3. Suppose γi ∈ Γ, i = 1, 2; T ∈ Tbdry; and p(γ1) ∩ intT and p(γ2) ∩
intT are equal and nonempty. Then γ1(E) = γ2(E) whenever E ∈ e(T ) ∩ Ebdry.

Lemma 4.4. Suppose γ ∈ Γ; E ∈ E ∼ Ebdry and

p(γ) ∩ (E ∼ v(E)) 6= ∅.
Then there is one and only T ∈ Tbdry such that E ∈ e(T ) and if D, F are such that
e(T ) = {D, E, F} then

v(E) = {γ(D), γ(F )}.
Theorem 4.1. Suppose γi ∈ Γ for i ∈ {1, 2} and p(γ1) = p(γ2). Then γ1 ≈ γ2.
Moreover, if E ∈ Ebdry and γ1(E) 6= γ2(E) then

v(D) ∩ v(E) ∩ v(F ) = ∅
where {D, F} = {G ∈ Ebdry : (E, G) ∈ α}.
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Proof. Let E ∈ Ebdry be such that γ1(E) 6= γ2(E). Let D,F ∈ Ebdry, A,B ∈
E ∼ Ebdry and T,U ∈ Tbdry be such that T 6= U , e(T ) = {D, E,A} and e(U) =
{E, F, B}. We need to show that

(1) γ1(D) = γ2(D) and γ1(F ) = γ2(F ).

Then either (I) v(D) ∩ v(E) ∩ v(F ) = ∅ or (II) v(D) ∩ v(E) ∩ v(F ) 6= ∅.
Case One. Suppose (I) holds.
Let a, b, c, d be the common vertices of D and A, D and E, E and F , F and B,

respectively. By Lemma 4.3 we have {γ1(D), γ2D} ⊂ {a, b} and {γ1(F ), γ2F} ⊂
{c, d}.

Subcase One. γi(E) 6∈ v(E) for some i ∈ {1, 2}.
Let j be such that {i, j} = {1, 2}. Then γi(D) = b and γi(F ) = c by Lemma

4.3. Now p(γi) ∩ E = E so that p(γj) ∩ E = E. If γj(E) 6∈ v(E) then γj(D) = b
and γj(F ) = c so (1) holds. So suppose γ2(E)

Subcase Two. {i, j} = {1, 2}, γi(E) = b and γj(E) = c.
We cannot have γi(F ) = d by Lemma 4.4 nor can we have γi(F ) ∈ F ∼ v(F )

by Lemmas 4.3 and 4.2. So γi(F ) = c. We cannot have γj(D) = a by Lemma 4.4
nor can we have γj(D) ∈ D ∼ v(D) by Lemmas 4.3 and 4.2. So γj(D) = b. Since
γi(F ) = c we cannot have γi(D) = a by Lemma 4.4 nor can we have γi(D) ∈ D ∼
v(D) by Lemmas 4.3 and 4.2. So γi(D) = b. Since γj(D) = b we cannot have
γj(F ) = d by Lemma 4.4 nor can we have γj(F ) ∈ F ∼ v(F ) by Lemmas 4.3 and
4.2. So γj(F ) = c.

Case Two. Suppose (II) holds. Let a be the common vertex of D,E, F and let
b, c, d be such that v(D) = {a, b}, v(E) = {a, c}, v(F ) = {a, d}.

Subcase One. {i, j} = {1, 2} and γi(E) 6∈ v(E).
Then γi(D) = a and γi(F ) = c so p(γi) ∩ int (T ∪U) = c(S) ∼ v(S) where S =

c(a, γi(E)). This implies p(γj)∩ int (T ∪U) = c(S) ∼ v(S) so that γ2(E) = γ1(E)
which contradicts our hypothesis. So this Subcase does not occur.

Subcase Two. {i, j} = {1, 2}, γi(E) = a and γj(E) = c. We cannot have
γj(D) = b by Lemma 4.4 nor can we have γj(D) ∈ D ∼ v(D) by Lemmas 4.3 and
4.2. So γj(D) = a. We cannot have γj(F ) = d by Lemma 4.3 nor can we have
γj(F ) ∈ D ∼ v(F ) by Lemmas 4.3 and 4.2. So γj(F ) = a. Keeping in mind Lemma
4.1 this implies p(γj) ∩ int (T ∪ U) = E ∼ v(E). But as γi(D) ∈ D and γi(F ) ∈ F
we find that p(γi) ∩ intT ∪ U = ∅. Thus this Subcase does not occur. ¤

4.4. A useful classification. Suppose γ ∈ Γ.
For each v ∈ V we let

usub(γ, v) =





{v} if sub = in and v ∈ Vin ∼ p(γ);
{v} if sub = out and v ∈ Vout ∼ p(γ);
{v} if v ∈ p(γ).

For each E ∈ E we let

usub(γ, E) =





E ∼ v(E) if sub = in and v(E) ⊂ Vin;
E ∼ v(E) if sub = out and v(E) ⊂ Vout;
{v} if sub = out and v ∈ Vout ∼ p(γ);
{v} if v ∈ p(γ).

Keeping in mind that
E ∩ p(γ) ∈ E ∪V
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we find that there are unique functions

uin,uout : Ebdry → [0, 1]

such that uin ≤ uout and

E ∩ p(γ) = {(1− t)vin(E) + tvout(E) : uin(E) ≤ t ≤ uout(E)}.
We let

Uin

be the union of the set
{v ∈ Vin : v 6∈ p(γ)};

the sets
E ∼ v(E) corresponding to E ∈ Ein;

the sets

{(1− t)vin(E) + tvout(E) : 0 < t < uin(E)]} corresponding to E ∈ Ebdry;

the sets
h+(γ(E), γ(F )) ∩ intT

corresponding to T ∈ Tbdry and E,F such that Ebdry ∩ e(T ) = {E, F}, F = σ[E]
and γ(E) 6= γ(F ); the sets

intT

corresponding to T ∈ Tbdry and E,F such that Ebdry ∩ e(T ) = {E, F}, F = σ[E]
and γ(E) = γ(F ) ∈ Vout; and the sets

intT corresponding to T ∈ Tin.

We let
Uout

be the union of the set
{v ∈ Vout : v 6∈ p(γ)};

the sets
E ∼ v(E) corresponding to E ∈ Eout;

the sets

{(1− t)vin(E) + tvout(E) : uout(E) < t < 1} corresponding to E ∈ Ebdry;

the sets
h+(γ(E), γ(F )) ∩ intT

corresponding to T ∈ Tbdry and E,F such that Ebdry ∩ e(T ) = {E, F}, F = σ[E]
and γ(E) 6= γ(F ); the sets

intT

corresponding to T ∈ Tbdry and E,F such that Ebdry ∩ e(T ) = {E, F}, F = σ[E]
and γ(E) = γ(F ) ∈ Vin; and the sets

intT corresponding to T ∈ Tout.

Proposition 4.11. The sets Uin and Uout are open. R2 is the disjoint union of
Uin, Uout and p(γ). We have

Vin ∼ p(γ) ⊂ Uin and Vout ∼ p(γ) ⊂ Uout.
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4.5. Types of edges with respect to γ ∈ Γ.

(i) γ(E) 6∈ v(E) and there is one and only one F ∈ C(−1, 1) such that E = F0,

[γ(F−1), γ(F0), γ(F1)] = 0, [vin(F0),vout(F0), γ(F−1)] < 0, [vin(F0),vout(F0), γ(F1)] > 0.

(ii) γ(E) 6∈ v(E) and there is one and only one F ∈ C(−1, 1) such that E = F0,

[γ(F−1), γ(F0), γ(F1)] 6= 0, [vin(F0),vout(F0), γ(F−1)] < 0, [vin(F0),vout(F0), γ(F1)] > 0.

(iii) γ(E) 6∈ v(E) and there is one and only one F ∈ C(−1, 1) such that E = F0,
γ(F−1) = vin(F0) and γ(F1) = vout(F0).

(iv) γ(E) 6∈ v(E) and there is one and only one F ∈ C(−1, 1) such that E = F0,
γ(F−1) ∈ v(E) and

[γ(F−1), γ(F0), γ(F1)] 6= 0.

(v) γ(E) 6∈ v(E) and there are exactly two F ∈ C(−1, 1) such that E = F0 and
{γ(F−1, γ(F1)} = v(F0).

(vi) γ(E) ∈ v(E) and γ(F ) = γ(E) for all F ∈ o(E);
(vii) γ(E) ∈ v(E) and there is exactly one F ∈ C(−1, 1) such that E = F0,

vin(F0) = γ(F−1) and vout(F0) = γ(F1).
(viii) γ(E) ∈ v(E) and there are I, J ∈ Z and F ∈ C(I, J) such that I < 0 < J ,

E = F0, γ(Fi) = γ(F0) whenever i ∈ I(I + 1, J − 1), there is t ∈ (0, 1)
such that γ(F0) = (1− t)γ(FI)+ tγ(FJ), there is H ∈ H such that γ(F0) ∈
bdry H and ∪J

i=IFi ⊂ H;
(ix) γ(E) ∈ v(E) and there are I, J ∈ Z and F ∈ C(I, J) such that I < 0 < J

E = F0, γ(Fi) = γ(F0) whenever i ∈ I(I+1, J−1), [γ(FI), γ(F0), γ(FJ)] 6= 0
and such that

(∪J−1
i=I+1Fi

)∩ {γ(F0) + s((1− t)γ(γ(FI) + tγ(FJ)) : 0 < s < ∞ and 0 ≤ t ≤ 1} = ∅.
(x) γ(E) ∈ v(E) and there are I, J ∈ Z and F ∈ C(I, J) such that I < 0 < J

E = F0, γ(Fi) = γ(F0) whenever i ∈ I(I+1, J−1), [γ(FI), γ(F0), γ(FJ)] 6= 0
and such that

(∪J−1
i=I+1Fi

) ∼ {γ(F0)} ⊂ {γ(F0)+s((1−t)γ(γ(FI)+tγ(FJ)) : 0 < s < ∞ and 0 ≤ t ≤ 1} = ∅.

4.6. Types of edges with respect to γ ∈ Γ. Suppose E ∈ Ebdry. Let Ei = σi[E]
and let gi = γ(Ei) for i ∈ Z.

Exactly one of the following statements holds:
(I) g0 6∈ v(E0);

(II) g0 ∈ v(E0) and gi = g0 for all i ∈ Z;
(III) g0 ∈ v(E0) and there is one and only one (I, J) ∈ Z2 such that I < 0 < J ;

gi = g0 if i ∈ I(I + 1, J − 1) and g0 6∈ {gI , gJ}.
If (I) holds then exactly one of the following statements holds:

(i) {g−1, g1} ∩ E0 = ∅ and {g−1, g0, g1} is nonlinear;
(ii) {g−1, g1} ∩ E0 = ∅ and {g−1, g0, g1} is linear;
(iii) {g−1, g1} ∩ v(E) 6= ∅ and {g−1, g0, g1} is nonlinear;
(iv) g−1 = g1;
(v) {g−1, g1} = v(E).

If g0, I, J are as in (III) holds then exactly one of the following statements holds:
(vii) g0 ∈ v(E) and g−1 = g0;
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(viii) g0 ∈ v(E) and there are I, J ∈ Z such that I < 0 < J , gi = g0 whenever
i ∈ I(I + 1, J − 1), there is t ∈ (0, 1) such that g0 = (1 − t)gI + tgJ , there
is H ∈ H such that γ(F0) ∈ bdry H and ∪J

i=IFi ⊂ H;
(ix) g0 ∈ v(E) and there are I, J ∈ Z such that I < 0 < J gi = g0 whenever

i ∈ I(I + 1, J − 1), {gI , g0, gJ} is nonlinear and such that
(∪J−1

i=I+1Ei

) ∩ {g0 + s((1− t)gI + tgJ) : 0 < s < ∞ and 0 ≤ t ≤ 1} = ∅.
(x) g0 ∈ v(E) and there are I, J ∈ Z such that I < 0 < J gi = g0 whenever

i ∈ I(I + 1, J − 1), {gI , g0, gJ} is nonlinear and such that
(∪J−1

i=I+1Fi

) ∼ {g0} ⊂ {g0 + s((1− t)(gI + tgJ) : 0 < s < ∞ and 0 ≤ t ≤ 1} = ∅.
4.7. Minimizers .

Definition 4.11. We let

Γmin = {γ ∈ Γ : l(γ) ≤ l(δ) whenever δ ∈ Γ}.
The members of Γmin are called minimizers.

Proposition 4.12. Γmin is nonempty.

Proof. Let
F : [0, 1]Ebdry → Γ and L : [0, 1]Ebdry → [0,∞)

be such that

F (c)(E) = (1−c(γ))vin(E)+c(γ)vout(E) and L(c) = l(F (c)) for c ∈ [0, 1]Ebdry ;

then F is univalent with range Γ and L is convex on the compact cube [0, 1]Ebdry . ¤

4.8. Special paths. A number of properties of a member of Γmin are affinely
invariant; these properties are used to define the class Γspecial.

Definition 4.12. Suppose I ∈ Z and n ∈ N+. We let

C(I, n)

be the set of maps E : I(I, n) → Ebdry such that
(i) (Ei, Ei+1) ∈ α whenever i ∈ I(I, J) and i + 1 ≤ J ;
(ii) Ei 6= Ei+2 whenever i ∈ I(I, J) and i + 2 ≤ J .

Proposition 4.13. Suppose I, J ∈ Z and E : I(I, J) → Ebdry. Then E ∈ C(I, J)
if and only if either Ei = σi[EI ] for i ∈ I(I, J) or Ei = σJ−i[EJ ] for i ∈ I(I, J).

Proof. ¤

Definition 4.13. Suppose γ ∈ Γ. We say γ is special if the following three
conditions hold:

(I) The points
γ(E1), γ(E2), γ(E3)

are distinct and collinear whenever E ∈ C(1, 3) and γ(E2) 6∈ v(E2).
(II) We have

γ(E2) = v

whenever E ∈ C(1, 3), v ∈ V, v(E1)∩v(E2)∩v(E3) = {v}, γ(E1) = v and
γ(E3) = v.



A BOUNDARY APPROXIMATION ALGORITHM FOR PLANAR DOMAINS 11

(III) We have
γ(Ei) 6= v for i ∈ I(I + 1, J − 1)

whenever I, J ∈ Z, I + 1 ≤ J − 1, E ∈ C(I, J) v ∈ V and G,H ∈ H are
such that
(i) the points γ(EI), v, γ(EJ) are distinct;
(ii) c(γ(EI), v) ⊂ bdry G and γ(EJ) ∈ intH;
(iii) c(γ(EJ), v) ⊂ bdry H and γ(EI) ∈ intH;
(iv) v ∈ v(Ei) and Ei ⊂ H ∩ I whenever i ∈ I(()I, J) and I < i < J .

We let
Γspecial = {γ ∈ Γ : γ is special}.

Remark 4.1. By a straightforward argument we shall give in Lemma 4.5 we will
show that

Γmin ⊂ Γspecial.

Suppose γ ∈ Γ and
ι : O → Ebdry × V

is such that γ(E) = v whenever O ∈ O and (E, v) = ι(O).γ(E) = v. In 6 we
will give an algorithm which computes γ up to equivalence, given α and ι in time
O(N2) where N is the cardinality of Ebdry. We will show that if V = A[Z2 for some
affine isomorphism of R2 that this algorithm runs in time O(N) given α; moreover,
in this case, the algorithm uses only integer arithmetic.

We will show in 5 that for each O ∈ O there is a nonempty set of pairs (v, E) such
that E ∈ O, v ∈ v(E) and such that γ(E) = v whenever γ ∈ Γspecial. This implies
that Γspecial has, up to equivalence, a unique member and that Γmin = Γspecial.

In what follows we will need to make use of the following Proposition.

Proposition 4.14. Suppose E ∈ Ebdry, I ∈ N+, a ∈ ∩{v(σi[E]) : i ∈ I(0, I)},
γ ∈ Γspecial and γ(E) = a. Then γ(∼ iE) = a whenever i ∈ I(1, I − 1).

Proof. Were the Proposition false there would be j ∈ I(1, I−1) such that γ(σi[E]) =
a for j ∈ I(0, j−1) but such that γ(σj [E]) 6= a. Suppose γ(σj [E]) ∈ v(σj [E]). Since
γ(σj [E]) 6= a, this is incompatible with (III) of Definition 4.13. Suppose γ(σj [E] 6∈
v(σj [E]). Since γ(σj−1[E]) = a ∈ v(σj [E]) and since σj [E]∩ σj+1[E] = {a} this is
incompatible with (I) of Definition 4.13. ¤

4.9. The affine invariance of Γspecial. Suppose A : R2 → R2 is an affine isomor-
phism.

Let
TA = {A[T ] : T ∈ T }.

Evidently, TA is a triangulation of R2. and let EA and VA be the corresponding sets
of edges and vertices.

Let
Vin,A = A[Vin] and let Vout,A = A[Vout]

and let

Ein,A, Eout,A, Ebdry,A, Tin,A, Tout,A, Tbdry,A, vin,A, vout,A

be as in 4 with Vin and Vout there replaced by Vin,A and Vout,A, respectively.
Let

αA
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be as in Definition 4.1 with Tbdry there replaced by Tbdry,A.

αA = {(A[E], A[F ]) : (E, F ) ∈ α}.
Suppose I, J ∈ Z. We let

CA(I, J)
be defined as in Definition 4.12 with Ebdry and α there replaced by Ebdry,A and αA,
respectively. Evidently,

CA(I, J) = {EA : E ∈ C(I, J)}
where EA : I(I, J) → Ebdry,A is such that (EA)i = A[Ei] whenever E : I(I, J) →
Ebdry.

Let
ΓA

be the set of choice functions for Ebdry,A; let

pA, lA
be as in Definition 4.8 with Γ and Ebdry there replaced by ΓA and Ebdry,A, respec-
tively; let

Γmin,A

be as in Definition 4.11 with Ebdry there replaced by Ebdry,A, respectively, and let

Γspecial,A

be as in Definition 4.13 with Ebdry and C(I, J) there replaced by Ebdry,A and
CA(I, J), respectively. For each γ ∈ Γ let γA ∈ ΓA be such that

γA(A[E]) = A(γ(E)) for E ∈ Ebdry.

Then
pA(γA) = A[p(γ)] for γ ∈ Γ

and
Γspecial,A = {γA : γ ∈ Γspecial}.

Now
lA(γA) 6= l(γ)

generically in A and γ; nonetheless, because Γmin = Γspecial we have

Γmin,A = {γA : γ ∈ Γmin}.
Lemma 4.5. Γmin ⊂ Γspecial.

Proof. Suppose γ ∈ Γmin. It is obvious that (I) and (II) of Definition 4.13 hold.
Suppose I, J , E, v are as in (III) (i)-(iv) of Definition 4.13 but that γ(Ei) = v for

some i ∈ I(I + 1, J + 1). Let I∗, J∗ ∈ I(I, J) be such that I∗ < i < J∗, γ(EI∗) 6= v,
γ(EJ∗) 6= v and γ(Ej) = v if j ∈ I(()I∗ + 1, J∗ − 1). For each i ∈ I(I∗ + 1, J∗ − 1)
let wi be such that v(Ei) = {v, wi}. Let L be a line such that

(i) v and γ(EI∗) lie on different sides of L;
(ii) v and γ(EJ∗) lie on different sides of L;
(iii) for each i ∈ I(I∗ + 1, J∗ − 1), v and wi.

For each i ∈ I(I∗ + 1, J∗ − 1) let xi be such that L ∩ Ei = {xi}. Let δ ∈ Γ be
such that δ(F ) = γ(F ) when F 6= Ei for i ∈ I(I∗ + 1, J∗ − 1) and δ(Ei) = xi when
i ∈ I(I∗+ 1, J∗− 1). Then l(δ) < l(γ) which contradicts the minimality of γ. Thus
(III) of Definition 4.13 holds. ¤
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Proposition 4.15. Suppose
(i) I, J ∈ Z, I < J and E ∈ C(I, J);
(ii) ω ∈ R2 ∼ {0} and m ∈ R;
(iii) for each i ∈ I(I, J),

Ei ∩ {ω ≤ m} 6= ∅ and Ei ∩ {ω > m} 6= ∅;
(iv) M = min{max{ω(x) : x ∈ Ei} : i ∈ I(I, J)}.

Then the following statements hold:
(v) m < M < ∞.
(vi) For each i ∈ I(I, J) there are di, ei ∈ V such that Ei ∩ {ω = m} = {di}

and Ei ∩ {ω = M} = {ei}.
(vii) We have

j−(Ei) ∩ {m < ω < M} ⊂ int j−(Ej) whenever i, j ∈ I(I, J) and i < j.

(viii) If a ∈ j−(EI) ∩ {ω = m}, b ∈ j+(EJ) ∩ {ω = m}, a 6= b, and, for each
i ∈ I(I, J), ti ∈ R is such that di = (1 − ti) + tib then ti ≤ tj whenever
i, j ∈ I(I, J) and i < j with equality only if di = dj .

Proof. In view of (iii), for any y ∈ R and i ∈ I(I, J) the line containing Ei meets
{ω = y} transversely at a point fi(y); in particular, (v) and (vi) hold and v(Ei) ∩
{m < ω < M} = ∅ whenever i ∈ I(I, J). It follows that fi(y) 6= fj(y) whenever
y ∈ (m,M), i, j ∈ NI, J and i < j since two distinct members of Ebdry can only
meet in a vertex. For each y ∈ (m,M) and i ∈ I(I, J) let ui(y) ∈ R be such that
fi(y) = (1 − ui(y))fI(y) + ui(y)fJ(y). In particular, Ei 6= Ej if i, j ∈ I(I, J) and
i < j.

Suppose y ∈ (m,M). If i ∈ I(I, J) and I < i < J then either (a) ui−1(y) <
ui(y) < ui+1(y) or (b) ui−1(y) > ui(y) > ui+1(y) since fi−1(y) ∈ j−(Ei) and
fi+1(y) ∈ j+(Ei). It follows that either (c) ui(y) < ui+1(y) whenever i ∈ I(I, J)
and i < I or (d) ui(y) > ui+1(y) whenever i ∈ I(I, J) and i < I. Since uI(y) = 0
and uJ(y) = 1 we find that (d) holds. Thus

ui(y) < uj(y) whenever i, j ∈ I(I, J) and i < j.

Thus (vii) holds. (viii) follows easily from (vii). ¤

Theorem 4.2. Suppose
(i) E ∈ Ebdry and Ei = σi[E] for i ∈ Z;
(ii) I, J ∈ Z and I ≤ J ;
(iii) ω ∈ R2 ∼ {0} and m ∈ R;
(iv) for each i ∈ I,

Ei ∩ {ω ≤ m} 6= ∅ and Ei ∩ {ω > m} 6= ∅;
(v) γ ∈ Γspecial;
(vi) a ∈ c(γ(EI−1), γ(EI)), b ∈ c(γ(EJ), γ(EJ+1)), a 6= b and {a, b} ⊂ {ω =

m}.
Then

ω(γ(Ei)) = m for i ∈ I(I − 1, J + 1).

Proof. Applying a translation if necessary, we may assume without loss of generality
that m = 0. Let L = {ω = 0}. For each i ∈ Z let gi = γ(Ei).
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I claim that

(2) ω(gi) = 0 for i ∈ I(I, J).

So suppose (2) does not hold. Then N = max{|ω(gi)| : i ∈ I(I, J)} > 0 and
there will exist I∗ ∈ I(I, J) such that

(3) |ω(gI∗)| = N and −N < ω(gi) < N if i ∈ I(I, J) and i < I∗.

Lemma 4.6. gI∗ ∈ v(EI∗).

Proof. Suppose, contrary to the Lemma, gI∗ 6∈ v(EI∗). Since γ is special the points
gI∗−1, gI∗ , gI∗+1 would be distinct and collinear. This is impossible if I < I∗ < J
in view of (3).

Suppose I = I∗ < J . Then a = (1 − s)gI∗−1 + sgI∗ for some s ∈ [0, 1] so 0 =
(1− s)ω(gI∗−1) + sω(gI∗). Since |ω(gI∗+1)| ≤ N the points gI∗−1, g

∗
I , gI∗+1 cannot

be collinear. By a similar argument one arrives at a contradiction if I < I∗ = J .
So suppose I = I∗ = J . Then 0 = (1− s)ω(gI∗−1) + sω(gI∗) for some s ∈ [0, 1]

and 0 = (1 − t)ω(gI) + tω(gI∗+1) for some t ∈ [0, 1] so the points gI∗−1, g
∗
I , gI∗+1

cannot be collinear. ¤

Let dI−1 = a and let dJ+1 = b. Since EI−1 ∪EI ⊂ j−(EI) and j−(EI) is convex
we find that dI−1 ∈ j−(EI). Since EJ ∪ EJ+1 ⊂ j+(EJ) and j+(EJ) is convex we
find that dJ+1 ∈ j+(EJ). Applying Proposition 4.15 we obtain for each i ∈ I(I, J)
a number ti ∈ [0, 1] such that if di = (1− ti)a + tib then then

(4) Ei ∩ L = {di}
and such that

(5) ti ≤ tj and di ⊂ j−(Ej) whenever i, j ∈ I(I, J) and i < j.

Lemma 4.7. There is one and only s ∈ (−∞, tI∗ ] such that if fI∗−1 = (1−s)a+sb
then gI∗−1 lies on the line containing gI∗ and fI∗−1.

Proof. In case I∗ = I we can take s = 0 so suppose I∗ > I. Since |ω(gI∗−1)| <
N = |ω(gI∗)|, gI∗−1 6= gI∗ and the line containing gI∗−1 and gI∗ meets L in
a unique point fI∗−1. Let s ∈ R be such that fI∗−1 = (1 − s)a + sb. Then
fI∗−1 ∈ j−(EI∗) since gI∗ ∈ EI∗ ⊂ j−(EI∗) and gI∗−1 ∈ EI∗−1 ⊂ j−(EI∗). Since
L ∩ j−(EI∗) = {(1 − u)a + ub : u ∈ (−∞, tI∗ ]} by virtue of Proposition 4.15 (viii)
the Lemma is proved. ¤

Let T ∈ H be such that gI∗−1 and gI∗ belong to bdry T and b ∈ T . Then ej ∈ T
whenever I∗ ≤ j so that Ej ⊂ T whenever I∗ ≤ j.

Next, let J be the set of j ∈ I(I, J) such that I∗ ≤ j and gj = gI∗ if i ∈ I(I, J)
and I∗ ≤ i ≤ j. Let J∗ = maxJ . Since gI∗ ∈ v(EI∗) and two members of Ebdry

can only meet in a common vertex we find that gj ∈ v(Ej) if j ∈ J .

Lemma 4.8. If ω(gJ∗+1) 6= ω(gJ∗) there is one and only u ∈ [t∗J ,∞) such that if
fJ∗+1 = (1− u)a + ub then gJ∗+1 lies on the line containing g∗J and fJ∗+1.

Proof. Suppose ω(gJ∗+1) 6= ω(g∗J). If J∗ = J we may take u = 1 so suppose J∗ < J .
Since ω(gJ∗+1) < ω(g∗J ), gJ∗+1 6= g∗J and the line containing gJ∗+1 and g∗J meets
L in a unique point fJ∗+1. Let u ∈ R be such that fJ∗+1 = (1 − u)a + ub. Then
fJ∗+1 ∈ j+(E∗

J) since gJ∗ ∈ EJ∗ ⊂ j+(EJ∗) and gJ∗+1 ∈ EJ∗+1 ⊂ j+(E∗
J). Since

L ∩ j+(E∗
J) = {(1− w)a + wb : w ∈ [t∗J ,∞) and the Lemma is proved. ¤
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Suppose ω(gJ∗+1) 6= ω(g∗J) and fJ∗+1 is as in the preceding Lemma. Let U ∈ H
be such that g∗J and gJ∗+1 belong to bdry U and a ∈ U . Since ti ≤ tJ∗ whenever
i ∈ J and fJ∗+1 ∈ j+(EJ∗) we find that Ei ⊂ U whenever i ∈ J . Since γ is special
we are now in a contradiction.

In case ω(g∗J) = ω(gJ∗+1) we note that, by the definition of J , gJ∗+1 6= gJ∗ and
we let U ∈ H be such that bdry U = {ω = ω(gJ∗)} and L ⊂ U . If j ∈ J then one
of the vertices of Ej is gJ∗ and Ej meets L so that Ej ⊂ U . Since γ is special we
are now in a contradiction.

Thus (2) holds.
Suppose i ∈ I(I, J). Since gi ∈ Ei and {ω = 0} ∩Ei = {ei} we find that gi = ei.
Let u0 be such that a = (1− u0)γ(E0) + u0γ(E1). Applying ω to this equation

we find that 0 = (1 − u0)γ(E0). Let uI+1 be such that b = (1 − uI+1)γ(EI) +
uI+1γ(EI+1). Applying ω to this equation we find that 0 = uI+1γ(EI+1). Thus
the final assertion of the Theorem holds.

¤

5. Locating vertices on a special γ.

Theorem 5.1. Suppose
(i) O ∈ O and V = ∪{v(E) : E ∈ O};
(ii) ω : R2 → R, ω is linear,

Min = max{ω(x) : x ∈ V ∩ Vin} and Mout = max{ω(x) : x ∈ V ∩ Vout}.
Then

either Min < Mout or Mout < Min.

Moreover, in case Min < Mout, then

F = {F ∈ O : F ⊂ {ω > Min} and ω(vin(F )) = Min} 6= ∅
and

γ(F ) = vin(F ) whenever F ∈ F and γ ∈ Γspecial

and, in case Mout < Min,

F = {F ∈ O : F ⊂ {ω > Mout} and ω(vin(F )) = Mout} 6= ∅
and

γ(F ) = vout(F ) whenever F ∈ F and γ ∈ Γspecial

Proof. Let M = max{ω(v) : v ∈ V } and let X = ∪{τ(E) : E ∈ O}. Since
E ⊂ {ω ≤ M} for each E ∈ O we find that X ⊂ {ω ≤ M}.

Suppose E ∈ O. Were it the case that E ⊂ {ω = M} we would have either
σ[E] ∩ {ω > M} 6= ∅ or σ−1[E] ∩ {ω > M} 6= ∅. Thus E meets {ω = M} in a
vertex of E. It follows that

(6) X ∩ {ω = M} ⊂ Vin ∪ Vout and E ∩ {ω < M} 6= ∅ for E ∈ O.

R2 ∼ Z1/2, respectively. Since Z0 and Z1 are connected and since any path
starting on Z0 and ending on Z1 must pass through Z1/2 we find that

either (iii) Z0 ⊂ Wu and Z1 ⊂ Wb or (iv) Z1 ⊂ Wu and Z0 ⊂ Wb.

Since V ∩ Vout ⊂ Z0 and V ∩ Vin ⊂ Z1 we find that

(v) V ∩ Vout ⊂ Wu and V ∩ Vin ⊂ Wb in case (iii) holds.
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and that

(vi) V ∩ Vin ⊂ Wu and V ∩ Vout ⊂ Wb in case (iv) holds

It follows from (6) that Z1/2 ⊂ {ω < M}; this implies {ω ≥ M} ⊂ Wu. Keeping in
mind (v) and (vi) we find that

(vii) V ∩ {ω = M} ⊂ Vout if (iii) holds.

and that

(viii) V ∩ {ω = M} ⊂ Vin if (iv) holds

It follows that

Min < Mout = M in case (iii) holds and Mout < Min = M in case (iv) holds

Let

m =

{
Min if (iii) holds,
Mout if (iv) holds.

Let

N = {F ∈ O : E ∩ {ω > m} 6= ∅}.
Lemma 5.1. Suppose v ∈ V ∩ {ω = m}, E ∈ E , v ∈ v(E) and E ⊂ {ω > m}. If
either (iii) holds and v ∈ Vin or (iv) holds and v ∈ Vout then E ∈ N .

Proof. Suppose v ∈ V ∩Vin ∩ {ω = m}, (iii) holds, E ∈ E , v ∈ v(E) and E ⊂ {ω >
m} but, contrary to the Lemma, E 6∈ N . Then v(E) ⊂ Vin and, since v ∈ Z1 ⊂ Wb

and Wb is open and connected, we have E ⊂ Wb. Let F be a sequence in E such that
F0 = E; v(Fi−1)∩v(Fi) 6= ∅ whenever i ∈ N+; and N 3 ν 7→ maxω[Fν ] increases to
∞ as ν →∞. Since Wb is bounded there must be some N ∈ N+ such that FN 6⊂ Wb

and Fi ⊂ Wb whenever i ∈ N and 0 ≤ i < N . Thus FN meets Z1 and Z0 and this
implies FN ∈ O so vin(FN ) ∈ V ∩ Vin but ω(vin(FN )) > maxω[FN−1] > m.

By a similar argument one deals with the other case. ¤

Suppose v and E are as in the preceding Lemma. Let Ei = σi[E] for i ∈ Z.
Choose integers I, J such that I ≤ 0 ≤ J and Ei ∈ N whenever i ∈ Z and
I ≤ i ≤ J but such that neither EI−1 nor EJ+1 belong to N . It follows that
ω(γ(EI−1)) ≤ m and ω(γ(EJ+1)) ≤ m. Since ω(γ(E)) ≥ m there are integers I ′, J ′

such that I ≤ I ′ ≤ 0 ≤ J ′ ≤ J and distinct points a, b such that ω(a) = m = ω(b),
a ∈ c(γ(σ[EI′−1]), γ(σ[EJ′+1])). It follows that γ(E) = v.

¤

Corollary 5.1. Suppose E is degenerate and v is the vertex of E such that, ac-
cording to Proposition 4.8, is such that ∩{v(F ) : F ∈ o(E)} = {v}. Then

γ(F ) = v whenever γ ∈ Γspecial and F ∈ o(E).

Proof. Suppose ω ∈ R2. Then there will always be w ∈ F ∈ o(E) such that
ω(w) > ω(v) so our assertion follows directly from the preceding Theorem. ¤
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6. The basic construction.

Let
P = {(a,E) : E ∈ Ebdry and a ∈ v(E)}.

Our main goal in this section is to provide an algorithm for computing a function
P as in the following Theorem.

Theorem 6.1. There is a function

P : P → P
such that if (a,E) ∈ P and (b, F ) = P (a,E) then there is J ∈ N+ such that

F = σJ [E]

and such that, whenever γ ∈ Γspecial and γ(E) = a, then

(7) γ(F ) = b and {γ(σj [E]) : j ∈ I(0, J) ⊂ c(a, b).

Theorem 6.2. Suppose γi ∈ Γspecial for i ∈ {1, 2} Then γ1 ≈ γ2.

Proof. Suppose O ∈ O. By Theorem 5.1 there is E ∈ O are such that γ1(E) =
a = γ2(E). Applying the previous Theorem repeatedly we obtain b : N → V and
λ : N→ N be such that b0 = a, λ0 = 0 and such that if j ∈ N then

(bj+1, σ
λj+1 [E]) = P (bj , σ

λj [E]),

bj+1 = γi(bj) for i ∈ {1, 2},
and

{γi(σk[E]) : k ∈ I(λj , λj+1) ⊂ c(bj , bj+1) for i ∈ {1, 2}.
It follows that

∪{c(γ1(σk[E], σk+1[E])) : k ∈ N} = ∪{c(γ2(σk[E], σk+1[E])) : k ∈ N}.
This in turn implies that p(γ1) = p(γ2) so that, by Theorem 4.1, γ1 ≈ γ2. ¤
6.1. The sets wa(B). Out construction will make use of these sets.

Definition 6.1. Whenever a ∈ R2 and B ⊂ R2 we let

wa(B) = {a + t(x− a) : 0 < t < ∞ and x ∈ B}.
We fix

a ∈ R2.

The following four Propositions are geometrically obvious; we leave their proofs
to the reader.

Proposition 6.1. Suppose E is a finite subfamily of of E, V = ∩{wa(E) : E ∈ E}
and intV 6= ∅.

There are b, c ∈ ∪{v(E) : E ∈ E} such that [a, b, c] > 0 and V = wa(c(b, c)).
Moreover, for each E ∈ E there are d, e ∈ E such that [a, d, e] > 0 and

W = wa(c(d, e)).

Proposition 6.2. Suppose E ∈ E, intwa(E) 6= ∅ and b, c are such that v(E) =
{b, c} and [a, b, c] > 0. Then w(E) = h+(a, b) ∩ h−(a, c).

Proposition 6.3. Suppose b, c ∈ R2, [a, b, c] > 0, E = c(b, c), H ∈ H, E ⊂ bdry H
and a 6∈ H. Suppose F ∈ E is such that E ⊂ H and F ∩ intwa(E) = ∅. Then
either F ⊂ h−(a, b) or F ⊂ h+(a, c).
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Proposition 6.4. Suppose
(i) E ∈ E, intwa(E) 6= ∅, H ∈ H, E ⊂ bdry H and a 6∈ H;
(ii) F ∈ E, v(E) ∩ v(F ) = {e} for some e ∈ R2 and F ∼ {e} ⊂ intH;
(iii) I ∈ H, F ⊂ bdry I and E ∼ {e} ⊂ int I;
(iv) intV 6= ∅ where we have set V = wa(E) ∩wa(F ).

Then
(v) a ∈ int I;
(vi) for each x ∈ V there exist unique s, t ∈ (0,∞) such that a + s(x− a) ∈ E

and a + t(x− a) ∈ F ;
(vii) if x, s, t are as in (vi) then s ≤ t with equality only if a + s(x − a) = e =

a + t(x− a).

6.2. The construction of P and the proof of Theorem 6.1. Suppose (a,E) ∈
P.

If E is degenerate we let P (a,E) = (a, σ[E]). If γ ∈ Γspecial we infer from
Proposition 4.8 that γ(F ) = a for all F ∈ o(E) so (7) holds.

So suppose E is not degenerate. Let Ei = σi[E] for i ∈ Z and let

I = max{i ∈ N : a ∈ v(Ei)}.
For each i ∈ N with i > I

Wi = wa(Ei) and we let Vi = ∩i
j=I+1Wj .

Let
I = {i ∈ N : i > I and intVi 6= ∅}.

Proposition 6.5. There is a positive integer J ≥ I + 1 such that I = I(I + 1, J).
Moreover, Ei 6= Ej whenever i, j ∈ I(I, J) and i < j.

Proof. Let T ∈ Tbdry be such that e(T ) = {EI , EI+1} Since T ⊂ WI+1 = VI+1 we
find that I + 1 ∈ I.

If N is the number of edges in o(E) and m ∈ Z then σmN [E] = E and, therefore,
intVmN = ∅ if mN ≥ I + 1. This implies I is bounded.

Let J = max I. If i, j ∈ N+, I + 1 ≤ j < i and i ∈ I then j ∈ I since Vi ⊂ Vj .
Thus I = I(I + 1, J). ¤

By Proposition 6.1 there are for each i ∈ I unique points ri, si ∈ Ei such that
[a, ri, si] > 0 and

VJ = h+(a, ri) ∩ h−(a, si) = wa(c(ri, si)).

Let

R = {a + t(rJ − a) : 0 < t < ∞} and let S = {a + t(sJ − a) : 0 < t < ∞}.
(Of course R = {a + t(ri − a) : 0 < t < ∞} and S = {a + t(si − a) : 0 < t < ∞} for
any i ∈ I.) By Prop 6.3 we have

either (I) EJ+1 ⊂ h−(a, rJ) or (II) EJ+1 ⊂ h+(a, sJ ).

Let
B = {i ∈ I : ri ∈ v(Ei)}

and let
C = {i ∈ I : si ∈ v(Ei)}
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From Proposition 6.1 we infer that neither B nor C is empty and that

VJ = wa(c(ri, sj)) whenever i ∈ B and j ∈ C.

We let

K =

{
maxB in case (I) holds,
maxC in case (II) holds.

and we let

P (a,E) =

{
(rK , EK) in case (I) holds,
(sK , EK) in case (II) holds.

In case (I) holds we let ω ∈ R2 be such that if m = ω(a) then R ⊂ {ω = m}
and S ⊂ {ω > m}. In case (II) holds we let ω ∈ R2 be such that if m = ω(a) then
S ⊂ {ω = m} and R ⊂ {ω > m}.

We have

(8) Ei ∩ {ω = m} 6= ∅ and Ei ∩ {ω > m} 6= ∅ for i ∈ I(I, J).

Now suppose γ is special and γ(E) = a.
From Proposition 4.14 we infer that

(9) γ(Ei) = a for i ∈ I(0, I − 1) which implies a ∈ c(γ(EI−1), γ(EI)).

Suppose (I) holds. Since rK ∈ R ∩ v(EK) and EK meets the interior of VK we
find that γ(EK) ∈ h+(a, rK) = h+(a, rJ ). Since γ(EJ+1) ∈ EJ+1 ⊂ h−(a, rK) we
infer that for some L ∈ I(K, J) the segment c(γ(EL), γ(EL+1)) meets R in a point
c. Applying Theorem 4.2 with I, J there equal I, L and a, b there equal a, c we find
that ω(γ(Ei)) = m for i ∈ I(I, K) and that γ(EK) = rK .

Suppose (II) holds. Since sK ∈ S ∩ v(EK) and EK meets the interior of VK

we find that γ(EJ) ∈ h−(a, sJ ) = h−(a, sI). Since γ(EJ+1) ∈ EJ+1 ⊂ h+(a, sK)
we infer that some some L ∈ I(K, J) the segment c(γ(EL), γ(EL+1)) meets R in a
point c. Applying Theorem 4.2 with I, J there equal I, L and a, b there equal a, c
we find that ω(γ(Ei)) = m for i ∈ I(I,K) and that γ(EK) = sK .

6.3. Computational complexity. Now let us suppose that V = A[Z2] for some
affine isomorphism A of R2.

We will show that

(10) (J − I) ≤ 3(K − I)

Let

U = {a + t(x− a) : 0 < t ≤ 1 and x ∈ c(rJ , sJ) ∼ {rJ , sJ}} = intVJ .

Proposition 6.6. For any E ∈ E we have

E ∩S 6= ∅ and E ∩U 6= ∅ ⇔ E = Ei for some i ∈ I ⇔ E ∩S 6= ∅ and E ∩U 6= ∅.
Proof. Suppose F ∈ E , F ∩ R 6= ∅ and F ∩ U 6= ∅. Then there are s ∈ (0, 1] and
x ∈ c(rJ , sJ) ∼ {rJ , sJ} such that a+s(x−a) ∈ F . For each i ∈ I we let ti be such
that ei = a+ti(x−a) ∈ Ei; by Lemma 4.15 (viii) we have tj < tk whenever j, k ∈ I
and j < k. We must have s = ti for some i ∈ I since otherwise F would meet the
interior of the triangle T such that {Ei, Ei+1} ∈ e(T ) for some i ∈ I ∼ {I}. Thus
a + ti(x− a) ∈ Ei ∩ F for some i ∈ I. Since ei 6∈ v(Ei) we find that E = Ei.

By a similar argument one shows that if F ∈ E , F ∩R 6= ∅ and F ∩ U 6= ∅ then
E = Ei for some i ∈ I.

It follows directly from definitions that if i ∈ I then Ei ∩R ∩ S ∩ U 6= ∅. ¤
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Suppose A is an orientation preserving affine isomorphism of R2 and PA is the
function arising from the construction just described with a, T , Vin replaced by
A(a), {A[T ] : T ∈ T }, {A(v) : v ∈ Vin}, respectively. Then

PA(A(a), A[E]) = (A(b), A[F ]) whenever (a,E), (b, F ) ∈ P, and (b, F ) = P (a, E).

It follows that we may assume without loss of generality that

V = Z2, a = 0.

It follows that for any E ∈ E there is one and only λ(E) = (λ1(E), λ2(E)) ∈ Z2

such that if z = λ(E) then exactly one of the following holds:
(i) E = c(z, z + e1);
(ii) E = c(z, z + e2);
(iii) E = c(z + e2, z + e1);
(iv) E = c(z, z + e1 + e2).
Suppose (I) holds. Since B 6= ∅ there will exist d = (d1, d2) ∈ V ∼ {0} such that

R ∩ V = {wd : w ∈ N+}.
Let M ∈ (0,∞) be such that rJ = Md. Let L ∈ N be such that L ≤ M < L+1.
Applying counterclockwise rotation by nπ/2 radians for some n ∈ N+ if necessary

we may assume without loss of generality that

d1 > 0 and d2 ≥ 0.

Let
m =

d2

d1

We suppose 0 ≤ m ≤ 1 in proving (10) and leave it to the reader to carry out
modify what we do below in a straightforward way to deal with case 1 < m.

Proposition 6.7. B = {wd : w ∈ N+ and w ≤ L}. Also, rK = Ld, λ(EK) = Ld
and λ1(EJ) < (L + 1)d1.

Proof. Suppose w ∈ N+ and w ≤ L. Let v = wd. If w = M then v = bI ∈ B so
suppose w < M .

Since intVI 6= ∅ there is F ∈ E such that v ∈ v(F ) and F ∩ U 6= ∅. By Lemma
6.6 we have F = Ei for some i ∈ I. Thus v ∈ B.

Let F = c(Ld, Ld + e1) and G = c(Ld,Ld + e1 + e2). Since 0 < d2 ≤ d1 we find
that F and G meet U and that c(Ld,Ld + e1) does not meet U . From Proposition
4.15 (viii) and Proposition 6.6 we find that

EK =

{
F if G 6∈ E ,
G if G ∈ E .

it follows that λ(EK) = Ld.
Since rJ = Md and M < L + 1 we find that λ1(EJ) ≤ Md1 < (L + 1)d1. ¤

Lemma 6.1. Suppose i, j ∈ I and i < j. Then

λ1(Ei) ≤ λ1(Ej).

Proof. Let x = (x1, x2) ∈ Ej be such that x1 = λ1(Ej) and let t ∈ (0,∞) be such
that tx ∈ Ei. Then t ≤ 1 by Lemma 4.15 (viii). Thus

λ(Ei) ≤ tx1 ≤ x1 = λ(Ej).

¤
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Let
K = {k ∈ N : k ≤ λ1(EI)};
K′ = {k ∈ K : for some w ∈ [k, k + 1], mw ∈ N};
K′′ = K ∼ K′.

For each k ∈ K let
N(k) = {i ∈ I : λ1(Ei) = k}.

Proposition 6.8. Suppose k ∈ K′. Then 2 ≤ N(k) ≤ 4.

Proof. Suppose 0 < m ≤ 1. Let l ∈ N be such that l ≤ mw < l + 1. Let a = (k, l),
b = (k, l + 1), c = (k, l + 2), d = (k + 1, l), e = (k + 1, l + 1) and let

F = {c(a, b), c(b, e)} and let G = {c(b, d), c(c, e)}.
Then F ∪ G is the set of F ∈ E such that λ1(F ) = k and F ∩ R 6= ∅. Keeping in
mind Proposition 6.6 we find that

F ⊂ {i ∈ I : λ1(Ei) = k} ⊂ F ∪ G.

We leave it to the reader to verify that N(k) = 2 in case m = 0. ¤

Proposition 6.9. Suppose k ∈ K′′. Then N(k) = 3.

Proof. Note that 0 < m < 1 and let l ∈ N be such that l ≤ mk < l + 1. Then
l < mk and l < m(k + 1) < l + 1. Let a = (k, l), b = (k, l + 1), c = (k + 1, l),
d = (k + 1, l + 1) and let

F = {c(a, b), c(a, d), c(b, c), c(b, d).

Then F is the set of F ∈ E such that λ1(F ) = k and F ∩R 6= ∅. Keeping in mind
Proposition 6.6 and the fact that exactly one of c(a, d) and c(b, c) belongs to Ebdry

we find that N(k) = 3. ¤

K − I ≥ 1 +
∑

k∈K′, k≤Ld1

N(k) +
∑

k∈K′′,k≤Ld1

N(k)

≥ 1 + 2Ld2 + 3L(d1 − d2)

= 1 + L(3d1 − d2).

(J − I)− (K − I) ≤
∑

k∈K′, Ld1<k<(L+1)d1

N(k) +
∑

k∈K′′ Ld1<k<(L+1)d1

N(k)

≤ 4d2 + 3(d1 − d2)

Thus
J − I

K − I
≤ 1 +

J − I)− (K − I)
K − I

≤ 1 +
(3d1 + d2)

1 + L(3d1 − d2)

≤ 1 +
4d1

1 + L(2d1)

≤ 1 +
4d1

1 + 2d1
≤ 3.
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7. Some theorems on plane curves.

Throughout this section we fix

R ∈ (0,∞).

Definition 7.1. For each c ∈ R2 and v ∈ S1 we define

D(c, v, R)

as follows. We let D(0, e2, R) equal
{

x ∈ R2 : |x1| < R and −R +
√

R2 − x2
1 ≤ x2 ≤ R−

√
R2 − x2

1

}

and if (c, v) 6= (0, e2) we let D(c, v, R) = ρ[D(0, e2, R)] where ρ is the rigid motion
of R2 which carries 0 to c, e1 to c+v⊥ and e2 to c+v. Alternatively, D(c, v,R) is the
bounded connected component of the complement in {x ∈ R2 : |(x− c) • v⊥| < R}
of U(c + Rv, R) ∪U(c−Rv,R).

Definition 7.2. Suppose a, b ∈ R2, 0 < R < ∞ and 0 < |a− b| < 2R. We let

c+(a, b, R) and c−(a, b, R)

be the points on the perpendicular bisector of c(a, b) such that

|a− c±(a, b, R)| = R = |b− c±(a, b, R)|
and whose inner products with (b− a)⊥ are positive and negative, respectively.

We let
L(a, b, R) = B(c+(a, b, R), R) ∩B(c−(a, b, R), R).

For e ∈ {a, b} we let

We(a, b, R) = {t(x− e) : x ∈ L(a, b, R)}.
Proposition 7.1. Suppose a, b ∈ R2, 0 < |a − b| < 2R, u ∈ S1 ∩Wa(a, b, R) and
v ∈ S1 ∩Wb(a, b, R). Then

|u + v| ≤ |a− b|
R

.

Proof. Let A = S1 ∩Wa(a, b, R) and let B = S1 ∩ {t(x− c−(a, b, R)) : x ∈ c(a, b)}.
Now −v ∈ Wa(a, b, R) so |u + v| does not exceed the diameter of A. Moreover A
is congruent to B the diameter of which equals |a− b|/R. ¤

Lemma 7.1. Suppose |a − b| < 2R. Then L(a, b, R) ⊂ B((1/2)(a + b), |a − b|/2).
In particular, diamL(a, b, R) = |a− b|.
Proof. Exercise for the reader. ¤

Definition 7.3. We let
P(R)

be the set of ordered pairs (I, P ) such that
(i) I is a nonempty open interval;
(ii) P : I → R2;
(iii) P is continuously differentiable and |P ′(s)| = 1 for s ∈ I;
(iv) lim supt→s |P ′(t)− P ′(s)|/|t− s| ≤ 1/R whenever s ∈ I;
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Remark 7.1. Suppose (I, P ) ∈ P(R) and s∗ ∈ {inf I, sup I} ∼ {−∞,∞}. Owing
to (iii) and (iv) in the preceding definition we find that the limits

lim
I3s→s∗

P (s) and lim
I3s→s∗

P ′(s)

exist.

Lemma 7.2. Suppose 0 < R < ∞, c ∈ R2, I is an open interval and

P (s) = c + Ru(s/R) for s ∈ I and C = {P (s) : s ∈ I}
Then (I, P ) ∈ P(R). Moreover, the diameter of the range of P is less than 2R if
and only if the length of I is less than πR.

Proof. Obvious. ¤

Theorem 7.1. Suppose
(i) (I, P ) ∈ P(R);
(ii) s∗ ∈ I and c = P (s∗);
(iii) u = P ′(s∗), v ∈ S1, u • v = 0 and

U(s) = (P (s)− c) • u and V (s) = (P (s)− c) • v for s ∈ I;

(iv) I∗ is the connected component of s∗ in {s ∈ I : |U(s)| < R} and J∗ =
{U(s) : s ∈ I∗};

(v) f = {(U(s), V (s)) : s ∈ I∗};
Then

(vi) I∗ is an open interval, s∗ ∈ I∗, J∗ is an open interval and 0 ∈ J∗ ⊂ (−R, R);
(vii) f : J∗ → R, f is continuously differentiable and

{P (s) : s ∈ I∗ := {c + tu + f(t)v : t ∈ J∗};
(viii) |f(t)| ≤ R−√R2 − t2 whenever t ∈ J∗ and

{P (s) : s ∈ I∗} ⊂ D(c, v,R);

(ix) |f ′(t)| ≤ |t|/√R2 − t2 whenever t ∈ J∗;
(x) if {P (s) : s ∈ I and s < s∗} ∼ D(c, v, R) 6= ∅ then inf J∗ = −R and if

{P (s) : s ∈ I and s > s∗} ∼ D(c, v, R) 6= ∅ then sup J∗ = R;

Proof. (vi) is obvious.
Without loss of generality we may assume R = 1, s∗ = 0, c = 0, u = e1 and

v = e2. Let Q = P ′.
Let I∗∗ be the connected component of 0 in {s ∈ I∗ : Q(s) • e1 > 0} and let

J∗∗ = {U(s) : s ∈ I∗∗}; and let g = {(U(s), V (s)) : s ∈ J∗∗}. Evidently, I∗∗ ⊂ I∗
and J∗∗ ⊂ J∗. Since U ′(s) = P ′(s)•u > 0 for s ∈ I∗∗ we find that (vi) and (vii) hold
with I∗, J∗, f replaced by I∗∗, J∗∗, g, respectively. Let s− = inf I∗ < 0 < sup I∗ = s+

and let t− = inf J∗ < 0 < supJ∗ = t+.
It follows that

Q(t, g(t)) = w(g′(t))−1(1, g′(t)) whenever t ∈ J∗

where we have set w(m) =
√

1 + m2 for m ∈ R.
Let Q = P ′ and for each s ∈ I let

κ(s) = lim sup
h→0

|Q(s + h) •Q(s)⊥|
|h| ;
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since Q(t) •Q(s)⊥ = (Q(t)−Q(s)) •Q(s)⊥ whenever s, t ∈ I we infer from (ii) that
|κ(s)| ≤ 1 for s ∈ I.

Suppose s ∈ J∗∗, 0 < h < ∞ and s + h ∈ J∗∗. We have

Q(s + h) •Q(s)⊥

h
= A(h)B(h)C(h)

where we have set

A(h) =
g′(U(s + h))− g′(U(s))

U(s + h)− U(s)
;

B(h) =
U(s + h)− U(s)

h
;

C(h) =
1

w(g′(U(s + h)))w(g′(U(s)))
.

Now

B(h)C(h) → 1
w(g′(U(s)))3

as h → 0. Since w′′(m) = 1/w(m)3 for m ∈ R we find that

Lip(w′ ◦ g′) ≤ 1.

Since w(0) = 0 and g′(0) = 0 this implies that

|w′(g′(x))| = |w′(g′(x))−w′(g′(0))| ≤ |x| for x ∈ J∗∗;

since w′ is increasing we find that

(11) |g′(x)| ≤ |v(x)| = |x|√
1− x2

whenever x ∈ J ∩ (−1, 1)

where v is the function inverse to w′. This in turn implies that

(12) |g(x)| ≤ 1−
√

1− x2 for x ∈ J∗∗ ∩ (−1, 1).

Thus (viii) and (ix) hold with J∗, f replaced by J∗∗, g, respectively, and the Theorem
will be proved if we can show J∗∗ = J∗. Suppose x0 = sup I∗∗ ∈ I∗. From (viii) we
infer that | limt↑t0 g′(t)| < ∞ which in turn implies that y0 = limt↑t0 g(t) exists and
is finite. Thus Q(x0, y0) • e1 > 0 which implies there is a larger open interval than
I∗∗ on which Q •e1 > 0. Thus supJ∗∗ = sup J∗ and, therefore, sup I∗∗ = sup I∗. In
a similar fashion one shows that inf J∗∗ = inf J∗ and inf I∗∗ = inf I∗. ¤

Theorem 7.2. Suppose (I, P ) ∈ P(R); diam I < ∞;

a = lim
s↓inf I

P (s) and b = lim
s↑sup I

P (s);

r =
|a− b|

2
< R and m =

1
2
(a + b);

w ∈ S1 and

(13) a • w < P (s) • w < b • w whenever s ∈ I.

Then
{P (s) : s ∈ I} ⊂ B(m, r).
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Proof. We may suppose without loss of generality that m = 0 and w = e1. Let
ρ = sup{|P (s)| : s ∈ I} and suppose, contrary to the Lemma, that ρ > r. Since
|a| < ρ and |b| < ρ there is s∗ ∈ I such that |P (s∗)| = ρ and P (s∗) • Q(s∗) = 0.
Let v ∈ S1 be such that P (s∗) = ρv. Let u = v⊥; then Q(s∗) = ±u. Let c = P (s∗)
and let I∗, f , J∗, etc., be as in Theorem 7.1. Since B(0, r)∩D(c, v,R) = ∅ we find
that (−R, R) ⊂ J∗.

Suppose

(14) u • w > 0 and v • w ≥ 0.

Let
ζ±(t) = c∓Rv + R(tu±

√
1− t2v) for 0 ≤ t ≤ 1,

let A± = {ζ±(t) : 0 ≤ t < 1} and note that

A+ ∪A− = {x ∈ bdryD(c, v, R) : c • u ≤ x • u < R + c • u}.
We have

ζ+(0) • w = ((c−Rv) + Rv) • w = c • w < b • w

Since w = (w • u)u + (w • v)v we find in view of (14) that

(w • u)u +
√

1− (w • u)2v = (w • u)u + (w • v)v = w

so that

ζ+(w • u) = ((c−Rv) + Rw) • w = ρv • w + R(1− v • w) > r > b • w

so that there is t∗ ∈ [0, w • u) such that ζ+(t∗) • w = b • w. Thus for any λ ∈ [0, 1]
we have

((1− λ)ζ+(t∗) + λζ−(t∗)) • w = ζ+(t∗) • w + 2λR(1−
√

1− t2∗)v • w ≥ b • w.

Since (−R,R) ⊂ J∗ we find that P (s) ∈ c(ζ+(t∗), ζ−(t∗)), contrary to (13). ¤

Theorem 7.3. Suppose (I, P ) ∈ P(R) and

(15) diam {P (s) : s ∈ I} < 2R.

Then diam I ≤ πR and

(16) {P (s) : s ∈ I} ⊂ L(a, b, R).

Moreover, if
a = lim

I3s→inf I
P (s) and b = lim

I3s→sup I
P (s)

and
ta = lim

I3s→inf I
P ′(s) and tb = lim

I3s→sup I
P ′(s)

then

|ta − tb| ≤ |a− b|
R

.

Proof. Suppose s0, s1 ∈ I and s0 < s1. Let s∗ = (s0 + s1)/2. Let u = P ′(s∗) and
let v = u⊥. If i ∈ {0, 1} and P (si) ∈ D(P (s∗), v, R) we infer from Theorem 7.1 (ix)
that |si − s∗| ≤ πR/2 so that s1 − s0 ≤ πR.

Were it the case that {P (s0), P (s1)} ∩D(P (s∗), v, R) = ∅ we could infer from
Theorem 7.1 (x) that there would be s̃0 ∈ [s0, s∗) and s̃1 ∈ (s∗, s1] such that
(P (s̃0) − P (s∗)) • u = −R and (P (s̃1 − P (s∗)) • u = R and this would imply
|P (s̃1)− P (s̃0| ≥ 2R, contrary (15).
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It follows that diam I ≤ πR. Keeping in mind Remark 7.1 we infer infer the
existence of a, b, t1 and tb as in the statement of the Theorem.

We now prove (16). Let C = {P (s) : s ∈ I} and let d ∈ {c+(a, b, R), c−(a, b, R)}.
Suppose, contrary to (16), C 6⊂ B(c,R). Let c ∈ clC be such that |x− d| ≤ |c− d|
whenever x ∈ C. Let S ∈ (0,∞) and w ∈ S1 be such that c − d = Sw. Suppose,
contrary to (16), S > 1. Since c 6∈ {a, b} we have c = P (s∗) for some s∗ ∈ I and
P ′(s∗) = ±w⊥. But D(d, v, R) ∩U(c,R) = ∅ so {a, b} ∩D(d,w, R) = ∅. We infer
from Theorem 7.1 (x) that there are s± ∈ I such that |(P (s±) ± d) • w⊥| = R
which implies |P (s+) − P (s−)| ≥ 2R which is contrary (15). Thus C ⊂ B(c, R)
and, therefore, (16) holds. The final assertion of the Theorem now follows from
Proposition 7.1. ¤

7.1. Length.

Theorem 7.4. Suppose (I, P ) ∈ P(R) and

d =
1
2
diam {P (s) : s ∈ I} < 2R.

Then
diam I ≤ 2 arcsin

d

R
with equality if and only {P (s) : s ∈ I} is a subset of a circle or radius R.

Proof. The hypotheses of Theorem 7.3 hold so diam I ≤ πR and we may let a, b,
ta, tb be as in the statement of that Theorem. Let

f(s) = |(P (s)− a) • P ′(s)| − |(P (s)− b) • P ′(s)| for s ∈ I.

It follows that

lim
s↓inf I

f(s) = −|(a− b) • ta| < 0 and lim
s↓sup I

f(s) = |(a− b) • tb| > 0

so there is s∗ ∈ I such that if c = P (s∗) and u = P ′(s∗) then for some r ∈ (0,∞)
we have

|(P (s∗)− x) • u| = r for x ∈ {a, b}.
Let v = u⊥, let f , I∗, J∗, etc., be as in Theorem 7.1 and let C = {P (s) : s ∈ J∗}.
Suppose sup J∗ ≤ r. Then b 6∈ C so sup J∗ = R ≤ r. But this forces a 6∈ C so
inf J∗ = −R and diamC ≥ 2R which we have excluded so (−r, r) ⊂ J∗. From The-
orem 7.1 (ix) we infer that the length of C does not exceed 2 arcsin(r/R)lambda(r)
thus establishing our length estimate. We also find that equality holds in the
length estimate if and only if either f(t) = R − √

R2 − t2 for t ∈ (−r, r) or
f(t) = −R +

√
R2 − t2 for t ∈ (−r, r) which is to say C is a subset of a circle

of radius R. ¤

8. The open set Ω.

We assume that throughout this section that Ω is a bounded open subset of R2

whose boundary ∂Ω is a continuously differentiable embedded submanifold of R2

with length L.
We do not assume Ω is connected.
We let T, N : ∂Ω → S1 be such that N is the unit normal to ∂Ω which points

out of Ω and T = N⊥. We let

ρ(x) = dist (x, ∂Ω) for x ∈ R2
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and we let
h(y, r) = y + rN(y) for (y, r) ∈ (∂Ω)× R.

Proposition 8.1. Suppose 0 < R < ∞ and

U = {x ∈ R2 : ρ(x) < R}.
Then the following statements are equivalent.

(i) ξ|U is a function.
(ii) h|((∂Ω)× (−R, R)) is univalent.
(iii) (∂Ω) ∩ (B(b + RN(b), R) ∪B(b−RN(b), R)) = {b} whenever b ∈ ∂Ω.
(iv) |(y − b) •N(b)| ≤ |y − b|2/2R whenever y, b ∈ ∂Ω.

Proof. We leave the proof as a straightforward exercise for the reader. We suggest
showing (i) implies (iii) implies (ii) implies (i). That (iii) and (iv) are equivalent
follows by directly calculation. ¤

We now assume that there are a positive real number R such that with U = {x ∈
R2 : ρ(x) < R} the equivalent conditions of Proposition 8.1 hold.

Inequality (i) implies that the normal N is Lipschitzian. Our assumption about
the reach of ∂Ω is global; in particular, if ∂Ω is twice differentiable and the absolute
value of the curvature of ∂Ω at any point is less than 1/R for some positive real
number R then our assumptions need not hold; consider

Ω = {x ∈ R2 : |x| ∈ {R,R + h}}
where h is a small positive number; it is not too difficult to construct examples of
this sort where ∂Ω is connected.

We assume that

diamT < h < R whenever T ∈ Tbdry

where T is as in 4 and where

Vin = {v ∈ V : v ∈ Ω}.
We will prove the following Theorem.

Theorem 8.1. Suppose γ ∈ Γmin. Then
R− h

R
L ≤ l(γ) ≤ L

where L is the length of ∂Ω.

8.1. More on the geometry of ∂Ω.

Lemma 8.1. The length of each connected component of ∂Ω is at least 2πR.

Proof. Let C be a connected component of ∂Ω and let G be the bounded open
subset of R2 with boundary C. Note that G ⊂ Ω or G ∩ Ω = ∅. Let

ζ =

{
1 if G ⊂ Ω,
−1 if G ∩ Ω = ∅.

Suppose u ∈ S1. Since C is compact there is a ∈ C be such that

{x • u : x ∈ C} ≤ a • u;

clearly, N(a) = ζu.
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Thus {N(x) : x ∈ C} = S1. It follows that

2π ≤
∫

C

|N ′| ≤ L

R

where L is the length of C. ¤

Theorem 8.2. Suppose a, b ∈ ∂Ω and 0 < |a−b| < 2R. Then there is one and only
one connected component C of (∂Ω) ∼ {a, b} such that {a, b} ∈ clC and whose
length is less than πR. Moreover,

(17) diamC = |a− b|, C ⊂ L(a, b, R) and |T (a)− T (b)| ≤ |a− b|
R

.

Finally, if X = c(a, b) then X ⊂ U , ξ|X is univalent and ξ[X] = clC.

Proof. Let m be the midpoint of line segment joining a to b. Then

dist (m,∂Ω) ≤ |a−m| = |b−m| = |a− b|
2

< R

so m ∈ U . Let c = ξ(m), let u = T (c) and let v = N(c). We may assume without
loss of generality that c = 0.

We also have

(18) |e| ≤ |e−m|+ |m| = |a− b|
2

+ dist (m,∂Ω) =
3R

2
< 2R for e ∈ {a, b}.

Let S = {x ∈ R2 : |x1| < R}. If e ∈ {a, b} we have

|e • u| = |(e−m) • u| ≤ |e−m| = |a− b|
2

< R

so

(19) {a, b} ⊂ S.

Let D be the connected component of 0 in ∂Ω and let h ∈ (0,∞) be such that
the length of D equals 2h. Let I, P, c̃ be such that I = (−h, h); (I, P ) ∈ P(R);
P (0) = 0; P is univalent; and {P (s) : s ∈ I} = D ∼ {c̃}. Then h ≥ πR by
Lemma 8.1. Let I∗, J∗, f , etc., be as in Theorem 7.1 with s∗ there equal 0 and let
E = {P (s) : s ∈ I∗}. By (viii) and (ix) of Theorem 7.1 E ⊂ D(0, v, R) and the
length of E does not exceed πR. If s ∈ I∗ then |s| < πR/2 ≤ h by Theorem 7.1
(viii). Thus neither {P (s) : −h < s < 0} nor {P (s) : 0 < s < h} is a subset of
D(c, v,R). It follows from Theorem 7.1 that I∗ = (−R, R).

It follows from Theorem 7.2 that C ⊂ B(m, r). Thus diamC ≤ 2r < 2R so, by
Theorem 7.3, C ⊂ L(a, b, R) and the assertions of (17) follow from Theorem ??.

Let η(t) = (1− t)a + tb for t ∈ [0, 1]. Then

dist (η(t), ∂Ω) ≤ min{|η(t)− a|, |η(t)− b|} ≤ |a− b|
2

< R

for any t ∈ [0, 1] so X ⊂ U .
Suppose there were s, t ∈ [0, 1] such that s 6= t and ξ(η(s)) = d = ξ(η(t)).

Then there would be ρ, σ ∈ (−R,R) such that η(s) = d + ρN(d) and η(t) =
d + σN(d). It would then follow that {a, b} ⊂ {d + zN(d) : z ∈ R}. But since
∂Ω∩ (B(d+RN(d), R)∪B(d−RN(d), R)) = {d} we would have that |a− b| ≥ 2R.
Thus ξ ◦η is univalent so ξ|X is univalent. Thus {ξ ◦η(t) : 0 < t < 1} is a connected
component of (∂Ω) ∼ {a, b} which contains c = ξ(m) = ξ ◦ η(1/2). It follows that
ξ[X] = clC. ¤
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Definition 8.1. Suppose a, b ∈ ∂Ω and 0 < |a − b| < 2R. Keeping in mind the
previous Theorem, we let

a(a, b)

be the unique connected component of ∂Ω ∼ {a, b} whose length is less than πR.

Remark 8.1. The following Theorem and its proof come from [?, 4.4(8)].

Theorem 8.3. Suppose x, a ∈ U and r = max{ρ(x), ρ(a)}. Then

|ξ(x)− ξ(a)| ≤ R

R− r
|x− a|.

Proof. Let y = ξ(x) and let b = ξ(y). From Proposition 8.1 (iv) we obtain

(x− y) • (y − b) ≥ −|y − b|2||x− y|
2R

≥ −r|y − b|2
2R

and

(a− b) • (y − b) ≥ −|y − b|2||a− b|
2R

≥ −r|y − b|2
2R

.

Thus

|x− a||y − b| ≥ (x− a) • (y − b)

= [(y − b) + (x− y) + (b− a)] • (y − b)

≥
(
1− r

2R
− r

2R

)
|y − b|2

=
R− r

R
|y − b|2.

¤

8.2. Inscribing the polygon.

Definition 8.2. Let β ∈ Γ be such that for each E ∈ Ebdry we have β(E) ∈ ∂Ω
and {(1− t)vout(()E) + tγ(E) : 0 ≤ t < 1} ∩ ∂Ω = ∅.
Theorem 8.4. Suppose E ∈ Ebdry, F = σ(E), a = γ(E), b = γ(F ), a 6= b and
u ∈ S1 is such that b− a = |b− a|u. Then

|u− T (x)| < whenever x ∈ a(a, b).

Proof. Choose f , etc., as in ?? such that... We may assume without loss of gen-
erality that a = 0, T (a) = −e1 and N(a) = e2. Let x ∈ (−R,R) be such that
b = (w, f(w)). We will show that w < 0.

Case One. vout(E) = vout(F ). Suppose vout(E) = (x, y). Then ty > f(tx)
whenever 0 < t ≤ 1. ¤

Lemma 8.2. (WRONG!) Suppose E ∈ Ebdry, a ∈ E ∩ ∂Ω, b ∈ σ[E] ∩ ∂Ω and
a 6= b. Then |a− b| < R and no vertex of T = c(E ∪ σ[E]) lies in a(a, b).

Proof. Suppose, contrary to the Lemma, c is a vertex of E which lay on the interior
of a(a, b) relative to ∂Ω. Keeping in mind ?? and using the Mean Value Theorem
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we obtain a∗, b∗ ∈ a(a, b) such that c − a = |a − c|T (a∗) and b − c = |b − c|T (b∗)
where we have interchanged a and b if necessary. But then, by ? of Theorem 7.1,

0 ≤ (c− a) • (b− c)
|c− a||b− c|

= T (a∗) • T (b∗)

= (T (a∗)− T (b∗)) • T (b∗)− 1

≤ |a∗ − b∗|
R

− 1

≤ |a− b|
R

− 1

which contradicts our hypothesis that diamT < R. ¤

Lemma 8.3. Suppose γ is a choice function for Ebdry such that

γ(E) ∈ ∂Ω for E ∈ Ebdry.

Then the family of the interiors of a(γ(E), γ(σ[E])) relative to ∂Ω corresponding
to E ∈ Ebdry with γ(E) 6= γ(σ[E]) is disjointed.

In particular, l(γ) does not exceed the length of ∂Ω.

Proof. Suppose the Lemma were false. Keeping in mind that a(γ(E), c(σ[E])) is
homeomorphic to (0, 1) whenever E ∈ Ebdry there would be for each i = 1, 2,

Ei, ai, bi, Ai, Bi

such that
(i) Ei ∈ Ebdry;
(ii) ai = γ(Ei) and bi = γ(σ[Ei]);
(iii) Ai is the interior of a(ai, bi) relative to ∂Ω;
(iv) Bi is the interior of the triangle which is the convex hull of Ei ∪ σ[Ei]

but such that
B1 ∩B2 = ∅ and {a2, b2} ∩A1 6= ∅.

Suppose c ∈ {a2, b2} and c ∈ A1. Since B1 ∩ B2 = ∅, c would lie on an edge F
of the triangle which is the closure of B1. If c lay on the interior of F we would
have F = E2 or F = σ[E2] so that F ∈ Ebdry, which would imply that F = E1 or
F = σ[E1]; but then

c = γ(F ) ∈ {γ(E1), γ(σ[E1])} = {a1, b1};
that is, c 6∈ A1. So c is a vertex of F and therefore a vertex of the triangle which
is the convex hull of E1 ∪ σ[E1]. But this contradicts Lemma 8.2.

That l(γ) does not exceed L follows from the triangle inequality. ¤

Theorem 8.5. Suppose γ ∈ Γ. Then ξ[p(γ)] = ∂Ω and

L ≤ R

R− h
l(γ)

where L is the length of ∂Ω.

Proof. For each E ∈ Ebdry choose β(E) ∈ E ∩ ∂Ω.
Suppose b ∈ ∂Ω and let B = {x ∈ R2 : |(x− b) •T (b)| < R and |(x− b) •N(b)| ≤

R}. Let T± ∈ T be such that b ± RN(b) ∈ T±. Choose v± ∈ B ∩ v(T±); this is
possible since h < R. Choose a continuous map ζ : [0, 1] → B ∩ (∪E) such that
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ζ(0) = v− ∈ Ω and ζ(1) = v+; this is possible since h < R. It follows from Theorem
7.1 that K = {t ∈ [0, 1] : ζ(t) ∈ ∂Ω} is a nonempty compact subset of (0, 1). Let
E ∈ E be such that ζ(inf K) ∈ E. It follows that E ∈ Ebdry.

Given ζ ∈ Γ we can define a map fζ : Z1/2 → p(ζ) by assigning (1 − t)ζ(E) +
tζ(σ[E]) to (1− t)µ1/2(E) + tµ1/2(σ[E]) whenever E ∈ Ebdry and t ∈ [0, 1].

Let C be the connected component of β(E) in Z1/2 and let D be the connected
component of b in ∂Ω. Let µ : S1 → C and ν : S1 → D be homeomorphisms. It
follows from the preceding Lemma that the degree of ν−1 ◦ ξ ◦ fβ ◦ µ is ±1. Since
fγ is homotopic to fβ we infer that the degree of ν−1 ◦ ξ ◦ fγ ◦ µ is ±1 which in
turn implies that D ⊂ ξ[p(γ)].

Thus ∂Ω ⊂ ξ[p(β)]; this implies

L ≤ Lip ξl(β) ≤ R

R− h
l(β).

¤

8.3. Proof of Theorem 8.1. For each E ∈ Ebdry choose β(E) ∈ ∂Ω ∩ E. From
the preceding Theorem and ?? we infer that

R− h

R
L ≤ l(γ) ≤ L ≤ l(β) ≤ L.

9. The tangent estimate.

We suppose throughout this section that γ ∈ Γmin.

Theorem 9.1. Suppose E ∈ Ebdry, u ∈ S1 is such that

γ(σ[E])− γ(E) = |γ(σ[E])− γ(E)|u,

and a ∈ c(γ(E), γ(σ[E])). Then

|u− T (ξ(a))| ≤
Proof. We may assume without loss of generality that a is the midpoint of E,
ξ(a) = 0, T (0) = −e1 and N(0) = e2. By ?? we obtain f : (−R,R) → (−R, r)
such that ∂Ω ∩D(0, e2, R) = f .

For 0 < r < R let S(r) = {(x, y) ∈ R2 : |x| < r}. Since E ∩ ∂Ω 6= ∅,
|a| = dist a, ∂Ω ≤ diamE < h.

In particular, E ⊂ S(R− h) ∩D(0, e2, R).
Let C be the connected component of a in p(γ) ∩ S(R− h).
For each i ∈ Z let Ei = σi[E]; let Ti = c(Ei ∪ Ei+1); let gi = γ(Ei); and let

Si = c(bi, bi+1).
Let β be a choice function on Ebdry such that β(E) ∈ ∂Ω whenevr E ∈ Ebdry and

let xi = ξ(β(Ei)) • e1 for i ∈ Z.
Let F be the largest connected subset of {F ∈ Ebdry : F ⊂ S(R)}. Since E ∈ F

and since the diameter of the connected component of 0 in ∂Ω is at least 2πR we
find that there are I, J ∈ Z such that I ≤ 0 ≤ J and F = {Ei : i ∈ I(I, J)}. It
follows that (EI−1 ∪EJ+1) ⊂ R2 ∼ S(R− h). Since the degree of the restriction of
ξ to each connected component of p(β) is one we have

xj ≤ xi if i, j ∈ {I, J} and i < j.
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It follows that that there are points q± such that q+ ∈ SI−1, q− • e1 = R − h,
q+ ∈ SJ and q+ • e1 = −R + h. This in turn implies that

(bI−1 − q−) • e1 < 0 and that (q+ − bJ+1) • e1 < 0.

Let

Fin = {FEin : F ⊂ Vin ∩ S} and let Fout = {FEout : F ⊂ Vin ∩ S}
Suppose G is a nonempty maximal connected subset of Fin. Let I∗ = min{i :

Ei ∈ G and let J∗ = max{i : Ei ∈ G.
Suppose I < I∗ and J∗ < J . Then there are p+ ∈ EJ−−1 ∼ EJ− and p− ∈ EJ+

such that either p+ • e1 = R − h or there is x± ∈ (−R + h,R − h) such that
p± = (x±, f(x±)) then

c(gJ− , p−) ∩ c(gJ+ , p+) ⊂ U+.

Let
v± =

1√
1 + f ′(x±)2

(−f ′(x±), 1).

We have
uJ−−1 • v− ≥ 0 as well as uJ+ • v+ ≥ 0.

Let P be the union of the segments Si, i ∈ {J−, . . . , J− − 1} and the segments
c(p−, gJ−) and c(gJ+−1, p+) and let Q be the union of the segments c(p±, (x±,−R))
and the segment c((x+,−R), (x+,−R)). Then P ∪Q is a simple closed polygon.

Let θi = arcsin ui× ui+1 for i ∈ {J−, . . . , J−1}; let α− = arcsin e2× uJ− and let
α+ = − arcsinuJ+ × e2. By the Gauss-Bonnet Theorem for simple closed polygons
we infer that

π + α− + α+ +
J+−1∑

i=J−
θi = 2π.

Since θi ≤ 0 for i ∈ {J−, . . . , J−1} we find that α− + α+ ≥ π. Since |α±| ≤??
we find that α± ≥ 0. Thus P = {(s, g(s)) : x− ≤ s ≤ x+} for some convex
g : [x−, x+] → [−R,R] for which f(x±) = g(x±). Moreover, f(x) ≤ g(x) for
x ∈ [x−, x+] which implies that

f ′(x−) ≤ g′(x−) and g′(x+) ≤ f ′(x+).

Since g is convex we have

f ′(x−) ≤ g′(x) ≤ f ′(x+) whenever x− ≤ x ≤ x+.

For each ζ ∈ Γ and T ∈ Tbdry let

q±(T, ζ) ∈ H

be defined as follows. Let E, F be such that Ebdry ∩ e(T ) = {E, F} and F = σ(E).
In case ζ(E) 6= ζ(F ) we let

q±(T, ζ) = T ∩ int h±(γ(E), γ(F )).

In case ζ(E) = ζ(F ) ∈ Vin we let

q+(T, ζ) = ∅ and we let q−(T, ζ) = T ∼ {ζ(E)}.
In case ζ(E) = ζ(F ) ∈ Vin we let

q+(T, ζ) = T ∼ {ζ(E)} and we let q−(T, ζ) = ∅.
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We let
U+ = ∪J−1

i=I−q+(Ti, β) ∼ cl q+(Ti, γ)
and we let

U− = ∪J−1
i=I−q+(Ti, γ) ∼ cl q+(Ti, β)

¤
Proof.

bi = β(Ei) and gi = γ(Ei).

Si = c(bi, bi+1) and Ti = c(gi, gi+1).

u, v : I → S1 ∪ {0}
are such that

ui = bi+1 − bi and vi = gi+1 − gi.

Note that
bi • e1 < 0.

Let Min be the set of (A,B)I(I, J) × I(I, J) such that bi ∈ Vin whenever i ∈
I(A, B) and let Mout be the set of (A, B)I(I, J) × I(I, J) such that Vout whenever
i ∈ I(A,B).

Lemma 9.1. vi • e2 6= 0.

Proof. Suppose vi = se2 and s 6= 0. Then Si ⊂ h+(gi, gi+1).
Suppose s > 0.

9.1. Computing X. For 0 < x < R let

f(x) = R−
√

R2 − x2 and let g(x) =
f(x) + h

x
.

Then g has a unique minimum on (0, R) at

X =
R

R + h

√
h2 + 2Rh

and both f(X) and f ′(X) equal √
h

R

(
h

R
+ 2

)
.

Lemma 9.2. There are I, J ∈ Z such that I < 0 < J and

{i ∈ Z : Ei ∩ f 6= ∅} = I(I, J).
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