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1. CAVEAT.

In what follows no hypotheses has been made on the triangulation 7. As rela-
tively simple counterexamples show, the results in the paper do not hold as stated.
I have fixed all this and a newer, correct version will appear shortly.

2. INTRODUCTION.

Suppose 7 is a triangulation 7 of R? with edges £ and vertices V, and suppose
Q) is a bounded open subset of R2. Let

Vin={veV:veQ}

In this paper we will give an algorithm which uses V;,, and nothing else to construct a
finite disjointed family P of simple closed polygons whose union approximates, in a
sense we shall make precise, the boundary 952 of Q. Of course we will need to assume
something about €2; under our assumptions 92 will have a finitely many connected
components equal in number to the number of members of P. Specifically, we
assume that 0f) is continuously differentiable and and that, for some positive real
number R, if a € R? and dist (a,0Q) < R there is a unique point of 9 closest
to a. That is, 00 has reach R in the sense of [?]. If 9 is twice continuously
differentiable it will have positive reach R and if K is the maximum length of the
curvature vector of 9Q we have K < 1/R; however, KR can be arbitrarily small.
In particular, R is a constraint on how much 92 can come back on itself.
We will show that if

h=sup{diamT : T €T} <R
then

length (P) < length (0Q2) < RR

where P = UP.

Let Epary be the set of E € £ such that one vertex of F lies in V;, and the other
does not. Let ¢, the basic adjacency relation, be the set of (E, F') € Epary X Ebdry
such that E # F and F and F have a common vertex and let N be its cardinality.
Our algorithm runs in time O(N?) given a. However, if V = A[Z?] for some affine

N length (P)
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isomorphism of R? then our algorithm runs in time O(N) with a small constant
and uses only integer arithmetic.

This algorithm has been implemented on the computer and has been run in
situations where 0f) is quite irregular. It turns out that P, even in these cases,
appears to be a sparse approximation to 0f2, and so may useful even when 92 does
not have positive reach.

As we shall show, P is an affine invariant of Vi, even though the length of P
clearly is not. It also turns out P is uniquely determined by Viy.

3. PRELIMINARIES.
We let
N and Nt

be the set of nonnegative integers and the set of positive integers, respectively.
Whenever m € Z and n € N we let

I(m,n)={i €Z:m <i<m+n}.
Whenever f is a function whose domain is a subset of Z and z is in its domain

we will write f, instead of f(z).
Whenever r is a relation and A is a set we let

r[A] = {y : for some x, z € A and (z,y) € r}.
In particular, if X is a set and f is a function with domain X then
flA ={f(z) :z € X N A}
We let
R,

be the dual of R2.
Let
e; =(1,0) andlet ey =(0,1);

thus e; and ey are the standard basis vectors for R2.

We let
at = (a1, —az) whenever a = (ay,az) € R2.
We let
axb=ateb=—aeb- whenever a,bc R2.
Alternatively, if a = (a1, a2) € R? and b = (b1, ba) € R? then
a xb=det [Z; Zj

Whenever a, b, c € R? we let
[a,b,c] =(b—a)x (c—a)=axb+bxc+cXa;
note that [a, b, ¢] # 0 if and only if the points a, b, ¢ are noncollinear as well as that
[r(a), m(b), 7(c)] = ola,b,c] whenever 7 is a permutation of {a,b,c} and o is the

index of 7.
We let
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be the family of closed halfspaces in R?; thus H € H if and only if for some w € R,
and z € R we have H = {z € R? : w(z) < z}. For a,b € R? with a # b we let

h,(a,b) = {r € R*: [a,b,2] >0} € H

and we let
h_(a,b) = {x € R?: [a,b,2] <0} € H.
Given N € Nt and ay,...,an € R? we let
c(ay,...,an) Dbe the convex hull of {ay,...,an}.
We let

V ={a:acR?

E = {c(a,b) : a,b € V and a # b};

T = {c(a,b,¢) : a,b,c € V and [a, b, ¢] # 0}.
For E € E we let v(E) = {a, b} where a, b are such that E = c(a,b); the members
of v(E) are called vertices of E.

For T € T we let e(T) = {c({a,b}),c({b,c}),c({c,a})} and we let v(T) =

{a,b,c} where a,b, c are such that T' = c({a, b, c}); the members of e(T') are called
edges of T and the members of v(T') are called vertices of T.

4. THE TRIANGULATION AND THE SET OF VERTICES V.

For the remainder of this paper we fix a triangulation
T
of R?; this means, by definition, that

(i) T C T;

(i) R? = UT;

(i) if T,U € T, T # U and TNU # () then either there is E € e(T) Ne(U)

such that TNU = E or there is v € v(T) Nv(U) such that TNU = {v};

(iv) {T € T : TN K # 0} if finite whenever K is a compact subset of R2.

We let
E={E:Ece(l) forsomeT €T}
and we let
V=U{v:vev(T) for some T € T}.
For the remainder of this paper we fiz nonempty subsets
Vin and  Vout
such that
V=ViuUVout, Vin NVour =0 and Vi, is finite.
We let
En={F €& :v(E)CVnk
Eos ={F €& :V(E) CVou};
Ebdry = & ~ (Ein U Eout);
Tout ={T €T :v(T) C Vour};
Tn={T€T:v(T) CVn};
Todry =T ~ (Tin U Tout)
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and we note that all of these sets are finite. We let
Vhary = {v € V : for some E € Eary, v € V(E)}.

We define
Vin * gbdry - Vin and Vout - gbdry — Vout
by requiring that Vin (E) € Vin7 Vout (E) € Vout and V(E) = {Vout (E)avin(E)} for
each F € Epary.

4.1. The adjacency relation o and the permutation oc. We have the basic
adjacency relation « is defined as follows.

Definition 4.1. We let
a={(E,F) € Evdry X Ebdry : {E,F} C e(T) for some T € Tpgry }-
The following Proposition is a direct consequence of the definitions.
Proposition 4.1. If T' € Ty,qy, then exactly two edges of T" belong to Epary-
Definition 4.2. Whenever I,J € Z we let
C(1,J)
be the set of maps E : I(I, J) — Epary such that
(i) (Ei, Ei+1) € a whenever {i,i+ 1} C I(I,J);
(ii) E; # Fite whenever {i,i+ 1,7+ 2} C I(1, J).
We say a subset F of &,qry is connected if it equals the range of a chain.
Definition 4.3. Suppose v € Vpqry. We let
S(v) ={FE € &vary : v € V(E)}

and we let
S(v)
be the collection of maximal connected subsets of S(v). For each F € S(v) we let
B(v, F)

be the set of E € Epary such that v € v(E) and {E} U F is connected.

Definition 4.4. We say v € I is special if the following conditions hold:
(I) if (D,E,F) €7 and y(E) € E ~ v(E) then {v(D),v(E),y(F)} is linear;
(I) if v € Voary, F € S(v) and v € {y(F) : F € F} then
(a) v(F)=wv for all F € F;
(b) if {D, E} = B(v, F) then

Fnwy(c({y(E),v(F)}) =0 whenver F' € F.

Proposition 4.2. Suppose v € Vyary and F € S(v). Then exactly one of the
following statements holds:

(i) card B(v, F) = 2;
(ii) card B(v, F) =0 and S(v) = F.
Proposition 4.3. Suppose v, F and v are as in 4.13 (II), E, F' are such that
B(v,F) = {E,F}, and I € Nt is such that F = o![E]. Then
S 0 ifve Vouty
>0 ifveV,.

(Y(F) = v) x (v =~(E)) {
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The permutation ¢ which we now define will be useful in what follows.

Definition 4.5. For each E € Eq4ry we let
J+(E) =hy (via(E), voutr(E)) and we let j_(E) =h_(vin(E), vout (E)).
We let
o={(E,F)ca:FCji(E)}.
Proposition 4.4. o is a permutation of &,4,y without fixed points and
a=ocUoc L

Proof. Tt follows directly from Proposition 4.1 that ¢ and ¢~! are functions which
are inverse to each other. It is obvious that « = o U~ 1. O

Definition 4.6. We let
(0]

be the set of orbits of the action
Z x Epary 2 (i, E) — 0'[E] € Epary
of Z on Epary. For each E € &4,y we let
o(E) = {0'[E] :n € Z};
thus o(F) is the orbit of F under the aforementioned action.
The following two Proposition should be evident.

Proposition 4.5. For any F € E,qry we have

o(E)={c"[E]:n € Z}.
Moreover, if E, F € O € O there is one and only one i € Z such that 0 < i < card O
and F = o'[F].

Proposition 4.6. Z has card O connected components each of which is homeo-
morphic to a circle.

Definition 4.7. Suppose E € Eyary. We let the order of E equal min{n € N* :
E = o™[E]}. We say E is degenerate if v(E) N v(F) # () whenever F € o(E).

We leave the straightforward proofs of the following two Propositions to the
reader.

Proposition 4.7. Suppose E € Epdry. Then o(E) has at least three members.

Proposition 4.8. Suppose E € Ehdry and E is degenerate. Then there is v € V
such that N{v(F): F € o(E)} = {v}.
4.2. The family I
Definition 4.8. We let
T

be the set of functions v : Epary — V such that y(E) € E whenever E € Epgry; in
other words, I is the set of choice functions for Epqry.
Keeping in mind Proposition 4.1, for each (v,T) € T' X Tpary we let

P(7,T) = c(v(E),v(F)) and 1(v,T)=[y(E) —~(F)| = diamp(y,T)
where {E, F'} = Evary Ne(T).
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For each v € T" we let
P(7) = Urezi,, P(1,T) and welet 1(y)= > 1(y,7).

TEToary
Definition 4.9. For each ¢ € [0, 1] we define
pue €T
by letting p:(E) = (1 — t)Vin(E) + tvout (E) whenever E € Eyqry, we let
Zy = p(t)-

The following Proposition should be clear.

Proposition 4.9. Suppose ¢ € (0,1). Then Z; has finitely many connected com-
ponents each of which is a simple closed polygon and the number of which equals
card O.

Definition 4.10. Suppose v; € I', i = 1,2. We say 7, is equivalent to o and
write v & g if

E € &vary and y1(E) # v2(E) = (D) = v2(D) whenever (D, E) € a.
The following Proposition should be clear.

Proposition 4.10. Suppose 7; € I', i = 1,2, and 71 & 2. Then p(y1) = p(72)
and 1(’71) = 1(’72)

4.3. If p(71) = p(y2). We show in Theorem 4.1 below that if v; € T, i € {1,2}
and p(v1) = p(72) then v; and ~, are essentially the same.

Lemma 4.1. Suppose U C Tpary, U =UU and v € I'. Then
p(M)NU =U{p(r.,T)NU : U € U}.

Proof. This follows directly from the fact that if V'€ 7 then VNU # § if and only
itvVel. O

The next three Lemmas are geometrically obvious; we leave their proofs to the
reader.

Lemma 4.2. Suppose v € I', T' € Tyqyy and {E, F} = e(T) N Epary- Then p(y) N
int 7" is nonempty if and only if either v(E) & v(E) and v(F) € E or v(F) ¢ v(E)
and v(E) € F.

Lemma 4.3. Suppose v; € I', i = 1,2; T € Tpary; and p(y1) Nint T and p(y2) N
int T are equal and nonempty. Then v, (E) = v2(E) whenever E € e(T) N Epary-

Lemma 4.4. Suppose v € I'; E € £ ~ Epary and

p(7) N (E ~ v(E)) £ 0.
Then there is one and only T' € Tyqry such that E € e(T) and if D, F' are such that
e(T)={D,E,F} then

v(E) = {v(D),~(F)}.

Theorem 4.1. Suppose v; € T for ¢ € {1,2} and p(y1) = p(72). Then v; = 7.
Moreover, if E € Epary and 1 (E) # v2(E) then

viD)Nv(E)Nv(F)=10
where {D,F'} = {G € Eary : (E,G) € a}.
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Proof. Let E € Evary be such that v (E) # v2(E). Let D,F € &y, A, B €
E ~ Epary and T,U € Tpary be such that T # U, e(T) = {D,E, A} and e(U) =
{E, F, B}. We need to show that

(1) M(D) =7(D) and 7 (F) = 72(F).

Then either (I) v(D)Nv(E)Nv(F) =0 or (II) v(D)Nv(E) Nv(F) # 0.

Case One. Suppose (I) holds.

Let a,b, ¢, d be the common vertices of D and A, D and E, E and F, F' and B,
respectively. By Lemma 4.3 we have {71(D), D} C {a,b} and {y (F),y2F} C
{c, d}.

Subcase One. v;(E) ¢ v(E) for some i € {1,2}.

Let j be such that {i,j} = {1,2}. Then ~;(D) = b and ~;(F) = ¢ by Lemma
4.3. Now p(y;) N E = E so that p(y;) N E = E. If 7,(E) ¢ v(E) then v;(D) =b
and 7v;(F) = ¢ so (1) holds. So suppose y2(E)

Subcase Two. {i,j} = {1,2}, v(E) = b and v;(E) = c.

We cannot have v;(F') = d by Lemma 4.4 nor can we have v,(F) € F ~ v(F)
by Lemmas 4.3 and 4.2. So v;(F') = ¢. We cannot have 7;(D) = a by Lemma 4.4
nor can we have v;(D) € D ~ v(D) by Lemmas 4.3 and 4.2. So «,;(D) = b. Since
vi(F) = ¢ we cannot have 7;(D) = a by Lemma 4.4 nor can we have v;(D) € D ~
v(D) by Lemmas 4.3 and 4.2. So 7;(D) = b. Since v;(D) = b we cannot have
v;(F') = d by Lemma 4.4 nor can we have v;(F) € F ~ v(F) by Lemmas 4.3 and
4.2. So v;(F) =c.

Case Two. Suppose (IT) holds. Let a be the common vertex of D, E, F and let
b, ¢, d be such that v(D) = {a,b}, v(E) = {a,c}, v(F) = {a,d}.

Subcase One. {i,j} = {1,2} and v;(F) &€ v(E).

Then 7;(D) = a and v;(F) = ¢ so p(y;) Nint (TUU) = ¢(5) ~ v(S) where S =
c(a,7;(E)). This implies p(y;) Nint (TUU) = ¢(S) ~ v(S) so that v (E) = 71 (E)
which contradicts our hypothesis. So this Subcase does not occur.

Subcase Two. {i,j} = {1,2}, 7(E) = a and v;(E) = ¢. We cannot have
v;(D) = b by Lemma 4.4 nor can we have ~;(D) € D ~ v(D) by Lemmas 4.3 and
4.2. So ~;(D) = a. We cannot have v;(F) = d by Lemma 4.3 nor can we have
v;(F) € D ~ v(F) by Lemmas 4.3 and 4.2. So v;(F) = a. Keeping in mind Lemma
4.1 this implies p(v;) Nint (TUU) = E ~ v(E). But as 7;(D) € D and v;(F) € F
we find that p(y;) Nint T U U = (). Thus this Subcase does not occur. O
4.4. A useful classification. Suppose v €T.

For each v € V we let

{v} ifsub=inand v € Vi, ~ p(7);
Ugub(7,v) = < {v} if sub = out and v € Vour ~ p(7);
{v} ifvep).
For each I € £ we let
E ~v(E) ifsub=inand v(E) C Viy;
E ~v(E) if sub=out and v(F) C Vout;
{v} if sub = out and v € Vous ~ p(7);
{v} if v € p(y).

Usub (77 E) =

Keeping in mind that
Enp(y) e EUV
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we find that there are unique functions
Uin, Uout - gbdry - [07 1]

such that u;, < ugy; and

Enp() ={1—=t)vin(E) + tvout(E) : uin(F) <t < uous(E)}.
We let
Uin
be the union of the set
{veVn:vep(nk
the sets
E ~v(E) corresponding to E € &y;
the sets
{T=t)vin(E) + tvous(E) : 0 <t < uin(E)]} corresponding to E € Epary;
the sets
hy (v(E),y(F))Nint T
corresponding to T' € Tpary and E, F' such that Eyary Ne(T) = {E,F}, F = o[E]
and v(E) # v(F); the sets
intT
corresponding to T' € Tpary and E, F' such that Eyary Ne(T) = {E,F}, F = o[E]
and v(E) = y(F) € Vout; and the sets
intT corresponding to T € Ty,.
We let
Uout

be the union of the set

{U S Vout v Q/ p(’Y)}7

the sets
E ~v(E) corresponding to E € Equt;
the sets
{1 = t)vin(E) + tvous(E) : uout(E) < t <1} corresponding to E € Epary;

the sets

h, (v(E),v(F))Nint T
corresponding to T' € Tyary and E, F such that Eyary Ne(T) = {E,F}, F = o[E]
and v(E) # v(F); the sets

int T
corresponding to T' € Tyary and E, F such that Eyary Ne(T) = {E,F}, F = o[E]
and y(E) = vy(F') € Vin; and the sets
intT corresponding to T € Tgys.

Proposition 4.11. The sets Uj, and U,y are open. R? is the disjoint union of
Uin, Uoyt and p(y). We have

Vin ~ P(’Y) - Uin and Vout ~ P(V) - Uout-
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4.5. Types of edges with respect to v € I'.
(i) v(E) € v(E) and there is one and only one F' € C(—1,1) such that E = Fp,

[7(F71)77(F0)77(F1)] = 07 [Vin(E))aVout(E))v’y(Ffl)] < 07 [Vin(F‘())uvout(F‘O)aW(Fl)] > 0.
(ii)) v(E) € v(F) and there is one and only one F' € C(—1,1) such that E = Fp,
)

[Y(F-1),7(Fo), y(FD)] # 0, [Vin(F0), Vous (F0), Y(F-1)] <0,  [Vin(F0), Vout (Fo), ¥(F1)] > 0.

(iii) v(F) € v(F) and there is one and only one F' € C(—1, 1) such that F = Fy,
’Y(F—l) = Vin(FO) and V(Fl) = Vout(FO)-

(iv) v(E) € v(F) and there is one and only one F' € C(—1, 1) such that E = Fy,
v(F_1) € v(E) and

[y(F-1),7(Fo), v(F1)] # 0.

(v) v(E) ¢ v(E) and there are exactly two F' € C(—1,1) such that E = F and
{r(F1 v (F1)} = v(F).
(vi) v(E) € v(E) and v(F) = y(FE) for all F € o(E);

(vii) y(F) € v(E) and there is exactly one F € C(—1,1) such that F = Fy,
Vin(FO) = ’Y(Ffl) and Vout(FO) = ’Y(Fl)

(viii) v(E) € v(F) and there are I,J € Z and F € C(I,J) such that I <0 < J,
E = Fy, v(F;) = v(Fy) whenever ¢ € I(I +1,J — 1), there is t € (0,1)
such that v(Fy) = (1 —t)y(Fr) +ty(Fy), there is H € H such that v(Fp) €
bdry H and U;-]:IFi C H;

(ix) v(E) € v(F) and there are I,J € Z and F' € C(I,J) such that I <0 < J
E = Fy,v(F;) = v(Fo) whenever i € I(I+1, J-1), [y(Fr),v(Fo),v(Fs)] # 0
and such that

(U;’;}HFZ-) N{y(Fo) +s((L—=O)y(y(Fr) +ty(Fy)) : 0 < s <ooand 0 <t <1} =0.

(x) v(E) € v(E) and there are I,J € Z and F € C(I,J) such that I <0 < J
E = Fy, ’Y(FZ) - ’Y(FO) whenever i € H(I+17 J_l)v [’Y(FI)7’Y(F0)7’Y(FJ)] 7é 0
and such that

(U F) ~ {v(Fo)} € {v(Fo)+s((1=t)y(v(F1)+ty(F7)) : 0 < s <coand 0 < ¢t <1} = 0.

4.6. Types of edges with respect to v € I'. Suppose E € Eyary. Let E; = o' [E]
and let g; = vy(E;) for i € Z.

Exactly one of the following statements holds:

(I) g0 & v(Eo);
(IT) go € v(Ep) and g; = g for all i € Z;
(IIT) go € v(Ep) and there is one and only one (I, J) € Z? such that I < 0 < J;
gi=goifiel(I+1,J—1)and go & {91,97}
If (I) holds then exactly one of the following statements holds:

i) {9-1,91} N Eo =0 and {g_1, 90,91} is nonlinear;
(i) {g-1,91} N Eo =0 and {g_1,go, g1} is linear;
(iii) {g-1,91} NV(E) # 0 and {g_1, g0, 91} is nonlinear;
(iv) g-1=91;

(v) {g-1,91} = v(E).
If go, I, J are as in (III) holds then exactly one of the following statements holds:
(vil) go € v(E) and g—1 = go;



10 WILLIAM K. ALLARD

(viii) go € v(F) and there are I,J € Z such that I < 0 < J, g; = go whenever
1 €I(I+1,J —1), there is t € (0,1) such that go = (1 — t)gr + tgs, there
is H € H such that v(Fy) € bdry H and U/_,F; C H;
(ix) go € v(E) and there are I, J € Z such that I < 0 < J ¢g; = go whenever
iel(I+1,J—-1),{91,90,9s} is nonlinear and such that

(U E)n{go+s(1—t)gr+tgs):0<s<ooand 0 <t <1} =0.

(x) go € v(F) and there are I,J € Z such that I < 0 < J ¢g; = go whenever
1e€l(I+1,J—-1), {g1,90,9s} is nonlinear and such that

(U F) ~ {90} € {go+s((1—t)(gr +tgs):0<s<ooand 0 <t <1} =0.
4.7. Minimizers .
Definition 4.11. We let
Tin = {7y €T : 1(y) <1(d) whenever § € I'}.
The members of I'\,;, are called minimizers.
Proposition 4.12. T',,;, is nonempty.

Proof. Let
F:[0,1]%% T and L:[0,1]%% — [0,00)
be such that
F(e)(E) = (1=c(7)Vin(E)+c(y)Vour(E) and L(c) =1(F(c)) for c € [0, 1]5par;
then F is univalent with range I' and L is convex on the compact cube [0, 1]%a~. [0

4.8. Special paths. A number of properties of a member of I'y,;, are affinely
invariant; these properties are used to define the class I'special-

Definition 4.12. Suppose I € Z and n € NT. We let
C(I,n)
be the set of maps E : I(I,n) — Epary such that
(i) (Bi, Pit1) € a whenever ¢ € I(I,J) and i + 1 < J;
(ii) E; # E;1o whenever ¢ € I(I,J) and i +2 < J.

Proposition 4.13. Suppose I,J € Z and E : I(I,J) — &Epary. Then E € C(1,J)
if and only if either E; = o'[E;] for i € I(I,J) or E; = o/ ~{[E,] for i € I(1, J).

Proof. O

Definition 4.13. Suppose v € I'. We say v is special if the following three
conditions hold:
(I) The points
v(Er), v(E2), v(Es)
are distinct and collinear whenever E € C(1,3) and v(E3) € v(Es).
(IT) We have
V(E2) = v
whenever E € C(1,3), v € V, v(E1)Nv(E2)Nv(E3) = {v}, v(E1) = v and
v(E3) =v.
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(III) We have
v(E;)) #v foriel(I+1,J—1)
whenever I,J € Z, I+1<J—-1,Ee€Cl,J)veVand G,H € H are
such that
(i) the points v(E;),v,v(Es) are distinct;
(ii) c(y(Er),v) C bdry G and y(E;) € int H;
(iii) c(y(Ey),v) C bdry H and vy(Ey) € int H;
(iv) ve v(E;) and E; C HN I whenever ¢ € I(()I,J) and I <i < J.
We let
Tspecial = {7 € T : 7y is special}.

Remark 4.1. By a straightforward argument we shall give in Lemma 4.5 we will
show that
1_‘min C Fspecial-
Suppose v € I' and
t:0 — gbdry x VY

is such that v(E) = v whenever O € O and (E,v) = «(O0).y(E) = v. In 6 we
will give an algorithm which computes v up to equivalence, given o and ¢ in time
O(N?) where N is the cardinality of E,ary. We will show that if V = A[Z? for some
affine isomorphism of R? that this algorithm runs in time O(N) given «; moreover,
in this case, the algorithm uses only integer arithmetic.

We will show in 5 that for each O € O there is a nonempty set of pairs (v, F') such
that E € O, v € v(E) and such that v(E) = v whenever v € I'special. This implies
that Tspecial has, up to equivalence, a unique member and that I'yin = Ispecial -

In what follows we will need to make use of the following Proposition.

Proposition 4.14. Suppose E € Eary, I € N, a € N{v(c'[E]) : i € 1(0,1)},
v € Ispecial and y(E) = a. Then y(~ iE) = a whenever i € I(1,1 — 1).

Proof. Were the Proposition false there would be j € I(1, I—1) such that y(c*[E]) =
a for j € 1(0,5—1) but such that y(¢7[E]) # a. Suppose v(c?[E]) € v(c?[E]). Since
v(a?[E]) # a, this is incompatible with (IIT) of Definition 4.13. Suppose (o’ [E] ¢
v(0?[E]). Since y(0? " E]) = a € v(07[E]) and since 0’ [E] N o/ T [E] = {a} this is

incompatible with (I) of Definition 4.13. O
4.9. The affine invariance of I'special- Suppose A : R2? — R? is an affine isomor-
phism.

Let

To={AT]: TeT}.
Evidently, 74 is a triangulation of R2. and let £4 and V4 be the corresponding sets
of edges and vertices.
Let
Vin,a = AVin] and let Voup,a = AVout)
and let

gin,Aa gout,Aa gbdry,Aa ﬁn,Av %ut,Aa %dry,Av Vin, A, Vout,A

be as in 4 with V;, and Vo, there replaced by Vin a4 and Vo, 4, respectively.
Let

A
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be as in Definition 4.1 with Tyq4y there replaced by Zodry,a-
aa = {(A[E],A[F]): (E, F) € a}.
Suppose I,J € Z. We let
CA(Iv J)
be defined as in Definition 4.12 with &4y, and o there replaced by Endry,4 and oy,
respectively. Evidently,
Cal,J)={FE4s:E €< C(I,J)}

where Eq : I(I,J) — Epdry,a is such that (Ea); = A[E;] whenever E : I(I,J) —
gbdry-

Let

L'y

be the set of choice functions for Eyqry,a; let

pa, la

be as in Definition 4.8 with I" and &4y, there replaced by I'y and Epdry, 4, respec-
tively; let

Fmin,A
be as in Definition 4.11 with &,qry there replaced by Endry, 4, respectively, and let

Fspccial,A

be as in Definition 4.13 with &pary and C(I,J) there replaced by Enhary,a and
Ca(1,J), respectively. For each v € I" let y4 € I'4 be such that

YA(A[E) = A(E)) for B € uary-

Then
pa(va) = Alp(y)] foryel
and
Tspecial, 4 = {74 : 7 € Tspecial }-
Now

La(va) #1(7)
generically in A and +; nonetheless, because I'min = Ispecial We have

1—‘min,A - {'YA e S 1_\min}-
Lemma 4.5. T'\,in C gpecial-

Proof. Suppose 7y € T'pin. It is obvious that (I) and (II) of Definition 4.13 hold.
Suppose I, J, E, v are as in (III) (i)-(iv) of Definition 4.13 but that v(E;) = v for
some i € [(I4+1,J+1). Let I*, Jx € I(I, J) be such that I'* <i < Jx*, y(Er.) # v,
v(Ess) #vand v(E;) =vif j e [(()I*+1,J* —1). For each i € I(J*+1,J* — 1)
let w; be such that v(E;) = {v,w;}. Let L be a line such that
(i) v and y(Er+) lie on different sides of L;
(ii) v and y(E +) lie on different sides of L;
(iii) for each i € I(J* 4+ 1,J* — 1), v and w;.
For each ¢ € I(I* + 1,J* — 1) let x; be such that L N E; = {z;}. Let § € T be
such that 0(F) = v(F) when F # E; for i e I(I* +1,J* — 1) and 6(E;) = x; when
i € I(I*+1,J*—1). Then 1(§) < 1(~y) which contradicts the minimality of 7. Thus
(III) of Definition 4.13 holds. O
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Proposition 4.15. Suppose
(i) I,J €Z, 1< Jand E € C(I,J);
(ii) w € Ry ~ {0} and m € R;
(iii) for each ¢ € I(1,J),
En{fw<m}#0 and E;N{w>m} #0;
(iv) M = min{max{w(z) : z € E;} : i € I(I, J)}.
Then the following statements hold:
(v) m< M < oc.
(vi) For each ¢ € I(1,J) there are d;,e; € V such that E; N {w = m} = {d;}
and E; N{w =M} = {e;}.
(vii) We have
—(E)N{m<w< M} Cintj_(E;) wheneveri,j € I(I,J) and i < j.
(viii) If a € j_(Er) N{w = m}, b € j+(Ey) N {w = m}, a # b, and, for each
it € I(1,J), t; € R is such that d; = (1 —¢t;) + ;b then t; < t; whenever
i, € I(I,J) and i < j with equality only if d; = d;.

Proof. In view of (iii), for any y € R and ¢ € I(I, J) the line containing E; meets
{w = y} transversely at a point f;(y); in particular, (v) and (vi) hold and v(E;) N
{m < w < M} = 0 whenever i € I(I,J). It follows that f;(y) # f;(y) whenever
y € (m,M), i,j € NI,J and ¢ < j since two distinct members of Epqry can only
meet in a vertex. For each y € (m, M) and i € I(I, J) let u;(y) € R be such that
fily) = 1 —wi(w) f1(y) + wi(y) fs(y). In particular, E; # E; if 1,5 € I({,J) and
i<j.

Suppose y € (m,M). If i € I(I,J) and I < i < J then either (a ) ui—1(y) <
ui(y) < wiv1(y) or (b) wi—1(y) > ui(y) > uit1(y) since fi_1(y) € j-(£;) and
fir1(y) € j+(F;). Tt follows that either (c) u;(y) < wir1(y) thncvcr 1 e I(I,J)
and i < I or (d) u;(y) > wi+1(y) whenever ¢ € I(I,J) and ¢ < I. Since us(y) =0
and uy(y) = 1 we find that (d) holds. Thus

u;(y) < u;(y) whenever i,j € I(1,J) and i < j.
Thus (vii) holds. (viii) follows easily from (vii). O

Theorem 4.2. Suppose
(i) E € Epary and E; = o' [E] for i € Z;
(ii) I,J € Z and I < J;
(i) w € Ry ~ {0} and m € R;
(iv) for each i € Z,
En{w<m}#0 and E;N{w>m} #0;

(V) Y e Fspecial;
(vi) a }6 c(Y(Er-1),7(Er)), b € c(v(Ey),v(Es41)), a # b and {a,b} C {w =
Then |
wy(E))=m foriel(l—-1,J+1).

Proof. Applying a translation if necessary, we may assume without loss of generality
that m = 0. Let L = {w = 0}. For each i € Z let g; = v(E;).
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I claim that
(2) w(gi) =0 foriel(l,J).

So suppose (2) does not hold. Then N = max{|w(g;)| : ¢ € I({,J)} > 0 and
there will exist I* € I(I,J) such that

(3) lw(gr-)] =N and —N<w(g)<N ifiel(l,J)andi<I*.
Lemma 4.6. g« € v(E[~).

Proof. Suppose, contrary to the Lemma, g7« & v(Er+). Since 7 is special the points
gr -1, 91+, 9gr-+1 would be distinct and collinear. This is impossible if I < I* < J
in view of (3).

Suppose I = I* < J. Then a = (1 — s)gr+—1 + sgr+ for some s € [0,1] so 0 =
(1 —s)w(gr—1) + sw(gr+). Since |w(gr-+1)| < N the points gr«_1, 9}, gr-+1 cannot
be collinear. By a similar argument one arrives at a contradiction if I < I'* = J.

So suppose I = I* = J. Then 0 = (1 — s)w(gr+—1) + sw(gr«) for some s € [0, 1]
and 0 = (1 — t)w(gr) + tw(gr«4+1) for some t € [0,1] so the points gr-—_1, g5, gr+1
cannot be collinear. (]

Let dj—1 = a and let dj41 = b. Since Ey_; UE; C j—(E}) and j_(Ey) is convex
we find that d;_q1 € j_(Fr). Since E; U Ej41 C j+(Ey) and j+(Ey) is convex we
find that dj41 € j+(Ey). Applying Proposition 4.15 we obtain for each ¢ € I(I, J)
a number t; € [0, 1] such that if d; = (1 — ¢;)a + t;b then then

(4) E,NL= {dl}
and such that
(5) t; <t; and d; Cj_(E;) wheneveri,jecI(l,J)and i< j.

Lemma 4.7. There is one and only s € (—oo, t7+] such that if fr«_; = (1—s)a+sb
then gy~_1 lies on the line containing gy« and fr«_j.

Proof. In case I* = I we can take s = 0 so suppose I* > I. Since |w(gr«_1)| <
N = |w(gr+)|, gr-~—1 # gr- and the line containing gr-_; and g;~ meets L in
a unique point fr«_1. Let s € R be such that fr«_1 = (1 — s)a + sb. Then
frr—1 € j—(E~) since g;« € Ep« C j_(Er~) and gr=—1 € Ep«_1 C j—(Ep+). Since
LNj_(Er)={(1—u)a+ub:u € (—oo,tr]} by virtue of Proposition 4.15 (viii)
the Lemma is proved. (Il

Let T' € H be such that gr-_; and g7~ belong to bdry T and b € T'. Thene; € T'
whenever I* < j so that E; C T whenever I* < j.

Next, let J be the set of j € I(I,J) such that I* < j and g; = gy~ if i € I(1, J)
and I* < i < j. Let J* = maxJ. Since g+ € v(E;+) and two members of Epqry
can only meet in a common vertex we find that g; € v(E;) if j € J.

Lemma 4.8. If w(gj-4+1) # w(gs-) there is one and only u € [t%, c0) such that if
fre+1 = (1 —u)a + ub then gy-41 lies on the line containing g% and fy«i1.

Proof. Suppose w(gj-+1) # w(g7y). If J* = J we may take u = 1 so suppose J* < J.
Since w(gy++1) < w(g}), gs++1 # ¢% and the line containing gj+41 and g% meets
L in a unique point f«y;. Let u € R be such that fy«11 = (1 — u)a + ub. Then
fre41 € j4(E]) since gy« € Ey+ C j4(Ey+) and gy-11 € Ej+41 C j+(E7). Since
LNj(E%) ={(1—w)a+wb:w € [th,oo) and the Lemma is proved. O
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Suppose w(gy++1) # w(gy) and fs«11 is as in the preceding Lemma. Let U € H
be such that g% and gj-41 belong to bdry U and a € U. Since ¢; < t 5, whenever
i€ J and fyey1 € j+(Ey+) we find that E; C U whenever i € J. Since 7 is special
we are now in a contradiction.

In case w(g%) = w(gs++1) we note that, by the definition of J, gj«41 # gs+ and
we let U € H be such that bdry U = {w = w(gy«)} and L C U. If j € J then one
of the vertices of I/; is gy« and E; meets L so that F/; C U. Since v is special we
are now in a contradiction.

Thus (2) holds.

Suppose i € I(1,.J). Since g; € E; and {w = 0} N E; = {e;} we find that g; = e;.

Let ug be such that a = (1 — ug)y(Ep) + uoy(E1). Applying w to this equation
we find that 0 = (1 — ug)y(Ep). Let ury1 be such that b = (1 — urp1)v(Er) +
ur+17Y(Er+1). Applying w to this equation we find that 0 = ury1v(Er41). Thus
the final assertion of the Theorem holds.

[l

5. LOCATING VERTICES ON A SPECIAL 7.

Theorem 5.1. Suppose

(i) Oe O and V=U{v(E): E € O};

(i) w:R? —» R, w is linear,

Min =max{w(z) :z € VN Vy} and My = max{w(z):z € VN Vou}
Then

either My < Moy or Moy < Miy,.
Moreover, in case M, < Mgy, then
F = {F c0O:FC {w > Min} and W(Vin(F)) = Min} 7& @
and
Y(F) = vin(F) whenever F' € F and v € I'special
and, in case Myyut < My,
F={FeO:F C{w> My} and w(vin(F)) = Moy} # 0

and

fy(F) = Vout (F) whenever F' € F and v e 1_‘special

Proof. Let M = max{w(v) : v € V} and let X = U{r(F) : E € O}. Since
E C {w < M} for each E € O we find that X C {w < M}.

Suppose E € O. Were it the case that E C {w = M} we would have either
oEjN{w > M} #0or o [E]N{w > M} # 0. Thus E meets {w = M} in a
vertex of E. It follows that

(6) XN{w=M}CViyUVou and EN{w< M} #0 for Ee€O.

R? ~ Z; /2, Tespectively. Since Zg and Z; are connected and since any path
starting on Zy and ending on Z; must pass through Z; ,, we find that

either (iil) ZoC W, and Z; CW, or(iv) ZyCW, and ZyCW,.
Since V N Vyut C Zg and V NV, C Z7 we find that
(v) VN Vout CW, and VNV, CW, in case (iii) holds.
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and that
(vi) VNVnCW, and VNV CW;, in case (iv) holds

It follows from (6) that Z; /o, C {w < M}; this implies {w > M} C W,,. Keeping in
mind (v) and (vi) we find that

(vii) VN{w=M}CVyy if (iii) holds.
and that
(viii) VN{w=M}CVy, if (iv) holds

It follows that
My < Mowt = M in case (iii) holds and Mgy < My, = M in case (iv) holds

Let

M, if (iii) holds,
m =
Moyt if (iv) holds.

Let
N={FeO:En{w>m}+#0}

Lemma 5.1. Suppose v € VN{w=m}, E€ & vev(E)and E C {w>m}. If
either (iii) holds and v € Vi, or (iv) holds and v € Vyys then E € N.

Proof. Suppose v € VN Vi, N{w =m}, (iii) holds, E € £, v € v(E) and E C {w >
m} but, contrary to the Lemma, F ¢ N. Then v(E) C Vi, and, since v € Z; C W,
and W} is open and connected, we have ' C W,,. Let F be a sequence in £ such that
Fy = E; v(F;,_1)Nv(F;) # 0 whenever ¢ € N*; and N 3 v +— max w[F} | increases to
oo as v — o0o. Since W is bounded there must be some N € NT such that Fy ¢ W,
and F; C W, whenever ¢ € N and 0 < ¢ < N. Thus Fy meets Z; and Z, and this
implies Fiy € O 50 vin(Fn) € VNV, but w(vin(Fy)) > maxw[Fy_1] > m.

By a similar argument one deals with the other case. O

Suppose v and E are as in the preceding Lemma. Let E; = o'[E] for i € Z.
Choose integers I,J such that I < 0 < J and E; € N whenever ¢ € Z and
I < i < J but such that neither E;_; nor E .1 belong to A/. It follows that
w(y(Er-1)) <mand w(y(Ejy41)) < m. Since w(y(E)) > m there are integers I’ J'
such that I < I’ <0 < J' < J and distinct points a, b such that w(a) = m = w(b),
a € c(y(o[Ep-1]),v(c[Ej+1])). It follows that y(E) = v.

O

Corollary 5.1. Suppose E is degenerate and v is the vertex of E such that, ac-
cording to Proposition 4.8, is such that N{v(F') : F € o(E)} = {v}. Then

v(F) =v whenever v € I'ypecial and F' € o(E).

Proof. Suppose w € Ry. Then there will always be w € F € o(FE) such that
w(w) > w(v) so our assertion follows directly from the preceding Theorem. O



A BOUNDARY APPROXIMATION ALGORITHM FOR PLANAR DOMAINS 17

6. THE BASIC CONSTRUCTION.

Let
P=A{(a,E): E €&y and a € Vv(E)}.
Our main goal in this section is to provide an algorithm for computing a function
P as in the following Theorem.

Theorem 6.1. There is a function
P:P—-7P
such that if (a, E) € P and (b, F) = P(a, E) then there is J € N* such that
F =0o’[E]
and such that, whenever v € I'ypecial and y(E) = a, then
(7) Y(F)=0b and {v(¢/[E]):j€1(0,J) C c(a,b).
Theorem 6.2. Suppose 7; € I'special for ¢ € {1,2} Then v = 7o.

Proof. Suppose O € O. By Theorem 5.1 there is E € O are such that v, (E) =
a = v2(F). Applying the previous Theorem repeatedly we obtain b : N — V and
A : N — N be such that by = a, A\g = 0 and such that if 7 € N then

(bj+17 ghit [E]) = P(bj7 o [E})v
bj+1 = ’Yz(bj) for i € {1,2},

and

{7:(o"[E]) : k € I(Aj, Aj41) C e(bj, bjy1) fori e {1,2}.
It follows that

U{e(mn(o®[E], e [E])) : k € N} = U{c(ya(o"[E], e [E])) : k € N}.
This in turn implies that p(y1) = p(y2) so that, by Theorem 4.1, 1 & 5. O
6.1. The sets w,(B). Out construction will make use of these sets.
Definition 6.1. Whenever a € R? and B C R? we let
wo(B)={a+t(zx—a):0<t<ooandz e B}
We fix
a € R2

The following four Propositions are geometrically obvious; we leave their proofs
to the reader.

Proposition 6.1. Suppose & is a finite subfamily of of E, V = N{w,(E) : E € £}
and int V # 0.
There are b,c € U{v(E) : E € £} such that [a,b,c] > 0 and V = w,(c(b, c)).
Moreover, for each E € £ there are d, e € E such that [a,d, e] > 0 and

W =w,(c(d,e)).
Proposition 6.2. Suppose E € E, int w,(F) # 0 and b, ¢ are such that v(E) =
{b,c} and [a,b,c] > 0. Then w(E) =hy(a,b) Nh_(a,c).

Proposition 6.3. Suppose b, c € R?, [a,b,c] >0, E =c(b,c), H € H, E C bdry H
and a ¢ H. Suppose F' € E is such that E C H and F Nintw,(E) = (. Then
either F C h_(a,b) or F C hy(a,c).
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Proposition 6.4. Suppose
(i) E€E,intw,(E)#0, HeH, ECbdry H and a ¢ H;
(ii) F € E, v(E)Nv(F) = {e} for some e € R? and F ~ {e} C int H;
(iii) TeH, FCbdry! and E ~ {e} C int I;
(iv) int V # () where we have set V = w,(E) Nw,(F).
Then
(v) a€int;
(vi) for each x € V there exist unique s,t € (0,00) such that a + s(z —a) € E
and a + t(x — a) € F}
(viil) if x, s,t are as in (vi) then s < ¢ with equality only if a + s(x —a) = e =
a+t(x—a).

6.2. The construction of P and the proof of Theorem 6.1. Suppose (a, F) €
P.

If E is degenerate we let P(a,E) = (a,0[E]). If v € T'speciat we infer from
Proposition 4.8 that v(F) = a for all F' € o(E) so (7) holds.

So suppose E is not degenerate. Let E; = o'[E] for i € Z and let

I=max{i e N:a € v(E)}
For each ¢ € N with ¢ > I
W, =wy(E;) and welet V; = ﬂ§:I+1Wj.
Let
I={ieN:i>1TIandintV; # 0}.

Proposition 6.5. There is a positive integer J > I + 1 such that Z =1(I + 1, J).
Moreover, E; # E; whenever 4,j € I(I,J) and ¢ < j.
Proof. Let T € Tyary be such that e(T) = {E;, Ej41} Since T C Wiy = Viyq we
find that I +1 € 7.

If N is the number of edges in o(E) and m € Z then 0™V [E] = E and, therefore,
int V,,y = 0 if mN > I + 1. This implies Z is bounded.

Let J =maxZ. If 4,j e N*, I +1 < j <iand i €7 then j € Z since V; C V.
Thus Z = I(I + 1, J). O

By Proposition 6.1 there are for each i € 7 unique points r;,s; € E; such that
[a,7;,s;] >0 and
Vy=hy(a,r;) Nh_(a,s;) = wa(c(rq,s:)).
Let
R={a+t(ry—a):0<t<oo} andlet S={a+t(s;j—a):0<t<o0}.
(Of course R={a+t(r;—a):0<t<oo}and S={a+t(s;—a):0<t< oo} for
any i € Z.) By Prop 6.3 we have
either (I) Ejy1 Ch_(a,ry) or (II) Ej;1 C hy(a,sy).
Let
B:{iGIZ?"Z‘ GV(EZ)}
and let
C:{i€I28i GV(El)}
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From Proposition 6.1 we infer that neither B nor C' is empty and that
Vy =wq(c(rs,s5)) whenever i € B and j € C.
We let

o max B in case (I) holds,
~ |maxC in case (II) holds.

and we let
Pla, ) = (rg, Ex) ?n case (I) holds,
(sk,Fx) in case (II) holds.

In case (I) holds we let w € Ry be such that if m = w(a) then R C {w = m}
and S C {w > m}. In case (II) holds we let w € Ry be such that if m = w(a) then
S C{w=m}and R C {w > m}.

We have

(8) Ein{fw=m}#0 and E;N{w>m}#0 foriel(l,J).

Now suppose 7 is special and y(F) = a.
From Proposition 4.14 we infer that

(9) ~(E;)=a foriel(0,I—1) whichimplies a € c(y(Er-1),v(Er)).

Suppose (I) holds. Since rx € RNv(Fk) and Fx meets the interior of Vx we
find that v(Fk) € hy(a,rx) = hy(a,rs). Since v(Ej41) € Ejp1 C h_(a,rg) we
infer that for some L € I(K, J) the segment c(y(EL),y(EL+1)) meets R in a point
c. Applying Theorem 4.2 with I, J there equal I, L and a, b there equal a, c we find
that w(y(F;)) =m for i € I(I, K) and that v(Fk) = rk.

Suppose (II) holds. Since sx € SNv(Egk) and Ex meets the interior of Vi
we find that y(E;) € h_(a,s;) = h_(a,sy). Since v(Ej41) € Ej41 C hy(a,sk)
we infer that some some L € I(K, J) the segment c(v(EL),¥(EL+1)) meets R in a
point ¢. Applying Theorem 4.2 with I, J there equal I, L and a,b there equal a,c
we find that w(v(E;)) = m for ¢ € I(I, K) and that v(Ex) = sk.

6.3. Computational complexity. Now let us suppose that V = A[Z?] for some
affine isomorphism A of R2.
We will show that

(10) (J—I)<3(K 1)
Let
U={a+tlzr—a):0<t<landz€c(ry,ss)~{rs,ss}} =int V.
Proposition 6.6. For any F € £ we have
ENnS#0and ENU #0) & E=F,;forsomei€Z & ENS#Qand ENU # 0.

Proof. Suppose FF € &, FNR # 0 and FNU # (. Then there are s € (0, 1] and
x €c(ry,sy) ~{rs,ss} such that a+s(x—a) € F. For each i € Z we let ¢; be such
that e; = a+t;(x—a) € E;; by Lemma 4.15 (viii) we have t; < ¢ whenever j,k € T
and j < k. We must have s = t; for some i € 7 since otherwise F' would meet the
interior of the triangle T such that {E;, E;11} € e(T) for some i € Z ~ {I}. Thus
a+ti(x—a)€ E;NF for some i € Z. Since e; € v(FE;) we find that F = E;.

By a similar argument one shows that if F € &, FN R # 0§ and F NU # () then
E = FE; for some 1 € T.

It follows directly from definitions that if i € Z then E; N RNSNU # (. O
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Suppose A is an orientation preserving affine isomorphism of R? and P, is the
function arising from the construction just described with a, 7, Vi, replaced by
Afa), {A[T): T € T}, {A(v) : v € Vin}, respectively. Then
Pa(A(a), A[E]) = (A(b), A|F]) whenever (a, E), (b, F) € P, and (b, F) = P(a, E).
It follows that we may assume without loss of generality that

Y =72, a=0.

It follows that for any E € € there is one and only M(E) = (A (E), \2(E)) € Z?
such that if z = A(E) then exactly one of the following holds:

(i) E=c(z,2z+ey);

(ii) E =c(z,z + eq);
(i) £ =c(z+ ez, z +e€1);
(iv) E=c(z,z+ e+ e3).
Suppose (I) holds. Since B # @) there will exist d = (dy,d2) € V ~ {0} such that

RNV ={wd:weN"}.

Let M € (0,00) be such that r; = Md. Let L € N be such that L < M < L+1.
Applying counterclockwise rotation by nm /2 radians for some n € Nt if necessary
we may assume without loss of generality that

di >0 and dy > 0.

a0

Let
=4

We suppose 0 < m < 1 in proving (10) and leave it to the reader to carry out
modify what we do below in a straightforward way to deal with case 1 < m.

Proposition 6.7. B = {wd : w € N* and w < L}. Also, rx = Ld, \(Ex) = Ld
and /\1(EJ) < (L + 1)d1

Proof. Suppose w € NT and w < L. Let v = wd. If w = M then v = by € B so
suppose w < M.

Since int V; # () there is F' € € such that v € v(F) and FNU # (. By Lemma
6.6 we have I' = FE; for some i € Z. Thus v € B.

Let F = c¢(Ld,Ld+e1) and G = ¢(Ld, Ld + e1 + e3). Since 0 < dy < d; we find
that F' and G meet U and that ¢(Ld, Ld + e1) does not meet U. From Proposition
4.15 (viii) and Proposition 6.6 we find that

Foif
EK:{ ifG¢¢,

m

G ifGef.

it follows that \(Ex) = Ld.
Since ry = Md and M < L + 1 we find that A\ (E;) < Mdy < (L + 1)d;. O

Lemma 6.1. Suppose ¢,j € Z and ¢ < j. Then
M(E) < Ai(E)).

Proof. Let x = (z1,22) € E; be such that 1 = X\ (E};) and let t € (0,00) be such
that tx € E;. Then t < 1 by Lemma 4.15 (viii). Thus

)\(El) S t.%'l S I = )\(Ej)
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Let
K={keN:k<X\(EDN};
K' = {k € K : for some w € [k, k + 1], mw € N};
K'=K~K.
For each k € IC let
N(k) ={i € T: M(E) = k).
Proposition 6.8. Suppose k € K'. Then 2 < N(k) < 4.
Proof. Suppose 0 < m < 1. Let [ € N be such that I < mw <1+ 1. Let a = (k,1),
b=(k,l+1),c=(k,1+2),d=(k+1,1),e=(k+1,1+1) and let
F ={c(a,b),c(b,e)} andlet G ={c(b,d),c(ce)}.
Then F UG is the set of F' € € such that A\{(F) = k and FN R # 0. Keeping in
mind Proposition 6.6 we find that
F C {ZEI)\l(EZ):k} Cc Fug.
We leave it to the reader to verify that N(k) = 2 in case m = 0. (]
Proposition 6.9. Suppose k € K. Then N(k) = 3.

Proof. Note that 0 < m < 1 and let [ € N be such that | < mk < [+ 1. Then
Il <mkandl <m(k+1) <l+1. Let a = (k1),b=(k1+1), c=(k+11),
d=(k+1,1+1) and let

F ={c(a,b),c(a,d),c(b,c),c(b,d).

Then F is the set of F € E such that A\ (F) =k and F N R # (. Keeping in mind
Proposition 6.6 and the fact that exactly one of c(a,d) and c(b, ¢) belongs to Endry
we find that N(k) = 3. O

K-I>1+ Y  N&+ > Nk
keK’, k<Ldy keK’ ,k<Ld,
> 14 2Ldy + 3L(dy — do)

=14+ L(3d1 — d2)

(J—I)—(K—-1)< > N(k) + > N (k)

kEK’, Ldy<k<(L+1)dy k€K’ Ldy<k<(L+1)dy
< 4dy + 3(dy — d)

Thus
J—1 J—1I)— (K -1
<
K—Iﬁl—'_ K—-1
< (3dy + da)
= T T+ L(3dy — do)

< ]__|_ L
- 1+ L(2dy)

4d,y
<1 <3.
- +1+2d1_
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7. SOME THEOREMS ON PLANE CURVES.
Throughout this section we fix
R € (0,00).
Definition 7.1. For each ¢ € R? and v € S! we define
D(e,v, R)
as follows. We let D(0, ez, R) equal

{xERQ:x1<Rand —R—l—\/RQ—x%SxQSR—\/RQ—m%}

and if (¢,v) # (0,ez2) we let D(c,v, R) = p[D(0, ez, R)] where p is the rigid motion
of R? which carries 0 to ¢, 1 to c+v* and e, to c+v. Alternatively, D(c, v, R) is the
bounded connected component of the complement in {z € R?: |(z — c) e v*| < R}
of U(c+ Rv, R)UU(c — Ru, R).

Definition 7.2. Suppose a,b € R?, 0 < R < 0o and 0 < |a — b| < 2R. We let
ct(a,b,R) and c_(a,b,R)
be the points on the perpendicular bisector of c(a,b) such that
la — ci(a,b,R)|=R=|b—cy(a,b, R)|
and whose inner products with (b — a)* are positive and negative, respectively.
We let
L(a,b,R) = B(c4(a,b,R), R) N B(c_(a,b, R), R).
For e € {a,b} we let
W.(a,b,R) = {t(x —e) : z € L(a,b, R)}.

Proposition 7.1. Suppose a,b € R?, 0 < |a — b| < 2R, u € S' N W,(a,b, R) and
v € S!N'Wy(a,b, R). Then
[l

7
Proof. Let A=S'N'W,(a,b,R) and let B=S'N{t(z —c_(a,b,R)) : x € c(a,b)}.
Now —v € W (a,b, R) so |u + v| does not exceed the diameter of A. Moreover A
is congruent to B the diameter of which equals |a — b|/R. O

lu 4+ v| <

Lemma 7.1. Suppose |a — b| < 2R. Then L(a,b, R) C B((1/2)(a + b), |a — b|/2).
In particular, diam L(a, b, R) = |a — b)|.

Proof. Exercise for the reader. O

Definition 7.3. We let
P(R)
be the set of ordered pairs (I, P) such that
(i) I is a nonempty open interval;
(i) P: I — R
(iii) P is continuously differentiable and |P’(s)| =1 for s € I;
(iv) limsup,_,, |P'(t) — P'(s)|/|t — s| < 1/R whenever s € I;
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Remark 7.1. Suppose (I, P) € P(R) and s, € {inf I,supI} ~ {—o0,00}. Owing
to (iii) and (iv) in the preceding definition we find that the limits

. . /
Dl;r_r)ls* P(s) and Dl;r_r)ls* P'(s)

exist.

Lemma 7.2. Suppose 0 < R < 0o, ¢ € R?, I is an open interval and
P(s)=c+ Ru(s/R) forseland C={P(s):sel}

Then (I, P) € P(R). Moreover, the diameter of the range of P is less than 2R if
and only if the length of I is less than 7R.

Proof. Obvious. O

Theorem 7.1. Suppose
(i) (I, P) € P(R);
(ii) s« € I and ¢ = P(s4);
(iii) u = P'(s), v €S, uev =0 and
U(s)=(P(s) —c)eu and V(s)=(P(s)—c)ev forsel,
(iv) I, is the connected component of s, in {s € I : |U(s)| < R} and J, =
{U(s):s €L}
(v) f={U(s),V(s)) : s € L};
Then

(vi) I, is an open interval, s, € I, J, is an open interval and 0 € J, C (=R, R);
(vil) f:J« — R, f is continuously differentiable and

{P(s):sel.:={c+tu+ f(t)v:te
(viii) |f(¢t)| < R — v/ R? — 12 whenever t € J, and
{P(s):s €L} CD(cv,R);

(ix) |f'(¢)| < |t|/VR? —t? whenever t € J,;
(x) if {P(s) : s €I and s < s,} ~D(c,v,R) # 0 then infJ, = —R and if
{P(s):seIand s> s.} ~D(c,v,R) # 0 then sup J. = R;

Proof. (vi) is obvious.

Without loss of generality we may assume R =1, s, = 0, ¢ = 0, u = e; and
v=-ey. Let Q = P

Let I.. be the connected component of 0 in {s € I, : Q(s) ee; > 0} and let
Jex = {U(8) : s € L }; and let g = {(U(s),V(s)) : s € Jys}. Evidently, L. C I,
and J,. C J,. Since U'(s) = P'(s)eu > 0 for s € I, we find that (vi) and (vii) hold
with I, Ji, f replaced by I.., Jux, g, respectively. Let s_ =inf I, <0 < sup [, = s
and let t_ =inf J, <0 <supJ, =t4.

It follows that

Q(t,g(t)) =w(g' ()" (1,¢'(t)) whenever t € J,

where we have set w(m) = v1+ m? for m € R.
Let Q@ = P’ and for each s € I let

() = lim sup [Q(s+h)e Q(S)LI;
h—0 |h‘
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since Q(t) e Q(s)* = (Q(t) — Q(s)) # Q(s)* whenever s,t € I we infer from (ii) that
|k(s)] <1forsel.
Suppose s € Jy, 0 < h < oo and s+ h € J,,. We have

Qs )« Q" _ ymyBmycm)
where we have set
g (U(s+h)) —gU(s))
A(h) U(s+h) —U(s)
B(h) - U(S+h]1_ U(S)’
1
C(h) = w(g'(U(s+h)))w(g'(U(s)))
Now
1
BINCW) = Sr@ee

as h — 0. Since w”(m) = 1/w(m)3 for m € R we find that
Lip(w'og') < 1.
Since w(0) = 0 and ¢’(0) = 0 this implies that
(W' (g'(x))| = [W'(g'(z)) = w'(g"(0)] < || for z € Ju;
since w’ is increasing we find that

(11) ld' (2)] < |v(z)| = \/1|ai7x2 whenever x € JN(—1,1)

where v is the function inverse to w’. This in turn implies that

(12) lg(z)| <1—+/1—22 forz € J,, N(—1,1).

Thus (viii) and (ix) hold with J,, f replaced by J,«, g, respectively, and the Theorem
will be proved if we can show J,. = J,. Suppose g = sup L. € I.. From (viii) we
infer that |limye, ¢'(t)] < oo which in turn implies that yo = limyq, g(t) exists and
is finite. Thus Q(xo,yo) ® €1 > 0 which implies there is a larger open interval than
I, on which Qee; > 0. Thus sup J,, = sup J, and, therefore, sup I, = sup I,.. In
a similar fashion one shows that inf J,, = inf J, and inf I,, = inf I,. O

Theorem 7.2. Suppose (I, P) € P(R); diam I < oo;
a= lim P(s) and b= lim P(s);

slinf I sTsup I
—-b 1
rzla |<R and m= =(a+0b);
2 2
w € S and
(13) aew < P(s)ew < bew whenever s € I.
Then

{P(s):s €I} CB(m,r).
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Proof. We may suppose without loss of generality that m = 0 and w = e;. Let
p = sup{|P(s)| : s € I} and suppose, contrary to the Lemma, that p > r. Since
la| < p and |b] < p there is s, € I such that |P(s.)| = p and P(s.) ® Q(s.) = 0.
Let v € S! be such that P(s.) = pv. Let u = v*; then Q(s.) = +u. Let ¢ = P(s,)
and let I, f, J., etc., be as in Theorem 7.1. Since B(0,7) N D(c,v, R) = () we find
that (—R, R) C J,.
Suppose
(14) vew >0 and vew >0.
Let
() =cFRv+R(tutvV1—-t?v) for0<t<1,
let Ay = {¢s(t): 0 <t < 1} and note that
Ay UA_ ={z €bdryD(c,v,R):cou<zeu< R+ ceu}.
We have
(+(0)ew = ((c—Rv) + Rv)ew=coew <bew
Since w = (w @ u)u + (w @ v)v we find in view of (14) that

2Zv=(weu)u+ (wev)v=w

(weu)u++/1— (weu)
so that
(+(weu)=((c— Rv)+ Rw)ew=pew+R(l-—vew)>r>bew

so that there is ¢, € [0,w @ u) such that (4 (¢.) e w = bew. Thus for any A € [0,1]
we have

(1= N)Ca(t) F A (t)) @w = (o () ew +2AR(1 — /1 — 2)vew > bew.
Since (—R, R) C J, we find that P(s) € c({4(t«),(—(tx)), contrary to (13). O
Theorem 7.3. Suppose (I, P) € P(R) and
(15) diam {P(s):s € I} < 2R.

Then diam I < 7R and
(16) {P(s):s €I} CL(a,b,R).

Moreover, if
a= lim P(s) and b= lim P(s)

I3s—inf I I>s—sup I
and
to=1i P’ d tp,= i P’
@ Iasgrilan (S) an b Iasirgupl (S)
then
—-b
|ta - tb| S M
R

Proof. Suppose sg,s1 € I and so < s1. Let s, = (sp + s1)/2. Let u = P’(s,) and
let v =wut. If i € {0,1} and P(s;) € D(P(s.), v, R) we infer from Theorem 7.1 (ix)
that |s; — s.| < mR/2 so that s; — sg < 7R.

Were it the case that {P(sg), P(s1)} N D(P(s«),v, R) = ) we could infer from
Theorem 7.1 (x) that there would be 5y € [so,s«) and §; € (su,s1] such that
(P(89) — P(s«)) ®u = —R and (P(5; — P(sx)) e u = R and this would imply
|P(81) — P(80| > 2R, contrary (15).
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It follows that diam I < mR. Keeping in mind Remark 7.1 we infer infer the
existence of a, b, t; and t; as in the statement of the Theorem.

We now prove (16). Let C = {P(s): s € I} and let d € {ct(a,b,R),c_(a,b,R)}.
Suppose, contrary to (16), C' ¢ B(c, R). Let ¢ € ¢l C be such that |z —d| < |c—d]
whenever z € C. Let S € (0,00) and w € S! be such that ¢ — d = Sw. Suppose,
contrary to (16), S > 1. Since ¢ ¢ {a,b} we have ¢ = P(s,) for some s, € I and
P'(s.) = £wt. But D(d,v, R) N U(c,R) = 0 so {a,b} N D(d,w, R) = . We infer
from Theorem 7.1 (x) that there are si € I such that |(P(s+) £d) e w®| =R
which implies |P(sy) — P(s—)| > 2R which is contrary (15). Thus C' C B(c, R)
and, therefore, (16) holds. The final assertion of the Theorem now follows from
Proposition 7.1. (I

7.1. Length.
Theorem 7.4. Suppose (I, P) € P(R) and

d= %diam{P(s) csel} <2R.
Then

d
diam I < 2arcsin =
with equality if and only {P(s) : s € I} is a subset of a circle or radius R.

Proof. The hypotheses of Theorem 7.3 hold so diam I < 7R and we may let a, b,
t., tp be as in the statement of that Theorem. Let
£(5) = 1(P(s) — a) » P'(s)] — |(P(s) — b) » P'(s)| for s €.
It follows that
lim f(s)=—|(a—b)ety] <0 and lim f(s)=|(a—b)ety >0
slinf I slsup I
so there is s. € I such that if ¢ = P(s.) and u = P’(s.) then for some r € (0, 00)
we have
|(P(sx) —x)ou|=r forax € {a,b}.
Let v = u't, let f, I, J,, etc., be as in Theorem 7.1 and let C = {P(s) : s € J,.}.
Suppose sup J, < r. Then b € C so supJ, = R < r. But this forces a ¢ C so
inf J, = —R and diam C' > 2R which we have excluded so (—r,r) C J,. From The-
orem 7.1 (ix) we infer that the length of C' does not exceed 2 arcsin(r/R)lambda(r)
thus establishing our length estimate. We also find that equality holds in the
length estimate if and only if either f(t) = R — vVR2—1t2? for t € (—r,r) or
fit) = =R+ VR? -2 for t € (—r,r) which is to say C is a subset of a circle
of radius R. O

8. THE OPEN SET 2.

We assume that throughout this section that €2 is a bounded open subset of R?
whose boundary 05 is a continuously differentiable embedded submanifold of R?
with length L.

We do not assume 2 is connected.

We let T, N : 02 — S! be such that N is the unit normal to 9 which points
out of Q and T'= N+. We let

p(z) = dist (z,09Q) for x € R?
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and we let
h(y,m) =y +rN(y) for (y,r) € (92) xR

Proposition 8.1. Suppose 0 < R < co and
U={zxecR?: p(zx) <R}.
Then the following statements are equivalent.
(i) £|U is a function.
(ii) R|((082) x (=R, R)) is univalent.

(iii) (0N (B(b+ RN (b), R) UB(b— RN(b),R)) = {b} whenever b € 9.

(iv) |(y —b) @ N(b)| < |y — b|*/2R whenever y, b € 0.

Proof. We leave the proof as a straightforward exercise for the reader. We suggest
showing (i) implies (iii) implies (ii) implies (i). That (iii) and (iv) are equivalent
follows by directly calculation. O

We now assume that there are a positive real number R such that with U = {x €
R? : p(z) < R} the equivalent conditions of Proposition 8.1 hold.

Inequality (i) implies that the normal N is Lipschitzian. Our assumption about
the reach of 911 is global; in particular, if 02 is twice differentiable and the absolute
value of the curvature of 9 at any point is less than 1/R for some positive real
number R then our assumptions need not hold; consider

Q={recR?:|z|c{R,R+h}}

where h is a small positive number; it is not too difficult to construct examples of
this sort where 02 is connected.
We assume that

diam7T < h < R whenever T' € Tqry
where T is as in 4 and where
Vin={veV:veQ}
We will prove the following Theorem.

Theorem 8.1. Suppose v € 'y Then

R—h
—L<1l(y)<L
L <1() <

where L is the length of 0f.
8.1. More on the geometry of 0f2.
Lemma 8.1. The length of each connected component of 012 is at least 27 R.

Proof. Let C be a connected component of 92 and let G be the bounded open
subset of R? with boundary C. Note that G C Q or GNQ = (). Let

= 1 if G C Q,
) -1 iGN =0.

Suppose u € S'. Since C is compact there is a € C be such that
{rou:2eC} <aeu;
clearly, N(a) = Cu.
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Thus {N(z): 2 € C} = S'. It follows that

L
277§/\N’\§—
c R

where L is the length of C. (]

Theorem 8.2. Suppose a,b € 92 and 0 < |a—b| < 2R. Then there is one and only
one connected component C of (92) ~ {a,b} such that {a,b} € clC and whose
length is less than mR. Moreover,

-b
(17) diamC = |a —b|, C CL(a,b,R) and |T(a)—T(b)| < %.
Finally, if X = c(a,b) then X C U, £|X is univalent and £[X] = clC.

Proof. Let m be the midpoint of line segment joining a to b. Then
~Ja—10|
2

som € U. Let ¢ =¢&(m), let u =T(c) and let v = N(c). We may assume without
loss of generality that ¢ = 0.
We also have

dist (m,99Q) < |a —m| = |b—m| <R

-b
(18) le| <le—m|+|m| = % + dist (m,09) = % < 2R for e € {a,b}.

Let S = {z € R%: |21] < R}. If € € {a,b} we have
la — bl

2<R

o] = [(e—m) ou| < [e—m]| =

(19) {a,b} C S.

Let D be the connected component of 0 in 9 and let h € (0,00) be such that
the length of D equals 2h. Let I, P,¢é be such that I = (=h,h); (I,P) € P(R);
P(0) = 0; P is univalent; and {P(s) : s € I} = D ~ {¢}. Then h > 7R by
Lemma 8.1. Let I,, J,, f, etc., be as in Theorem 7.1 with s, there equal 0 and let
E = {P(s) : s € I,}. By (viii) and (ix) of Theorem 7.1 E C D(0,v, R) and the
length of E does not exceed 7R. If s € I, then |s| < mR/2 < h by Theorem 7.1
(viii). Thus neither {P(s) : —h < s < 0} nor {P(s) : 0 < s < h} is a subset of
D(e,v, R). It follows from Theorem 7.1 that I, = (—R, R).

It follows from Theorem 7.2 that C' C B(m,r). Thus diam C < 2r < 2R so, by
Theorem 7.3, C' C L(a, b, R) and the assertions of (17) follow from Theorem ?7.

Let n(t) = (1 — t)a + tb for ¢t € [0,1]. Then

dist (n(t).90) < min{|n(®) - al. ]n(®) - b)) < = < B
for any t € [0,1] so X C U.

Suppose there were s,t € [0,1] such that s # ¢t and £(n(s)) = d = &(n(¢)).
Then there would be p,o € (—R,R) such that n(s) = d + pN(d) and n(t) =
d + oN(d). It would then follow that {a,b} C {d+ zN(d) : z € R}. But since
NN (B(d+RN(d), R)UB(d— RN(d), R)) = {d} we would have that |a —b| > 2R.
Thus £ on is univalent so | X is univalent. Thus {{on(f) : 0 < ¢ < 1} is a connected
component of (9Q) ~ {a,b} which contains ¢ = £(m) = £ on(1/2). It follows that
£[X] = clC. O
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Definition 8.1. Suppose a,b € 9Q and 0 < |a — b] < 2R. Keeping in mind the
previous Theorem, we let

a(a,b)

be the unique connected component of 9Q ~ {a,b} whose length is less than 7R.
Remark 8.1. The following Theorem and its proof come from [?, 4.4(8)].

Theorem 8.3. Suppose z,a € U and r = max{p(z), p(a)}. Then

€@) — (@) < 5=

Proof. Let y = £(x) and let b = £(y). From Proposition 8.1 (iv) we obtain

|z — al.
,

ly = 0Pl —yl _ _rly— bl

(x—y)o(y—0) >~

2R - 2R
and
ly = b*[|a — b| rly — b
— b)) > — > — )
(a=b)e(y—b) = L2t > T
Thus

[z —ally — bl =

z—a)e(y—D)
(y=b)+(@—y)+(b—a)e(y—"b)

(
[
@ = )W*bV

R
—b|2

v

8.2. Inscribing the polygon.

Definition 8.2. Let § € T' be such that for each E € &pary we have G(E) € 0Q
and {(1 = t)vout (OE) +ty(E): 0 <t <1} NI = 0.

Theorem 8.4. Suppose E € Enary, F = o(E), a = y(E), b = v(F), a # b and
u € S! is such that b — a = |b — alu. Then

|u—T(z)| < whenever z € a(a,b).

Proof. Choose f, etc., as in 7?7 such that... We may assume without loss of gen-
erality that a = 0, T(a) = —e; and N(a) = ez. Let z € (—R, R) be such that
b= (w, f(w)). We will show that w < 0.

Case One. vout(F) = vour(F). Suppose vou(E) = (x,y). Then ty > f(tx)
whenever 0 < ¢ < 1. O

Lemma 8.2. (WRONG!) Suppose E € Epary, a € ENIQ, b € o[E] NI and
a #b. Then |a — b| < R and no vertex of T = ¢(F U o[FE]) lies in a(a,b).

Proof. Suppose, contrary to the Lemma, c is a vertex of E' which lay on the interior
of a(a,b) relative to 9. Keeping in mind ?? and using the Mean Value Theorem
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we obtain ay, b, € a(a,b) such that ¢ —a = |a — ¢|T(a.) and b — ¢ = |b — ¢|T(bs)
where we have interchanged a and b if necessary. But then, by ? of Theorem 7.1,
(c—a)e(b—rc)
lc —allb — ¢
=T(a.) e T(bs)
— (T(a.) = T(b.)) s T(b.) — 1
|as — b.|
< I
- R
< M 1
- R
which contradicts our hypothesis that diam7T < R. (]

0<

1

Lemma 8.3. Suppose v is a choice function for &,qry such that
Y(E) € 0 for E € Epary-
Then the family of the interiors of a(y(E),vy(c[E])) relative to 99 corresponding

to E € Epary with y(E) # y(o[E]) is disjointed.
In particular, 1(y) does not exceed the length of 0.

Proof. Suppose the Lemma were false. Keeping in mind that a(y(E), c(o[E])) is
homeomorphic to (0,1) whenever E € E,qry there would be for each ¢ = 1,2,

Ei, ai, b, A, B
such that
(i) E; € Evdry;
(ii) a; = y(E;) and b; = y(o[Ei]);

(iii) A; is the interior of a(a, b;) relative to 9%;

(iv) B; is the interior of the triangle which is the convex hull of E; U o[E;]
but such that

BiNBy = ® and {ag,bg} NA # 0.

Suppose ¢ € {as,ba} and ¢ € A;. Since By N By = (), ¢ would lie on an edge F'
of the triangle which is the closure of B;. If ¢ lay on the interior of F' we would
have F' = E, or F = o[E»] so that F' € &yqry, which would imply that F' = E; or
F = o[E4]; but then

¢ =7(F) € {(7(E1),7(0[Er])} = {ar, b1 };

that is, ¢ € A;. So c is a vertex of F' and therefore a vertex of the triangle which
is the convex hull of Ey U o[FE;]. But this contradicts Lemma 8.2.

That 1(7) does not exceed L follows from the triangle inequality. O
Theorem 8.5. Suppose v € I'. Then {[p(v)] = 02 and
R
L< 1
< 7—710)

where L is the length of 9.

Proof. For each E € Epary choose B(E) € ENON.

Suppose b € 9Q and let B = {x € R?: |(x —b) ¢ T'(b)| < R and |(z —b) e N(b)| <
R}. Let Ty € T be such that b+ RN (b) € Tx. Choose vy € BN v(Ty); this is
possible since h < R. Choose a continuous map ¢ : [0,1] — BN (UE) such that
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€(0) = v_ € Q and ((1) = vy; this is possible since h < R. It follows from Theorem
7.1 that K = {t € [0,1] : {(t) € 09} is a nonempty compact subset of (0,1). Let
E € & be such that ((inf K') € E. It follows that E € Epary.

Given ¢ € I' we can define a map f¢ : Z;/, — p(¢) by assigning (1 —¢)((E) +
t{(o[E]) to (1 = t)p1/2(E) + tu j2(o[E]) whenever E € Epqry and t € [0, 1].

Let C be the connected component of 3(E) in Z; , and let D be the connected
component of b in 9. Let u:S' — C and v : S* — D be homeomorphisms. It
follows from the preceding Lemma that the degree of v=! oo fgo uis £1. Since
f+ is homotopic to fg we infer that the degree of v~ o o f, o p is 1 which in
turn implies that D C £[p(7)].

Thus 99 C £[p(B)]; this implies

L <Lip&l(B) <

=19,

O

8.3. Proof of Theorem 8.1. For each E € &q4ry choose G(E) € 0Q N E. From
the preceding Theorem and 77 we infer that
R—h

g L=l <L<lf <L

9. THE TANGENT ESTIMATE.
We suppose throughout this section that v € T'iin-
Theorem 9.1. Suppose E € Epary, u € S! is such that
Ao1E]) = 4(E) = y(o[E]) - 1(B)lu,
and a € c(y(E),v(c[E])). Then
[ — T(E(a))] <

Proof. We may assume without loss of generality that a is the midpoint of E,
&(a) =0, T(0) = —e; and N(0) = ep. By ?? we obtain f : (—R,R) — (—R,r)
such that 02 N D(0,eq, R) = f.

For 0 <r < Rlet S(r) = {(z,y) € R? : |z| < r}. Since ENIQ # 0,

la| = dist a, 00 < diam FE < h.

In particular, E C S(R — h) N D(0, e, R).

Let C be the connected component of a in p(y) N S(R — h).

For each i € Z let E; = o'[E]; let T; = c(E; U E;j11); let g; = v(E;); and let
Si = C(bi, bi+1)-

Let 3 be a choice function on Eyqry such that §(E) € 02 whenevr E € Epqry and
let ©; = £(B(E;)) ee; fori e Z.

Let F be the largest connected subset of {F € Eyary : F C S(R)}. Since E € F
and since the diameter of the connected component of 0 in 9f is at least 2rR we
find that there are I,J € Z such that I <0< Jand F ={E; : ¢ € I({,J)}. It
follows that (E;_1 UE 41) C R? ~ S(R—h). Since the degree of the restriction of
¢ to each connected component of p(f) is one we have

z; <z ifi,je{l,J}andi<j.
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It follows that that there are points ¢+ such that ¢, € S;_1, ¢_ ee; = R — h,
g+ € Sy and g+ ee; = —R + h. This in turn implies that

(bj—1 —g-)ee; <0 andthat (g —byyr1)ee; <O0.
Let
Fin = {F& : FCVinn S} andlet Fou = {FEou: F C Vin NS}

Suppose G is a nonempty maximal connected subset of Fi,. Let I* = min{i :
E; € G and let J* =max{i: F; € G.

Suppose I < I'x and J* < J. Then there are py € E;-_; ~ E;- and p_ € E +
such that either p, e e; = R — h or there is 21 € (—R + h,R — h) such that

p+ = (24, f(2+)) then
c(gs-p-) Nelgy+,pe) CUT.

Let )
vy = W(_f (r1),1).
‘We have

uj-_10v_ >0 aswellas wuj+ evy > 0.

Let P be the union of the segments S;, i € {J~,...,J~ — 1} and the segments
c(p—,gs-)and c(gs+_1,p+) and let @ be the union of the segments c(p, (z+, —R))
and the segment c((z4, —R), (x4, —R)). Then P UQ is a simple closed polygon.

Let 0; = arcsinu; X u;41 fori € {J—,..., J~ 1} let a_ = arcsines X u;- and let
a4 = —arcsinuj+ X eg. By the Gauss-Bonnet Theorem for simple closed polygons

we infer that
Jt-1

T+ aoa_ +ay + Z 0; = 2m.
i=J-
Since #; < 0 for i € {J—,...,J~ " we find that a_ + ay > 7. Since |ay| <??
we find that ey > 0. Thus P = {(s,9(s)) : z— < s < x4} for some convex
g : [x—,xy] — [-R,R] for which f(xy) = g(zy+). Moreover, f(z) < g(z) for
x € [z_,z4] which implies that
Fla) <d@) and g < flay).
Since g is convex we have
fx_)<g'(z) < f'(ry) whenever x_ <z <m,.
For each ¢ € I and T' € Tpary let

q+ (Ta C) €H

be defined as follows. Let E, F' be such that Eyary Ne(T) = {E,F} and F = o(E).
In case ((F) # ((F) we let

q:(T,¢) = T Nint e (+(E), 1(F)).
In case ((E) = ((F) € Vi, we let
@ (1,0 =0 andwelet q(T,C) =T ~ {((B)).
In case ((E) = ((F) € Vi we let
4 (T,0) =T ~ {((B)} and we let q_(T,¢) = 0.
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We let
Ut =0 qu (T3, B) ~ clqy(T;,7)
and we let
U™ =U}t a4 (T,9) ~ clay (T3, B)
O
Proof.

b; = pB(E;) and g; =~(E;).
S; =c(bi,biy1) and T; = c(gi, giv1)-

u,v: T — St U{0}
are such that
Uy = biy1 —b; and vy = git1 — gi-
Note that
b;ee; <0.

Let M, be the set of (A, B)I(I,J) x I(I,J) such that b; € V;, whenever i €
I(A, B) and let Moy be the set of (A, B)I(I,J) x I(I,J) such that Vou: whenever
i € I(A, B).

Lemma 9.1. v; e ey # 0.

Proof. Suppose v; = seg and s # 0. Then S; C h(g;, git1)-
Suppose s > 0.

9.1. Computing X. For 0 <z < R let

f(x)=R—+VR2—22 andlet g¢g(z)= W

Then g has a unique minimum on (0, R) at

X = i\/hQ—&-QRh

R+h
and both f(X) and f'(X) equal

h [ h
hfh ).
R<R+>

Lemma 9.2. There are I, J € Z such that I < 0 < J and
{i€Z - EnNf£0}=11,J).
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