A BOUNDARY APPROXIMATION ALGORITHM FOR PLANAR DOMAINS

WILLIAM K. ALLARD

Contents

1. CAVEAT.

In what follows no hypotheses has been made on the triangulation \mathcal{T} . As relatively simple counterexamples show, the results in the paper do not hold as stated. I have fixed all this and a newer, correct version will appear shortly.

2. INTRODUCTION.

Suppose \mathcal{T} is a triangulation \mathcal{T} of \mathbb{R}^2 with edges \mathcal{E} and vertices \mathcal{V} , and suppose Ω is a bounded open subset of \mathbb{R}^2 . Let

$$\mathcal{V}_{\rm in} = \{ v \in \mathcal{V} : v \in \Omega \}.$$

In this paper we will give an algorithm which uses \mathcal{V}_{in} and nothing else to construct a finite disjointed family \mathcal{P} of simple closed polygons whose union approximates, in a sense we shall make precise, the boundary $\partial\Omega$ of Ω . Of course we will need to assume something about Ω ; under our assumptions $\partial\Omega$ will have a finitely many connected components equal in number to the number of members of \mathcal{P} . Specifically, we assume that $\partial\Omega$ is continuously differentiable and and that, for some positive real number R, if $a \in \mathbb{R}^2$ and **dist** $(a, \partial\Omega) < R$ there is a unique point of $\partial\Omega$ closest to a. That is, $\partial\Omega$ has **reach** R in the sense of [?]. If $\partial\Omega$ is twice continuously differentiable it will have positive reach R and if K is the maximum length of the curvature vector of $\partial\Omega$ we have $K \leq 1/R$; however, KR can be arbitrarily small. In particular, R is a constraint on how much $\partial\Omega$ can come back on itself.

We will show that if

$$h = \sup\{\operatorname{\mathbf{diam}} T : T \in \mathcal{T}\} < R$$

then

1

$$\mathbf{length}\left(P\right) \le \mathbf{length}\left(\partial\Omega\right) \le \frac{R}{R-h}\mathbf{length}\left(P\right)$$

where $P = \cup \mathcal{P}$.

Let \mathcal{E}_{bdry} be the set of $E \in \mathcal{E}$ such that one vertex of E lies in \mathcal{V}_{in} and the other does not. Let α , the basic **adjacency relation**, be the set of $(E, F) \in \mathcal{E}_{bdry} \times \mathcal{E}_{bdry}$ such that $E \neq F$ and E and F have a common vertex and let N be its cardinality. Our algorithm runs in time $O(N^2)$ given α . However, if $\mathcal{V} = A[\mathbb{Z}^2]$ for some affine

 $^{^1\}mathrm{Copyright}$ ©2007 William K. Allard

Date: March 29, 2010.

Supported in part by Los Alamos National Laboratory.

isomorphism of \mathbb{R}^2 then our algorithm runs in time O(N) with a small constant and uses only integer arithmetic.

This algorithm has been implemented on the computer and has been run in situations where $\partial\Omega$ is quite irregular. It turns out that P, even in these cases, appears to be a sparse approximation to $\partial\Omega$, and so may useful even when $\partial\Omega$ does not have positive reach.

As we shall show, \mathcal{P} is an *affine* invariant of \mathcal{V}_{in} even though the length of P clearly is not. It also turns out \mathcal{P} is uniquely determined by \mathcal{V}_{in} .

3. Preliminaries.

We let

$$\mathbb{N}$$
 and \mathbb{N}^+

be the set of nonnegative integers and the set of positive integers, respectively. Whenever $m \in \mathbb{Z}$ and $n \in \mathbb{N}$ we let

$$\mathbb{I}(m,n) = \{ i \in \mathbb{Z} : m \le i < m+n \}.$$

Whenever f is a function whose domain is a subset of \mathbb{Z} and z is in its domain we will write f_z instead of f(z).

Whenever r is a relation and A is a set we let

$$r[A] = \{y : \text{for some } x, x \in A \text{ and } (x, y) \in r\}.$$

In particular, if X is a set and f is a function with domain X then

$$f[A] = \{f(x) : x \in X \cap A\}.$$

We let

$$\mathbb{R}_2$$

be the dual of \mathbb{R}^2 .

Let

 $\mathbf{e}_1 = (1,0)$ and let $\mathbf{e}_2 = (0,1);$

thus \mathbf{e}_1 and \mathbf{e}_2 are the standard basis vectors for \mathbb{R}^2 .

We let

$$a^{\perp} = (a_1, -a_2)$$
 whenever $a = (a_1, a_2) \in \mathbb{R}^2$.

We let

$$a \times b = a^{\perp} \bullet b = -a \bullet b^{\perp}$$
 whenever $a, b \in \mathbb{R}^2$.

Alternatively, if $a = (a_1, a_2) \in \mathbb{R}^2$ and $b = (b_1, b_2) \in \mathbb{R}^2$ then

$$a \times b = \mathbf{det} \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}.$$

Whenever $a, b, c \in \mathbb{R}^2$ we let

$$[a, b, c] = (b - a) \times (c - a) = a \times b + b \times c + c \times a;$$

note that $[a, b, c] \neq 0$ if and only if the points a, b, c are noncollinear as well as that $[\pi(a), \pi(b), \pi(c)] = \sigma[a, b, c]$ whenever π is a permutation of $\{a, b, c\}$ and σ is the index of π .

We let

be the family of closed halfspaces in \mathbb{R}^2 ; thus $H \in \mathbf{H}$ if and only if for some $\omega \in \mathbb{R}_2$ and $z \in \mathbb{R}$ we have $H = \{x \in \mathbb{R}^2 : \omega(x) \leq z\}$. For $a, b \in \mathbb{R}^2$ with $a \neq b$ we let

$$\mathbf{h}_{+}(a,b) = \{x \in \mathbb{R}^{2} : [a,b,x] \ge 0\} \in \mathbf{H}$$

and we let

$$\mathbf{h}_{-}(a,b) = \{x \in \mathbb{R}^2 : [a,b,x] \le 0\} \in \mathbf{H}.$$

Given $N \in \mathbb{N}^+$ and $a_1, \ldots, a_N \in \mathbb{R}^2$ we let

$$c(a_1,\ldots,a_N)$$
 be the convex hull of $\{a_1,\ldots,a_N\}$.

We let

$$\begin{split} \mathbf{V} &= \{a : a \in \mathbb{R}^2\};\\ \mathbf{E} &= \{\mathbf{c}(a,b) : a, b \in \mathbf{V} \text{ and } a \neq b\};\\ \mathbf{T} &= \{\mathbf{c}(a,b,c) : a, b, c \in \mathbf{V} \text{ and } [a,b,c] \neq 0\}. \end{split}$$

For $E \in \mathbf{E}$ we let $\mathbf{v}(E) = \{a, b\}$ where a, b are such that $E = \mathbf{c}(a, b)$; the members of $\mathbf{v}(E)$ are called **vertices of** E.

For $T \in \mathbf{T}$ we let $\mathbf{e}(T) = {\mathbf{c}(\{a, b\}), \mathbf{c}(\{b, c\}), \mathbf{c}(\{c, a\})}$ and we let $\mathbf{v}(T) = {a, b, c}$ where a, b, c are such that $T = \mathbf{c}(\{a, b, c\})$; the members of $\mathbf{e}(T)$ are called **edges of** T and the members of $\mathbf{v}(T)$ are called **vertices of** T.

4. The triangulation and the set of vertices \mathcal{V}_{in} .

For the remainder of this paper we fix a triangulation

 \mathcal{T}

of \mathbb{R}^2 ; this means, by definition, that

- (i) $\mathcal{T} \subset \mathbf{T};$
- (ii) $\mathbb{R}^2 = \cup \mathcal{T};$
- (iii) if $T, U \in \mathcal{T}, T \neq U$ and $T \cap U \neq \emptyset$ then either there is $E \in \mathbf{e}(T) \cap \mathbf{e}(U)$ such that $T \cap U = E$ or there is $v \in \mathbf{v}(T) \cap \mathbf{v}(U)$ such that $T \cap U = \{v\}$;
- (iv) $\{T \in \mathcal{T} : T \cap K \neq \emptyset\}$ if finite whenever K is a compact subset of \mathbb{R}^2 .

We let

$$\mathcal{E} = \{E : E \in \mathbf{e}(T) \text{ for some } T \in \mathcal{T}\}$$

and we let

$$\mathcal{V} = \bigcup \{ v : v \in \mathbf{v}(T) \text{ for some } T \in \mathcal{T} \}.$$

For the remainder of this paper we fix nonempty subsets

$$\mathcal{V}_{\mathrm{in}}$$
 and $\mathcal{V}_{\mathrm{out}}$

such that

$$\mathcal{V} = \mathcal{V}_{\mathrm{in}} \cup \mathcal{V}_{\mathrm{out}}, \quad \mathcal{V}_{\mathrm{in}} \cap \mathcal{V}_{\mathrm{out}} = \emptyset \quad and \ \mathcal{V}_{\mathrm{in}} \ is \ finite.$$

We let

$$\begin{aligned} \mathcal{E}_{\mathrm{in}} &= \{ E \in \mathcal{E} : \mathbf{v}(E) \subset \mathcal{V}_{\mathrm{in}} \}; \\ \mathcal{E}_{\mathrm{out}} &= \{ E \in \mathcal{E} : \mathbf{v}(E) \subset \mathcal{V}_{\mathrm{out}} \}; \\ \mathcal{E}_{\mathrm{bdry}} &= \mathcal{E} \sim (\mathcal{E}_{\mathrm{in}} \cup \mathcal{E}_{\mathrm{out}}); \\ \mathcal{T}_{\mathrm{out}} &= \{ T \in \mathcal{T} : \mathbf{v}(T) \subset \mathcal{V}_{\mathrm{out}} \}; \\ \mathcal{T}_{\mathrm{in}} &= \{ T \in \mathcal{T} : \mathbf{v}(T) \subset \mathcal{V}_{\mathrm{in}} \}; \\ \mathcal{T}_{\mathrm{bdry}} &= \mathcal{T} \sim (\mathcal{T}_{\mathrm{in}} \cup \mathcal{T}_{\mathrm{out}}) \end{aligned}$$

and we note that all of these sets are finite. We let

$$\mathcal{V}_{bdry} = \{ v \in \mathcal{V} : \text{for some } E \in \mathcal{E}_{bdry}, v \in \mathbf{v}(E) \}.$$

We define

 $\mathbf{v}_{\mathrm{in}}: \mathcal{E}_{\mathrm{bdry}} \to \mathcal{V}_{\mathrm{in}} \quad \mathrm{and} \quad \mathbf{v}_{\mathrm{out}}: \mathcal{E}_{\mathrm{bdry}} \to \mathcal{V}_{\mathrm{out}}$

by requiring that $\mathbf{v}_{in}(E) \in \mathcal{V}_{in}$, $\mathbf{v}_{out}(E) \in \mathcal{V}_{out}$ and $\mathbf{v}(E) = {\mathbf{v}_{out}(E), \mathbf{v}_{in}(E)}$ for each $E \in \mathcal{E}_{bdry}$.

4.1. The adjacency relation α and the permutation σ . We have the basic adjacency relation α is defined as follows.

Definition 4.1. We let

$$\alpha = \{ (E, F) \in \mathcal{E}_{bdry} \times \mathcal{E}_{bdry} : \{ E, F \} \subset \mathbf{e}(T) \text{ for some } T \in \mathcal{T}_{bdry} \}.$$

The following Proposition is a direct consequence of the definitions.

Proposition 4.1. If $T \in \mathcal{T}_{bdry}$ then exactly two edges of T belong to \mathcal{E}_{bdry} .

Definition 4.2. Whenever $I, J \in \mathbb{Z}$ we let

$$\mathcal{C}(I,J)$$

be the set of maps $E : \mathbb{I}(I, J) \to \mathcal{E}_{bdry}$ such that

(i) $(E_i, E_{i+1}) \in \alpha$ whenever $\{i, i+1\} \subset \mathbb{I}(I, J);$

(ii) $E_i \neq E_{i+2}$ whenever $\{i, i+1, i+2\} \subset \mathbb{I}(I, J)$.

We say a subset \mathcal{F} of \mathcal{E}_{bdry} is **connected** if it equals the range of a chain.

Definition 4.3. Suppose $v \in \mathcal{V}_{bdry}$. We let

$$\mathcal{S}(v) = \{ E \in \mathcal{E}_{\mathrm{bdry}} : v \in \mathbf{v}(E) \}$$

and we let

$$\mathbf{S}(v)$$

be the collection of maximal connected subsets of $\mathcal{S}(v)$. For each $\mathcal{F} \in \mathbf{S}(v)$ we let

 $\mathbf{B}(v, \mathcal{F})$

be the set of $E \in \mathcal{E}_{bdry}$ such that $v \notin \mathbf{v}(E)$ and $\{E\} \cup \mathcal{F}$ is connected.

Definition 4.4. We say $\gamma \in \Gamma$ is **special** if the following conditions hold:

(I) if $(D, E, F) \in \tau$ and $\gamma(E) \in E \sim \mathbf{v}(E)$ then $\{\gamma(D), \gamma(E), \gamma(F)\}$ is linear;

- (II) if $v \in \mathcal{V}_{bdry}$, $\mathcal{F} \in \mathbf{S}(v)$ and $v \in \{\gamma(F) : F \in \mathcal{F}\}$ then
 - (a) $\gamma(F) = v$ for all $F \in \mathcal{F}$;
 - (b) if $\{D, E\} = \mathbf{B}(v, \mathcal{F})$ then

$$F \cap \mathbf{w}_v(\mathbf{c}(\{\gamma(E), \gamma(F)\}) = \emptyset$$
 whenver $F \in \mathcal{F}$.

Proposition 4.2. Suppose $v \in \mathcal{V}_{bdry}$ and $\mathcal{F} \in \mathbf{S}(v)$. Then exactly one of the following statements holds:

- (i) card $\mathbf{B}(v, \mathcal{F}) = 2;$
- (ii) card $\mathbf{B}(v, \mathcal{F}) = 0$ and $\mathcal{S}(v) = \mathcal{F}$.

Proposition 4.3. Suppose v, \mathcal{F} and v are as in 4.13 (II), E, F are such that $\mathbf{B}(v, \mathcal{F}) = \{E, F\}$, and $I \in \mathbb{N}^+$ is such that $F = \sigma^I[E]$. Then

$$(\gamma(F) - v) \times (v - \gamma(E)) \begin{cases} \leq 0 & \text{if } v \in \mathcal{V}_{\text{out}}, \\ \geq 0 & \text{if } v \in \mathcal{V}_{\text{in}}. \end{cases}$$

The permutation σ which we now define will be useful in what follows.

Definition 4.5. For each $E \in \mathcal{E}_{bdry}$ we let

 $\mathbf{j}_+(E) = \mathbf{h}_+(\mathbf{v}_{in}(E), \mathbf{v}_{out}(E))$ and we let $\mathbf{j}_-(E) = \mathbf{h}_-(\mathbf{v}_{in}(E), \mathbf{v}_{out}(E))$. We let

$$\sigma = \{ (E, F) \in \alpha : F \subset \mathbf{j}_+(E) \}.$$

Proposition 4.4. σ is a permutation of \mathcal{E}_{bdry} without fixed points and

$$\alpha = \sigma \cup \sigma^{-1}.$$

Proof. It follows directly from Proposition 4.1 that σ and σ^{-1} are functions which are inverse to each other. It is obvious that $\alpha = \sigma \cup \sigma^{-1}$.

Definition 4.6. We let

be the set of orbits of the action

$$\mathbb{Z} \times \mathcal{E}_{\mathrm{bdry}} \ni (i, E) \mapsto \sigma^{i}[E] \in \mathcal{E}_{\mathrm{bdry}}$$

of \mathbb{Z} on \mathcal{E}_{bdry} . For each $E \in \mathcal{E}_{bdry}$ we let

$$\mathbf{p}(E) = \{\sigma^i[E] : n \in \mathbb{Z}\};\$$

thus $\mathbf{o}(E)$ is the orbit of E under the aforementioned action.

The following two Proposition should be evident.

Proposition 4.5. For any $E \in \mathcal{E}_{bdry}$ we have

$$\mathbf{o}(E) = \{\sigma^n[E] : n \in \mathbb{Z}\}.$$

Moreover, if $E, F \in \mathcal{O} \in \mathbf{O}$ there is one and only one $i \in \mathbb{Z}$ such that $0 \leq i < \operatorname{card} \mathcal{O}$ and $F = \sigma^i[F]$.

Proposition 4.6. Z has **card O** connected components each of which is homeomorphic to a circle.

Definition 4.7. Suppose $E \in \mathcal{E}_{bdry}$. We let the order of E equal $\min\{n \in \mathbb{N}^+ : E = \sigma^n[E]\}$. We say E is degenerate if $\mathbf{v}(E) \cap \mathbf{v}(F) \neq \emptyset$ whenever $F \in \mathbf{o}(E)$.

We leave the straightforward proofs of the following two Propositions to the reader.

Proposition 4.7. Suppose $E \in \mathcal{E}_{bdry}$. Then $\mathbf{o}(E)$ has at least three members.

Proposition 4.8. Suppose $E \in \mathcal{E}_{bdry}$ and E is degenerate. Then there is $v \in \mathcal{V}$ such that $\cap \{\mathbf{v}(F) : F \in \mathbf{o}(E)\} = \{v\}.$

4.2. The family Γ .

Definition 4.8. We let

Г

be the set of functions $\gamma : \mathcal{E}_{bdry} \to \mathbf{V}$ such that $\gamma(E) \in E$ whenever $E \in \mathcal{E}_{bdry}$; in other words, Γ is the set of choice functions for \mathcal{E}_{bdry} .

Keeping in mind Proposition 4.1, for each $(\gamma, T) \in \Gamma \times \mathcal{T}_{bdry}$ we let

$$\begin{split} \mathbf{p}(\gamma,T) &= \mathbf{c}(\gamma(E),\gamma(F)) \quad \text{and} \quad \mathbf{l}(\gamma,T) = |\gamma(E) - \gamma(F)| = \mathbf{diam}\,\mathbf{p}(\gamma,T) \\ \text{where } \{E,F\} &= \mathcal{E}_{\mathrm{bdry}} \cap \mathbf{e}(T). \end{split}$$

For each $\gamma \in \Gamma$ we let

$$\mathbf{p}(\gamma) = \cup_{T \in \mathcal{T}_{\mathrm{bdry}}} \mathbf{p}(\gamma, T) \quad \text{and we let} \quad \mathbf{l}(\gamma) = \sum_{T \in \mathcal{T}_{\mathrm{bdry}}} \mathbf{l}(\gamma, T).$$

Definition 4.9. For each $t \in [0, 1]$ we define

$$\mu_t \in \Gamma$$

by letting $\mu_t(E) = (1-t)\mathbf{v}_{in}(E) + t\mathbf{v}_{out}(E)$ whenever $E \in \mathcal{E}_{bdry}$, we let
 $Z_t = \mathbf{p}(\mu_t).$

The following Proposition should be clear.

Proposition 4.9. Suppose $t \in (0, 1)$. Then Z_t has finitely many connected components each of which is a simple closed polygon and the number of which equals card **O**.

Definition 4.10. Suppose $\gamma_i \in \Gamma$, i = 1, 2. We say γ_1 is equivalent to γ_2 and write $\gamma_1 \approx \gamma_2$ if

$$E \in \mathcal{E}_{bdry}$$
 and $\gamma_1(E) \neq \gamma_2(E) \Rightarrow \gamma_1(D) = \gamma_2(D)$ whenever $(D, E) \in \alpha$

The following Proposition should be clear.

Proposition 4.10. Suppose $\gamma_i \in \Gamma$, i = 1, 2, and $\gamma_1 \approx \gamma_2$. Then $\mathbf{p}(\gamma_1) = \mathbf{p}(\gamma_2)$ and $\mathbf{l}(\gamma_1) = \mathbf{l}(\gamma_2)$.

4.3. If $\mathbf{p}(\gamma_1) = \mathbf{p}(\gamma_2)$. We show in Theorem 4.1 below that if $\gamma_i \in \Gamma$, $i \in \{1, 2\}$ and $\mathbf{p}(\gamma_1) = \mathbf{p}(\gamma_2)$ then γ_1 and γ_2 are essentially the same.

Lemma 4.1. Suppose $\mathcal{U} \subset \mathcal{T}_{bdry}$, $U = \bigcup \mathcal{U}$ and $\gamma \in \Gamma$. Then

$$\mathbf{p}(\gamma) \cap U = \cup \{ \mathbf{p}(\gamma, T) \cap U : U \in \mathcal{U} \}.$$

Proof. This follows directly from the fact that if $V \in \mathcal{T}$ then $V \cap U \neq \emptyset$ if and only if $V \in \mathcal{U}$.

The next three Lemmas are geometrically obvious; we leave their proofs to the reader.

Lemma 4.2. Suppose $\gamma \in \Gamma$, $T \in \mathcal{T}_{bdry}$ and $\{E, F\} = \mathbf{e}(T) \cap \mathcal{E}_{bdry}$. Then $\mathbf{p}(\gamma) \cap$ int T is nonempty if and only if either $\gamma(E) \notin \mathbf{v}(E)$ and $\gamma(F) \notin E$ or $\gamma(F) \notin \mathbf{v}(E)$ and $\gamma(E) \notin F$.

Lemma 4.3. Suppose $\gamma_i \in \Gamma$, i = 1, 2; $T \in \mathcal{T}_{bdry}$; and $\mathbf{p}(\gamma_1) \cap \operatorname{int} T$ and $\mathbf{p}(\gamma_2) \cap \operatorname{int} T$ are equal and nonempty. Then $\gamma_1(E) = \gamma_2(E)$ whenever $E \in \mathbf{e}(T) \cap \mathcal{E}_{bdry}$.

Lemma 4.4. Suppose $\gamma \in \Gamma$; $E \in \mathcal{E} \sim \mathcal{E}_{bdry}$ and

$$\mathbf{p}(\gamma) \cap (E \sim \mathbf{v}(E)) \neq \emptyset.$$

Then there is one and only $T \in \mathcal{T}_{bdry}$ such that $E \in \mathbf{e}(T)$ and if D, F are such that $\mathbf{e}(T) = \{D, E, F\}$ then

$$\mathbf{v}(E) = \{\gamma(D), \gamma(F)\}.$$

Theorem 4.1. Suppose $\gamma_i \in \Gamma$ for $i \in \{1, 2\}$ and $\mathbf{p}(\gamma_1) = \mathbf{p}(\gamma_2)$. Then $\gamma_1 \approx \gamma_2$. Moreover, if $E \in \mathcal{E}_{bdry}$ and $\gamma_1(E) \neq \gamma_2(E)$ then

$$\mathbf{v}(D) \cap \mathbf{v}(E) \cap \mathbf{v}(F) = \emptyset$$

where $\{D, F\} = \{G \in \mathcal{E}_{bdry} : (E, G) \in \alpha\}.$

Proof. Let $E \in \mathcal{E}_{bdry}$ be such that $\gamma_1(E) \neq \gamma_2(E)$. Let $D, F \in \mathcal{E}_{bdry}$, $A, B \in \mathcal{E} \sim \mathcal{E}_{bdry}$ and $T, U \in \mathcal{T}_{bdry}$ be such that $T \neq U$, $\mathbf{e}(T) = \{D, E, A\}$ and $\mathbf{e}(U) = \{E, F, B\}$. We need to show that

(1)
$$\gamma_1(D) = \gamma_2(D)$$
 and $\gamma_1(F) = \gamma_2(F)$.

Then either (I) $\mathbf{v}(D) \cap \mathbf{v}(E) \cap \mathbf{v}(F) = \emptyset$ or (II) $\mathbf{v}(D) \cap \mathbf{v}(E) \cap \mathbf{v}(F) \neq \emptyset$. Case One. Suppose (I) holds.

Let a, b, c, d be the common vertices of D and A, D and E, E and F, F and B, respectively. By Lemma 4.3 we have $\{\gamma_1(D), \gamma_2 D\} \subset \{a, b\}$ and $\{\gamma_1(F), \gamma_2 F\} \subset \{c, d\}$.

Subcase One. $\gamma_i(E) \notin \mathbf{v}(E)$ for some $i \in \{1, 2\}$.

Let j be such that $\{i, j\} = \{1, 2\}$. Then $\gamma_i(D) = b$ and $\gamma_i(F) = c$ by Lemma 4.3. Now $\mathbf{p}(\gamma_i) \cap E = E$ so that $\mathbf{p}(\gamma_j) \cap E = E$. If $\gamma_j(E) \notin \mathbf{v}(E)$ then $\gamma_j(D) = b$ and $\gamma_j(F) = c$ so (1) holds. So suppose $\gamma_2(E)$

Subcase Two. $\{i, j\} = \{1, 2\}, \gamma_i(E) = b \text{ and } \gamma_j(E) = c.$

We cannot have $\gamma_i(F) = d$ by Lemma 4.4 nor can we have $\gamma_i(F) \in F \sim \mathbf{v}(F)$ by Lemmas 4.3 and 4.2. So $\gamma_i(F) = c$. We cannot have $\gamma_j(D) = a$ by Lemma 4.4 nor can we have $\gamma_j(D) \in D \sim \mathbf{v}(D)$ by Lemmas 4.3 and 4.2. So $\gamma_j(D) = b$. Since $\gamma_i(F) = c$ we cannot have $\gamma_i(D) = a$ by Lemma 4.4 nor can we have $\gamma_i(D) \in D \sim \mathbf{v}(D)$ by Lemmas 4.3 and 4.2. So $\gamma_i(D) = b$. Since $\gamma_j(D) = b$ we cannot have $\gamma_j(F) = d$ by Lemma 4.4 nor can we have $\gamma_j(F) \in F \sim \mathbf{v}(F)$ by Lemmas 4.3 and 4.2. So $\gamma_j(F) = c$.

Case Two. Suppose (II) holds. Let *a* be the common vertex of *D*, *E*, *F* and let *b*, *c*, *d* be such that $\mathbf{v}(D) = \{a, b\}, \mathbf{v}(E) = \{a, c\}, \mathbf{v}(F) = \{a, d\}.$

Subcase One. $\{i, j\} = \{1, 2\}$ and $\gamma_i(E) \notin \mathbf{v}(E)$.

Then $\gamma_i(D) = a$ and $\gamma_i(F) = c$ so $\mathbf{p}(\gamma_i) \cap \operatorname{int} (T \cup U) = \mathbf{c}(S) \sim \mathbf{v}(S)$ where $S = \mathbf{c}(a, \gamma_i(E))$. This implies $\mathbf{p}(\gamma_j) \cap \operatorname{int} (T \cup U) = \mathbf{c}(S) \sim \mathbf{v}(S)$ so that $\gamma_2(E) = \gamma_1(E)$ which contradicts our hypothesis. So this Subcase does not occur.

Subcase Two. $\{i, j\} = \{1, 2\}, \gamma_i(E) = a \text{ and } \gamma_j(E) = c$. We cannot have $\gamma_j(D) = b$ by Lemma 4.4 nor can we have $\gamma_j(D) \in D \sim \mathbf{v}(D)$ by Lemmas 4.3 and 4.2. So $\gamma_j(D) = a$. We cannot have $\gamma_j(F) = d$ by Lemma 4.3 nor can we have $\gamma_j(F) \in D \sim \mathbf{v}(F)$ by Lemmas 4.3 and 4.2. So $\gamma_j(F) = a$. Keeping in mind Lemma 4.1 this implies $\mathbf{p}(\gamma_j) \cap \operatorname{int} (T \cup U) = E \sim \mathbf{v}(E)$. But as $\gamma_i(D) \in D$ and $\gamma_i(F) \in F$ we find that $\mathbf{p}(\gamma_i) \cap \operatorname{int} T \cup U = \emptyset$. Thus this Subcase does not occur.

4.4. A useful classification. Suppose $\gamma \in \Gamma$.

For each $v \in \mathcal{V}$ we let

$$\mathbf{u}_{\rm sub}(\gamma, v) = \begin{cases} \{v\} & \text{if sub} = \text{in and } v \in \mathcal{V}_{\rm in} \sim \mathbf{p}(\gamma); \\ \{v\} & \text{if sub} = \text{out and } v \in \mathcal{V}_{\rm out} \sim \mathbf{p}(\gamma); \\ \{v\} & \text{if } v \in \mathbf{p}(\gamma). \end{cases}$$

For each $E \in \mathcal{E}$ we let

$$\mathbf{u}_{\rm sub}(\gamma, E) = \begin{cases} E \sim \mathbf{v}(E) & \text{if sub} = \text{in and } \mathbf{v}(E) \subset \mathcal{V}_{\rm in}; \\ E \sim \mathbf{v}(E) & \text{if sub} = \text{out and } \mathbf{v}(E) \subset \mathcal{V}_{\rm out}; \\ \{v\} & \text{if sub} = \text{out and } v \in \mathcal{V}_{\rm out} \sim \mathbf{p}(\gamma); \\ \{v\} & \text{if } v \in \mathbf{p}(\gamma). \end{cases}$$

Keeping in mind that

$$E \cap \mathbf{p}(\gamma) \in \mathbf{E} \cup \mathbf{V}$$

we find that there are unique functions

$$\mathbf{u}_{\mathrm{in}}, \mathbf{u}_{\mathrm{out}} : \mathcal{E}_{\mathrm{bdrv}} \to [0, 1]$$

such that $\mathbf{u}_{\mathrm{in}} \leq \mathbf{u}_{\mathrm{out}}$ and

$$E \cap \mathbf{p}(\gamma) = \{(1-t)\mathbf{v}_{\mathrm{in}}(E) + t\mathbf{v}_{\mathrm{out}}(E) : \mathbf{u}_{\mathrm{in}}(E) \le t \le \mathbf{u}_{\mathrm{out}}(E)\}.$$

We let

 \mathbf{U}_{in}

be the union of the set

$$\{v \in \mathcal{V}_{\text{in}} : v \notin \mathbf{p}(\gamma)\};$$

the sets

$$E \sim \mathbf{v}(E)$$
 corresponding to $E \in \mathcal{E}_{in}$;

the sets

$$\{(1-t)\mathbf{v}_{in}(E) + t\mathbf{v}_{out}(E) : 0 < t < \mathbf{u}_{in}(E)\}\$$
 corresponding to $E \in \mathcal{E}_{bdry}$;

the sets

$$\mathbf{h}_+(\gamma(E),\gamma(F)) \cap \operatorname{int} T$$

corresponding to $T \in \mathcal{T}_{bdry}$ and E, F such that $\mathcal{E}_{bdry} \cap \mathbf{e}(T) = \{E, F\}, F = \sigma[E]$ and $\gamma(E) \neq \gamma(F)$; the sets

 $\operatorname{\mathbf{int}} T$

corresponding to $T \in \mathcal{T}_{bdry}$ and E, F such that $\mathcal{E}_{bdry} \cap \mathbf{e}(T) = \{E, F\}, F = \sigma[E]$ and $\gamma(E) = \gamma(F) \in \mathcal{V}_{out}$; and the sets

int T corresponding to $T \in \mathcal{T}_{in}$.

We let

 $\mathbf{U}_{\mathrm{out}}$

be the union of the set

$$\{v \in \mathcal{V}_{\text{out}} : v \notin \mathbf{p}(\gamma)\}$$

the sets

 $E \sim \mathbf{v}(E)$ corresponding to $E \in \mathcal{E}_{out}$;

the sets

{
$$(1-t)\mathbf{v}_{in}(E) + t\mathbf{v}_{out}(E) : \mathbf{u}_{out}(E) < t < 1$$
} corresponding to $E \in \mathcal{E}_{bdry}$?

the sets

$$\mathbf{h}_+(\gamma(E),\gamma(F)) \cap \operatorname{int} T$$

corresponding to $T \in \mathcal{T}_{bdry}$ and E, F such that $\mathcal{E}_{bdry} \cap \mathbf{e}(T) = \{E, F\}, F = \sigma[E]$ and $\gamma(E) \neq \gamma(F)$; the sets

 $\operatorname{\mathbf{int}} T$

corresponding to $T \in \mathcal{T}_{bdry}$ and E, F such that $\mathcal{E}_{bdry} \cap \mathbf{e}(T) = \{E, F\}, F = \sigma[E]$ and $\gamma(E) = \gamma(F) \in \mathcal{V}_{in}$; and the sets

int T corresponding to $T \in \mathcal{T}_{out}$.

Proposition 4.11. The sets U_{in} and U_{out} are open. \mathbb{R}^2 is the disjoint union of U_{in} , U_{out} and $\mathbf{p}(\gamma)$. We have

 $\mathcal{V}_{in} \sim \mathbf{p}(\gamma) \subset \mathbf{U}_{in}$ and $\mathcal{V}_{out} \sim \mathbf{p}(\gamma) \subset \mathbf{U}_{out}$.

4.5. Types of edges with respect to $\gamma \in \Gamma$.

(i) $\gamma(E) \notin \mathbf{v}(E)$ and there is one and only one $F \in \mathcal{C}(-1, 1)$ such that $E = F_0$,

$$[\gamma(F_{-1}), \gamma(F_0), \gamma(F_1)] = 0, \quad [\mathbf{v}_{\rm in}(F_0), \mathbf{v}_{\rm out}(F_0), \gamma(F_{-1})] < 0, \quad [\mathbf{v}_{\rm in}(F_0), \mathbf{v}_{\rm out}(F_0), \gamma(F_1)] > 0.$$

(ii) $\gamma(E) \notin \mathbf{v}(E)$ and there is one and only one $F \in \mathcal{C}(-1, 1)$ such that $E = F_0$,

$$[\gamma(F_{-1}), \gamma(F_0), \gamma(F_1)] \neq 0, \quad [\mathbf{v}_{\rm in}(F_0), \mathbf{v}_{\rm out}(F_0), \gamma(F_{-1})] < 0, \quad [\mathbf{v}_{\rm in}(F_0), \mathbf{v}_{\rm out}(F_0), \gamma(F_1)] > 0.$$

- (iii) $\gamma(E) \notin \mathbf{v}(E)$ and there is one and only one $F \in \mathcal{C}(-1, 1)$ such that $E = F_0$, $\gamma(F_{-1}) = \mathbf{v}_{in}(F_0)$ and $\gamma(F_1) = \mathbf{v}_{out}(F_0)$.
- (iv) $\gamma(E) \notin \mathbf{v}(E)$ and there is one and only one $F \in \mathcal{C}(-1, 1)$ such that $E = F_0$, $\gamma(F_{-1}) \in \mathbf{v}(E)$ and

$$[\gamma(F_{-1}), \gamma(F_0), \gamma(F_1)] \neq 0$$

- (v) $\gamma(E) \notin \mathbf{v}(E)$ and there are exactly two $F \in \mathcal{C}(-1, 1)$ such that $E = F_0$ and $\{\gamma(F_{-1}, \gamma(F_1)\} = \mathbf{v}(F_0).$
- (vi) $\gamma(E) \in \mathbf{v}(E)$ and $\gamma(F) = \gamma(E)$ for all $F \in \mathbf{o}(E)$;
- (vii) $\gamma(E) \in \mathbf{v}(E)$ and there is exactly one $F \in \mathcal{C}(-1,1)$ such that $E = F_0$, $\mathbf{v}_{in}(F_0) = \gamma(F_{-1})$ and $\mathbf{v}_{out}(F_0) = \gamma(F_1)$.
- (viii) $\gamma(E) \in \mathbf{v}(E)$ and there are $I, J \in \mathbb{Z}$ and $F \in \mathcal{C}(I, J)$ such that I < 0 < J, $E = F_0, \ \gamma(F_i) = \gamma(F_0)$ whenever $i \in \mathbb{I}(I + 1, J - 1)$, there is $t \in (0, 1)$ such that $\gamma(F_0) = (1 - t)\gamma(F_I) + t\gamma(F_J)$, there is $H \in \mathbf{H}$ such that $\gamma(F_0) \in \mathbf{bdry} H$ and $\cup_{i=I}^J F_i \subset H$;
- (ix) $\gamma(E) \in \mathbf{v}(E)$ and there are $I, J \in \mathbb{Z}$ and $F \in \mathcal{C}(I, J)$ such that I < 0 < J $E = F_0, \gamma(F_i) = \gamma(F_0)$ whenever $i \in \mathbb{I}(I+1, J-1), [\gamma(F_I), \gamma(F_0), \gamma(F_J)] \neq 0$ and such that

$$\left(\cup_{i=I+1}^{J-1} F_i\right) \cap \left\{\gamma(F_0) + s((1-t)\gamma(\gamma(F_I) + t\gamma(F_J)) : 0 < s < \infty \text{ and } 0 \le t \le 1\right\} = \emptyset.$$

(x) $\gamma(E) \in \mathbf{v}(E)$ and there are $I, J \in \mathbb{Z}$ and $F \in \mathcal{C}(I, J)$ such that I < 0 < J $E = F_0, \gamma(F_i) = \gamma(F_0)$ whenever $i \in \mathbb{I}(I+1, J-1), [\gamma(F_I), \gamma(F_0), \gamma(F_J)] \neq 0$ and such that

$$\left(\cup_{i=I+1}^{J-1} F_i\right) \sim \{\gamma(F_0)\} \subset \{\gamma(F_0) + s((1-t)\gamma(\gamma(F_I) + t\gamma(F_J))) : 0 < s < \infty \text{ and } 0 \le t \le 1\} = \emptyset.$$

4.6. Types of edges with respect to $\gamma \in \Gamma$. Suppose $E \in \mathcal{E}_{bdry}$. Let $E_i = \sigma^i[E]$ and let $g_i = \gamma(E_i)$ for $i \in \mathbb{Z}$.

Exactly one of the following statements holds:

- (I) $g_0 \notin \mathbf{v}(E_0)$;
- (II) $g_0 \in \mathbf{v}(E_0)$ and $g_i = g_0$ for all $i \in \mathbb{Z}$;
- (III) $g_0 \in \mathbf{v}(E_0)$ and there is one and only one $(I, J) \in \mathbb{Z}^2$ such that I < 0 < J; $g_i = g_0$ if $i \in \mathbb{I}(I+1, J-1)$ and $g_0 \notin \{g_I, g_J\}$.

If (I) holds then exactly one of the following statements holds:

- (i) $\{g_{-1}, g_1\} \cap E_0 = \emptyset$ and $\{g_{-1}, g_0, g_1\}$ is nonlinear;
- (ii) $\{g_{-1}, g_1\} \cap E_0 = \emptyset$ and $\{g_{-1}, g_0, g_1\}$ is linear;
- (iii) $\{g_{-1}, g_1\} \cap \mathbf{v}(E) \neq \emptyset$ and $\{g_{-1}, g_0, g_1\}$ is nonlinear;
- (iv) $g_{-1} = g_1;$
- (v) $\{g_{-1}, g_1\} = \mathbf{v}(E).$

If g_0, I, J are as in (III) holds then exactly one of the following statements holds:

(vii) $g_0 \in \mathbf{v}(E)$ and $g_{-1} = g_0$;

WILLIAM K. ALLARD

- (viii) $g_0 \in \mathbf{v}(E)$ and there are $I, J \in \mathbb{Z}$ such that $I < 0 < J, g_i = g_0$ whenever $i \in \mathbb{I}(I+1, J-1)$, there is $t \in (0, 1)$ such that $g_0 = (1-t)g_I + tg_J$, there is $H \in \mathbf{H}$ such that $\gamma(F_0) \in \mathbf{bdry} H$ and $\cup_{i=I}^J F_i \subset H$;
- (ix) $g_0 \in \mathbf{v}(E)$ and there are $I, J \in \mathbb{Z}$ such that $I < 0 < J \ g_i = g_0$ whenever $i \in \mathbb{I}(I+1, J-1), \{g_I, g_0, g_J\}$ is nonlinear and such that

$$\left(\bigcup_{i=I+1}^{J-1} E_i\right) \cap \{g_0 + s((1-t)g_I + tg_J) : 0 < s < \infty \text{ and } 0 \le t \le 1\} = \emptyset.$$

(x) $g_0 \in \mathbf{v}(E)$ and there are $I, J \in \mathbb{Z}$ such that $I < 0 < J g_i = g_0$ whenever $i \in \mathbb{I}(I+1, J-1), \{g_I, g_0, g_J\}$ is nonlinear and such that

$$\left(\cup_{i=I+1}^{J-1} F_i\right) \sim \{g_0\} \subset \{g_0 + s((1-t)(g_I + tg_J)) : 0 < s < \infty \text{ and } 0 \le t \le 1\} = \emptyset.$$

4.7. Minimizers .

Definition 4.11. We let

$$\Gamma_{\min} = \{ \gamma \in \Gamma : \mathbf{l}(\gamma) \le \mathbf{l}(\delta) \text{ whenever } \delta \in \Gamma \}.$$

The members of Γ_{\min} are called **minimizers**.

Proposition 4.12. Γ_{\min} is nonempty.

Proof. Let

$$F: [0,1]^{\mathcal{E}_{bdry}} \to \Gamma \text{ and } L: [0,1]^{\mathcal{E}_{bdry}} \to [0,\infty)$$

be such that

 $F(c)(E) = (1-c(\gamma))\mathbf{v}_{in}(E) + c(\gamma)\mathbf{v}_{out}(E) \quad \text{and} \quad L(c) = \mathbf{l}(F(c)) \quad \text{for } c \in [0,1]^{\mathcal{E}_{bdry}};$ then F is univalent with range Γ and L is convex on the compact cube $[0,1]^{\mathcal{E}_{bdry}}$. \Box

4.8. **Special paths.** A number of properties of a member of Γ_{\min} are affinely invariant; these properties are used to define the class Γ_{special} .

Definition 4.12. Suppose $I \in \mathbb{Z}$ and $n \in \mathbb{N}^+$. We let

$$\mathcal{C}(I,n)$$

be the set of maps $E : \mathbb{I}(I, n) \to \mathcal{E}_{bdry}$ such that

(i) $(E_i, E_{i+1}) \in \alpha$ whenever $i \in \mathbb{I}(I, J)$ and $i+1 \leq J$;

(ii) $E_i \neq E_{i+2}$ whenever $i \in \mathbb{I}(I, J)$ and $i+2 \leq J$.

Proposition 4.13. Suppose $I, J \in \mathbb{Z}$ and $E : \mathbb{I}(I, J) \to \mathcal{E}_{bdry}$. Then $E \in \mathcal{C}(I, J)$ if and only if either $E_i = \sigma^i[E_I]$ for $i \in \mathbb{I}(I, J)$ or $E_i = \sigma^{J-i}[E_J]$ for $i \in \mathbb{I}(I, J)$.

Proof.

Definition 4.13. Suppose $\gamma \in \Gamma$. We say γ is **special** if the following three conditions hold:

(I) The points

$$\gamma(E_1), \gamma(E_2), \gamma(E_3)$$

- are distinct and collinear whenever $E \in \mathcal{C}(1,3)$ and $\gamma(E_2) \notin \mathbf{v}(E_2)$.
- (II) We have

$$\gamma(E_2) = \gamma$$

whenever $E \in C(1,3), v \in \mathbf{V}, \mathbf{v}(E_1) \cap \mathbf{v}(E_2) \cap \mathbf{v}(E_3) = \{v\}, \gamma(E_1) = v$ and $\gamma(E_3) = v$.

(III) We have

$$\gamma(E_i) \neq v \quad \text{for } i \in \mathbb{I}(I+1, J-1)$$

whenever $I, J \in \mathbb{Z}, I + 1 \leq J - 1, E \in \mathcal{C}(I, J) v \in \mathbf{V}$ and $G, H \in \mathbf{H}$ are such that

11

(i) the points $\gamma(E_I), v, \gamma(E_J)$ are distinct;

(ii) $\mathbf{c}(\gamma(E_I), v) \subset \mathbf{bdry} \ G \text{ and } \gamma(E_J) \in \mathbf{int} \ H;$

- (iii) $\mathbf{c}(\gamma(E_J), v) \subset \mathbf{bdry} H \text{ and } \gamma(E_I) \in \mathbf{int} H;$
- (iv) $v \in \mathbf{v}(E_i)$ and $E_i \subset H \cap I$ whenever $i \in \mathbb{I}(()I, J)$ and I < i < J.

We let

$$\Gamma_{\text{special}} = \{ \gamma \in \Gamma : \gamma \text{ is special} \}.$$

Remark 4.1. By a straightforward argument we shall give in Lemma 4.5 we will show that

$$\Gamma_{\min} \subset \Gamma_{\text{special}}.$$

Suppose $\gamma \in \Gamma$ and

$$\iota: \mathbf{O} \to \mathcal{E}_{\mathrm{bdrv}} \times \mathcal{V}$$

is such that $\gamma(E) = v$ whenever $\mathcal{O} \in \mathbf{O}$ and $(E, v) = \iota(\mathcal{O}).\gamma(E) = v$. In 6 we will give an algorithm which computes γ up to equivalence, given α and ι in time $O(N^2)$ where N is the cardinality of \mathcal{E}_{bdry} . We will show that if $\mathcal{V} = A[\mathbb{Z}^2$ for some affine isomorphism of \mathbb{R}^2 that this algorithm runs in time O(N) given α ; moreover, in this case, the algorithm uses only integer arithmetic.

We will show in 5 that for each $\mathcal{O} \in \mathbf{O}$ there is a nonempty set of pairs (v, E) such that $E \in \mathcal{O}, v \in \mathbf{v}(E)$ and such that $\gamma(E) = v$ whenever $\gamma \in \Gamma_{\text{special}}$. This implies that Γ_{special} has, up to equivalence, a unique member and that $\Gamma_{\min} = \Gamma_{\text{special}}$.

In what follows we will need to make use of the following Proposition.

Proposition 4.14. Suppose $E \in \mathcal{E}_{bdry}$, $I \in \mathbb{N}^+$, $a \in \cap \{\mathbf{v}(\sigma^i[E]) : i \in \mathbb{I}(0, I)\}$, $\gamma \in \Gamma_{special}$ and $\gamma(E) = a$. Then $\gamma(\sim iE) = a$ whenever $i \in \mathbb{I}(1, I - 1)$.

Proof. Were the Proposition false there would be $j \in \mathbb{I}(1, I-1)$ such that $\gamma(\sigma^i[E]) = a$ for $j \in \mathbb{I}(0, j-1)$ but such that $\gamma(\sigma^j[E]) \neq a$. Suppose $\gamma(\sigma^j[E]) \in \mathbf{v}(\sigma^j[E])$. Since $\gamma(\sigma^j[E]) \neq a$, this is incompatible with (III) of Definition 4.13. Suppose $\gamma(\sigma^j[E]) \notin \mathbf{v}(\sigma^j[E])$. Since $\gamma(\sigma^{j-1}[E]) = a \in \mathbf{v}(\sigma^j[E])$ and since $\sigma^j[E] \cap \sigma^{j+1}[E] = \{a\}$ this is incompatible with (I) of Definition 4.13. \Box

4.9. The affine invariance of Γ_{special} . Suppose $A : \mathbb{R}^2 \to \mathbb{R}^2$ is an affine isomorphism.

Let

$$\mathcal{T}_A = \{A[T] : T \in \mathcal{T}\}.$$

Evidently, \mathcal{T}_A is a triangulation of \mathbb{R}^2 . and let \mathcal{E}_A and \mathcal{V}_A be the corresponding sets of edges and vertices.

Let

$$\mathcal{V}_{\text{in},A} = A[\mathcal{V}_{\text{in}}]$$
 and let $\mathcal{V}_{\text{out},A} = A[\mathcal{V}_{\text{out}}]$

and let

 $\mathcal{E}_{\mathrm{in},\mathrm{A}}, \quad \mathcal{E}_{\mathrm{out},\mathrm{A}}, \quad \mathcal{E}_{\mathrm{bdry},\mathrm{A}}, \quad \mathcal{T}_{\mathrm{in},\mathrm{A}}, \quad \mathcal{T}_{\mathrm{out},\mathrm{A}}, \quad \mathcal{T}_{\mathrm{bdry},\mathrm{A}}, \quad \mathbf{v}_{\mathrm{in},\mathrm{A}}, \quad \mathbf{v}_{\mathrm{out},\mathrm{A}}$

be as in 4 with \mathcal{V}_{in} and \mathcal{V}_{out} there replaced by $\mathcal{V}_{in,A}$ and $\mathcal{V}_{out,A}$, respectively. Let be as in Definition 4.1 with \mathcal{T}_{bdry} there replaced by $\mathcal{T}_{bdry,A}$.

 $\alpha_A = \{ (A[E], A[F]) : (E, F) \in \alpha \}.$

Suppose $I, J \in \mathbb{Z}$. We let

 $\mathcal{C}_A(I,J)$

be defined as in Definition 4.12 with \mathcal{E}_{bdry} and α there replaced by $\mathcal{E}_{bdry,A}$ and α_A , respectively. Evidently,

$$\mathcal{C}_A(I,J) = \{ E_A : E \in \mathcal{C}(I,J) \}$$

where $E_A : \mathbb{I}(I, J) \to \mathcal{E}_{\mathrm{bdry}, A}$ is such that $(E_A)_i = A[E_i]$ whenever $E : \mathbb{I}(I, J) \to \mathcal{E}_{\mathrm{bdry}}$.

Let

Γ_A

be the set of choice functions for $\mathcal{E}_{\mathrm{bdry},A}$; let

$\mathbf{p}_A, \mathbf{l}_A$

be as in Definition 4.8 with Γ and \mathcal{E}_{bdry} there replaced by Γ_A and $\mathcal{E}_{bdry,A}$, respectively; let

 $\Gamma_{\min,A}$

be as in Definition 4.11 with \mathcal{E}_{bdry} there replaced by $\mathcal{E}_{bdry,A}$, respectively, and let

$\Gamma_{\text{special},A}$

be as in Definition 4.13 with \mathcal{E}_{bdry} and $\mathcal{C}(I, J)$ there replaced by $\mathcal{E}_{bdry,A}$ and $\mathcal{C}_A(I, J)$, respectively. For each $\gamma \in \Gamma$ let $\gamma_A \in \Gamma_A$ be such that

 $\gamma_A(A[E]) = A(\gamma(E)) \text{ for } E \in \mathcal{E}_{bdry}.$

Then

$$\mathbf{p}_A(\gamma_A) = A[\mathbf{p}(\gamma)] \text{ for } \gamma \in \Gamma$$

and

$$\Gamma_{\text{special},A} = \{ \gamma_A : \gamma \in \Gamma_{\text{special}} \}.$$

Now

$$\mathbf{l}_A(\gamma_A) \neq \mathbf{l}(\gamma)$$

generically in A and γ ; nonetheless, because $\Gamma_{\min} = \Gamma_{\text{special}}$ we have

$$\Gamma_{\min,A} = \{\gamma_A : \gamma \in \Gamma_{\min}\}.$$

Lemma 4.5. $\Gamma_{\min} \subset \Gamma_{\text{special}}$.

Proof. Suppose $\gamma \in \Gamma_{\min}$. It is obvious that (I) and (II) of Definition 4.13 hold.

Suppose I, J, E, v are as in (III) (i)-(iv) of Definition 4.13 but that $\gamma(E_i) = v$ for some $i \in \mathbb{I}(I+1, J+1)$. Let $I^*, J^* \in \mathbb{I}(I, J)$ be such that $I^* < i < J^*, \gamma(E_{I^*}) \neq v$, $\gamma(E_{J^*}) \neq v$ and $\gamma(E_j) = v$ if $j \in \mathbb{I}(()I^* + 1, J^* - 1)$. For each $i \in \mathbb{I}(I^* + 1, J^* - 1)$ let w_i be such that $\mathbf{v}(E_i) = \{v, w_i\}$. Let L be a line such that

- (i) v and $\gamma(E_{I^*})$ lie on different sides of L;
- (ii) v and $\gamma(E_{J^*})$ lie on different sides of L;
- (iii) for each $i \in \mathbb{I}(I^* + 1, J^* 1)$, v and w_i .

For each $i \in \mathbb{I}(I^* + 1, J^* - 1)$ let x_i be such that $L \cap E_i = \{x_i\}$. Let $\delta \in \Gamma$ be such that $\delta(F) = \gamma(F)$ when $F \neq E_i$ for $i \in \mathbb{I}(I^* + 1, J^* - 1)$ and $\delta(E_i) = x_i$ when $i \in \mathbb{I}(I^* + 1, J^* - 1)$. Then $\mathbf{l}(\delta) < \mathbf{l}(\gamma)$ which contradicts the minimality of γ . Thus (III) of Definition 4.13 holds.

Proposition 4.15. Suppose

- (i) $I, J \in \mathbb{Z}, I < J$ and $E \in \mathcal{C}(I, J)$;
- (ii) $\omega \in \mathbb{R}_2 \sim \{0\}$ and $m \in \mathbb{R}$;
- (iii) for each $i \in \mathbb{I}(I, J)$,

$$E_i \cap \{\omega \le m\} \ne \emptyset \text{ and } E_i \cap \{\omega > m\} \ne \emptyset;$$

(iv) $M = \min\{\max\{\omega(x) : x \in E_i\} : i \in \mathbb{I}(I, J)\}.$

Then the following statements hold:

- (v) $m < M < \infty$.
- (vi) For each $i \in \mathbb{I}(I, J)$ there are $d_i, e_i \in \mathbf{V}$ such that $E_i \cap \{\omega = m\} = \{d_i\}$ and $E_i \cap \{\omega = M\} = \{e_i\}.$
- (vii) We have

$$\mathbf{j}_{-}(E_i) \cap \{m < \omega < M\} \subset \operatorname{int} \mathbf{j}_{-}(E_j) \text{ whenever } i, j \in \mathbb{I}(I, J) \text{ and } i < j.$$

(viii) If $a \in \mathbf{j}_{-}(E_{I}) \cap \{\omega = m\}$, $b \in \mathbf{j}_{+}(E_{J}) \cap \{\omega = m\}$, $a \neq b$, and, for each $i \in \mathbb{I}(I, J)$, $t_{i} \in \mathbb{R}$ is such that $d_{i} = (1 - t_{i}) + t_{i}b$ then $t_{i} \leq t_{j}$ whenever $i, j \in \mathbb{I}(I, J)$ and i < j with equality only if $d_{i} = d_{j}$.

Proof. In view of (iii), for any $y \in \mathbb{R}$ and $i \in \mathbb{I}(I, J)$ the line containing E_i meets $\{\omega = y\}$ transversely at a point $f_i(y)$; in particular, (v) and (vi) hold and $\mathbf{v}(E_i) \cap \{m < \omega < M\} = \emptyset$ whenever $i \in \mathbb{I}(I, J)$. It follows that $f_i(y) \neq f_j(y)$ whenever $y \in (m, M), i, j \in \mathbb{N}I, J$ and i < j since two distinct members of \mathcal{E}_{bdry} can only meet in a vertex. For each $y \in (m, M)$ and $i \in \mathbb{I}(I, J)$ let $u_i(y) \in \mathbb{R}$ be such that $f_i(y) = (1 - u_i(y))f_I(y) + u_i(y)f_J(y)$. In particular, $E_i \neq E_j$ if $i, j \in \mathbb{I}(I, J)$ and i < j.

Suppose $y \in (m, M)$. If $i \in \mathbb{I}(I, J)$ and I < i < J then either (a) $u_{i-1}(y) < u_i(y) < u_{i+1}(y)$ or (b) $u_{i-1}(y) > u_i(y) > u_{i+1}(y)$ since $f_{i-1}(y) \in \mathbf{j}_-(E_i)$ and $f_{i+1}(y) \in \mathbf{j}_+(E_i)$. It follows that either (c) $u_i(y) < u_{i+1}(y)$ whenever $i \in \mathbb{I}(I, J)$ and i < I or (d) $u_i(y) > u_{i+1}(y)$ whenever $i \in \mathbb{I}(I, J)$ and i < I. Since $u_I(y) = 0$ and $u_J(y) = 1$ we find that (d) holds. Thus

$$u_i(y) < u_j(y)$$
 whenever $i, j \in \mathbb{I}(I, J)$ and $i < j$.

Thus (vii) holds. (viii) follows easily from (vii).

Theorem 4.2. Suppose

- (i) $E \in \mathcal{E}_{bdry}$ and $E_i = \sigma^i[E]$ for $i \in \mathbb{Z}$; (ii) $I, J \in \mathbb{Z}$ and $I \leq J$; (iii) $\omega \in \mathbb{R}_2 \sim \{0\}$ and $m \in \mathbb{R}$; (iv) for each $i \in \mathcal{I}$, $E_i \cap \{\omega \leq m\} \neq \emptyset$ and $E_i \cap \{\omega > m\} \neq \emptyset$; (v) $\gamma \in \Gamma_{\text{special}}$;
- (vi) $a \in \mathbf{c}(\gamma(E_{I-1}), \gamma(E_I)), b \in \mathbf{c}(\gamma(E_J), \gamma(E_{J+1})), a \neq b \text{ and } \{a, b\} \subset \{\omega = m\}.$

Then

$$\omega(\gamma(E_i)) = m \quad \text{for } i \in \mathbb{I}(I-1, J+1).$$

Proof. Applying a translation if necessary, we may assume without loss of generality that m = 0. Let $L = \{\omega = 0\}$. For each $i \in \mathbb{Z}$ let $g_i = \gamma(E_i)$.

I claim that

(2)
$$\omega(q_i) = 0 \quad \text{for } i \in \mathbb{I}(I, J).$$

So suppose (2) does not hold. Then $N = \max\{|\omega(g_i)| : i \in \mathbb{I}(I, J)\} > 0$ and there will exist $I^* \in \mathbb{I}(I, J)$ such that

(3)
$$|\omega(g_{I^*})| = N$$
 and $-N < \omega(g_i) < N$ if $i \in \mathbb{I}(I, J)$ and $i < I^*$.

Lemma 4.6. $g_{I^*} \in \mathbf{v}(E_{I^*})$.

Proof. Suppose, contrary to the Lemma, $g_{I^*} \notin \mathbf{v}(E_{I^*})$. Since γ is special the points $g_{I^*-1}, g_{I^*}, g_{I^*+1}$ would be distinct and collinear. This is impossible if $I < I^* < J$ in view of (3).

Suppose $I = I^* < J$. Then $a = (1 - s)g_{I^*-1} + sg_{I^*}$ for some $s \in [0, 1]$ so $0 = (1 - s)\omega(g_{I^*-1}) + s\omega(g_{I^*})$. Since $|\omega(g_{I^*+1})| \leq N$ the points $g_{I^*-1}, g_I^*, g_{I^*+1}$ cannot be collinear. By a similar argument one arrives at a contradiction if $I < I^* = J$.

So suppose $I = I^* = J$. Then $0 = (1 - s)\omega(g_{I^*-1}) + s\omega(g_{I^*})$ for some $s \in [0, 1]$ and $0 = (1 - t)\omega(g_I) + t\omega(g_{I^*+1})$ for some $t \in [0, 1]$ so the points $g_{I^*-1}, g_I^*, g_{I^*+1}$ cannot be collinear.

Let $d_{I-1} = a$ and let $d_{J+1} = b$. Since $E_{I-1} \cup E_I \subset \mathbf{j}_-(E_I)$ and $\mathbf{j}_-(E_I)$ is convex we find that $d_{I-1} \in \mathbf{j}_-(E_I)$. Since $E_J \cup E_{J+1} \subset \mathbf{j}_+(E_J)$ and $\mathbf{j}_+(E_J)$ is convex we find that $d_{J+1} \in \mathbf{j}_+(E_J)$. Applying Proposition 4.15 we obtain for each $i \in \mathbb{I}(I, J)$ a number $t_i \in [0, 1]$ such that if $d_i = (1 - t_i)a + t_ib$ then then

$$(4) E_i \cap L = \{d_i\}$$

and such that

(5) $t_i \leq t_j$ and $d_i \subset \mathbf{j}_-(E_j)$ whenever $i, j \in \mathbb{I}(I, J)$ and i < j.

Lemma 4.7. There is one and only $s \in (-\infty, t_{I^*}]$ such that if $f_{I^*-1} = (1-s)a+sb$ then g_{I^*-1} lies on the line containing g_{I^*} and f_{I^*-1} .

Proof. In case $I^* = I$ we can take s = 0 so suppose $I^* > I$. Since $|\omega(g_{I^*-1})| < N = |\omega(g_{I^*})|$, $g_{I^*-1} \neq g_{I^*}$ and the line containing g_{I^*-1} and g_{I^*} meets L in a unique point f_{I^*-1} . Let $s \in \mathbb{R}$ be such that $f_{I^*-1} = (1-s)a + sb$. Then $f_{I^*-1} \in \mathbf{j}_-(E_{I^*})$ since $g_{I^*} \in E_{I^*} \subset \mathbf{j}_-(E_{I^*})$ and $g_{I^*-1} \in E_{I^*-1} \subset \mathbf{j}_-(E_{I^*})$. Since $L \cap \mathbf{j}_-(E_{I^*}) = \{(1-u)a + ub : u \in (-\infty, t_{I^*}]\}$ by virtue of Proposition 4.15 (viii) the Lemma is proved.

Let $T \in \mathbf{H}$ be such that g_{I^*-1} and g_{I^*} belong to **bdry** T and $b \in T$. Then $e_j \in T$ whenever $I^* \leq j$ so that $E_j \subset T$ whenever $I^* \leq j$.

Next, let \mathcal{J} be the set of $j \in \mathbb{I}(I, J)$ such that $I^* \leq j$ and $g_j = g_{I^*}$ if $i \in \mathbb{I}(I, J)$ and $I^* \leq i \leq j$. Let $J^* = \max \mathcal{J}$. Since $g_{I^*} \in \mathbf{v}(E_{I^*})$ and two members of \mathcal{E}_{bdry} can only meet in a common vertex we find that $g_j \in \mathbf{v}(E_j)$ if $j \in \mathcal{J}$.

Lemma 4.8. If $\omega(g_{J^*+1}) \neq \omega(g_{J^*})$ there is one and only $u \in [t_J^*, \infty)$ such that if $f_{J^*+1} = (1-u)a + ub$ then g_{J^*+1} lies on the line containing g_J^* and f_{J^*+1} .

Proof. Suppose $\omega(g_{J^*+1}) \neq \omega(g_J^*)$. If $J^* = J$ we may take u = 1 so suppose $J^* < J$. Since $\omega(g_{J^*+1}) < \omega(g_J^*)$, $g_{J^*+1} \neq g_J^*$ and the line containing g_{J^*+1} and g_J^* meets L in a unique point f_{J^*+1} . Let $u \in \mathbb{R}$ be such that $f_{J^*+1} = (1-u)a + ub$. Then $f_{J^*+1} \in \mathbf{j}_+(E_J^*)$ since $g_{J^*} \in E_{J^*} \subset \mathbf{j}_+(E_{J^*})$ and $g_{J^*+1} \in E_{J^*+1} \subset \mathbf{j}_+(E_J^*)$. Since $L \cap \mathbf{j}_+(E_J^*) = \{(1-w)a + wb : w \in [t_J^*, \infty) \text{ and the Lemma is proved.}$

Suppose $\omega(g_{J^*+1}) \neq \omega(g_J^*)$ and f_{J^*+1} is as in the preceding Lemma. Let $U \in \mathbf{H}$ be such that g_J^* and g_{J^*+1} belong to **bdry** U and $a \in U$. Since $t_i \leq t_{J^*}$ whenever $i \in \mathcal{J}$ and $f_{J^*+1} \in \mathbf{j}_+(E_{J^*})$ we find that $E_i \subset U$ whenever $i \in \mathcal{J}$. Since γ is special we are now in a contradiction.

In case $\omega(g_J^*) = \omega(g_{J^*+1})$ we note that, by the definition of $\mathcal{J}, g_{J^*+1} \neq g_{J^*}$ and we let $U \in \mathbf{H}$ be such that $\mathbf{bdry} U = \{\omega = \omega(g_{J^*})\}$ and $L \subset U$. If $j \in \mathcal{J}$ then one of the vertices of E_j is g_{J^*} and E_j meets L so that $E_j \subset U$. Since γ is special we are now in a contradiction.

Thus (2) holds.

Suppose $i \in \mathbb{I}(I, J)$. Since $g_i \in E_i$ and $\{\omega = 0\} \cap E_i = \{e_i\}$ we find that $g_i = e_i$. Let u_0 be such that $a = (1 - u_0)\gamma(E_0) + u_0\gamma(E_1)$. Applying ω to this equation we find that $0 = (1 - u_0)\gamma(E_0)$. Let u_{I+1} be such that $b = (1 - u_{I+1})\gamma(E_I) + (1 - u_0)\gamma(E_0)$ $u_{I+1}\gamma(E_{I+1})$. Applying ω to this equation we find that $0 = u_{I+1}\gamma(E_{I+1})$. Thus the final assertion of the Theorem holds.

5. Locating vertices on a special γ .

Theorem 5.1. Suppose

(i) $\mathcal{O} \in \mathbf{O}$ and $V = \cup \{ \mathbf{v}(E) : E \in \mathcal{O} \};$ (ii) $\omega : \mathbb{R}^2 \to \mathbb{R}, \omega$ is linear,

(11)
$$\omega : \mathbb{R}^2 \to \mathbb{R}, \, \omega$$
 is linear

 $M_{\rm in} = \max\{\omega(x) : x \in V \cap \mathcal{V}_{\rm in}\} \quad \text{and} \quad M_{\rm out} = \max\{\omega(x) : x \in V \cap \mathcal{V}_{\rm out}\}.$

Then

either
$$M_{\rm in} < M_{\rm out}$$
 or $M_{\rm out} < M_{\rm in}$.

Moreover, in case $M_{\rm in} < M_{\rm out}$, then

$$\mathcal{F} = \{F \in \mathcal{O} : F \subset \{\omega > M_{\text{in}}\} \text{ and } \omega(\mathbf{v}_{\text{in}}(F)) = M_{\text{in}}\} \neq \emptyset$$

and

$$\gamma(F) = \mathbf{v}_{in}(F)$$
 whenever $F \in \mathcal{F}$ and $\gamma \in \Gamma_{\text{special}}$

and, in case $M_{\text{out}} < M_{\text{in}}$,

$$\mathcal{F} = \{F \in \mathcal{O} : F \subset \{\omega > M_{\text{out}}\} \text{ and } \omega(\mathbf{v}_{\text{in}}(F)) = M_{\text{out}}\} \neq \emptyset$$

and

$$\gamma(F) = \mathbf{v}_{\text{out}}(F)$$
 whenever $F \in \mathcal{F}$ and $\gamma \in \Gamma_{\text{special}}$

Proof. Let $M = \max\{\omega(v) : v \in V\}$ and let $X = \bigcup\{\tau(E) : E \in \mathcal{O}\}$. Since $E \subset \{\omega \leq M\}$ for each $E \in \mathcal{O}$ we find that $X \subset \{\omega \leq M\}$.

Suppose $E \in \mathcal{O}$. Were it the case that $E \subset \{\omega = M\}$ we would have either $\sigma[E] \cap \{\omega > M\} \neq \emptyset$ or $\sigma^{-1}[E] \cap \{\omega > M\} \neq \emptyset$. Thus E meets $\{\omega = M\}$ in a vertex of E. It follows that

(6)
$$X \cap \{\omega = M\} \subset \mathcal{V}_{in} \cup \mathcal{V}_{out} \text{ and } E \cap \{\omega < M\} \neq \emptyset \text{ for } E \in \mathcal{O}.$$

 $\mathbb{R}^2 \sim Z_{1/2}$, respectively. Since Z_0 and Z_1 are connected and since any path starting on Z_0 and ending on Z_1 must pass through $Z_{1/2}$ we find that

either (iii)
$$Z_0 \subset W_u$$
 and $Z_1 \subset W_b$ or (iv) $Z_1 \subset W_u$ and $Z_0 \subset W_b$.
Since $V \cap \mathcal{V}_{out} \subset Z_0$ and $V \cap \mathcal{V}_{in} \subset Z_1$ we find that

(v)
$$V \cap \mathcal{V}_{out} \subset W_u$$
 and $V \cap \mathcal{V}_{in} \subset W_b$ in case (iii) holds.

and that

(vi)
$$V \cap \mathcal{V}_{in} \subset W_u$$
 and $V \cap \mathcal{V}_{out} \subset W_b$ in case (iv) holds

It follows from (6) that $Z_{1/2} \subset \{\omega < M\}$; this implies $\{\omega \ge M\} \subset W_u$. Keeping in mind (v) and (vi) we find that

(vii)
$$V \cap \{\omega = M\} \subset \mathcal{V}_{out}$$
 if (iii) holds.

and that

(viii)
$$V \cap \{\omega = M\} \subset \mathcal{V}_{in}$$
 if (iv) holds

It follows that

 $M_{\rm in} < M_{\rm out} = M$ in case (iii) holds and $M_{\rm out} < M_{\rm in} = M$ in case (iv) holds Let

$$m = \begin{cases} M_{\rm in} & \text{if (iii) holds,} \\ M_{\rm out} & \text{if (iv) holds.} \end{cases}$$

Let

$$\mathcal{N} = \{F \in \mathcal{O} : E \cap \{\omega > m\} \neq \emptyset\}.$$

Lemma 5.1. Suppose $v \in V \cap \{\omega = m\}$, $E \in \mathcal{E}$, $v \in \mathbf{v}(E)$ and $E \subset \{\omega > m\}$. If either (iii) holds and $v \in \mathcal{V}_{in}$ or (iv) holds and $v \in \mathcal{V}_{out}$ then $E \in \mathcal{N}$.

Proof. Suppose $v \in V \cap \mathcal{V}_{in} \cap \{\omega = m\}$, (iii) holds, $E \in \mathcal{E}, v \in \mathbf{v}(E)$ and $E \subset \{\omega > m\}$ but, contrary to the Lemma, $E \notin \mathcal{N}$. Then $\mathbf{v}(E) \subset \mathcal{V}_{in}$ and, since $v \in Z_1 \subset W_b$ and W_b is open and connected, we have $E \subset W_b$. Let F be a sequence in \mathcal{E} such that $F_0 = E$; $\mathbf{v}(F_{i-1}) \cap \mathbf{v}(F_i) \neq \emptyset$ whenever $i \in \mathbb{N}^+$; and $\mathbb{N} \ni \nu \mapsto \max \omega[F_{\nu}]$ increases to ∞ as $\nu \to \infty$. Since W_b is bounded there must be some $N \in \mathbb{N}^+$ such that $F_N \notin W_b$ and $F_i \subset W_b$ whenever $i \in \mathbb{N}$ and $0 \le i < N$. Thus F_N meets Z_1 and Z_0 and this implies $F_N \in \mathcal{O}$ so $\mathbf{v}_{in}(F_N) \in V \cap \mathcal{V}_{in}$ but $\omega(\mathbf{v}_{in}(F_N)) > \max \omega[F_{N-1}] > m$.

By a similar argument one deals with the other case.

Suppose v and E are as in the preceding Lemma. Let $E_i = \sigma^i[E]$ for $i \in \mathbb{Z}$. Choose integers I, J such that $I \leq 0 \leq J$ and $E_i \in \mathcal{N}$ whenever $i \in \mathbb{Z}$ and $I \leq i \leq J$ but such that neither E_{I-1} nor E_{J+1} belong to \mathcal{N} . It follows that $\omega(\gamma(E_{I-1})) \leq m$ and $\omega(\gamma(E_{J+1})) \leq m$. Since $\omega(\gamma(E)) \geq m$ there are integers I', J' such that $I \leq I' \leq 0 \leq J' \leq J$ and distinct points a, b such that $\omega(a) = m = \omega(b), a \in \mathbf{c}(\gamma(\sigma[E_{I'-1}]), \gamma(\sigma[E_{J'+1}]))$. It follows that $\gamma(E) = v$.

Corollary 5.1. Suppose *E* is degenerate and *v* is the vertex of *E* such that, according to Proposition 4.8, is such that $\cap \{\mathbf{v}(F) : F \in \mathbf{o}(E)\} = \{v\}$. Then

$$\gamma(F) = v$$
 whenever $\gamma \in \Gamma_{\text{special}}$ and $F \in \mathbf{o}(E)$.

Proof. Suppose $\omega \in \mathbb{R}_2$. Then there will always be $w \in F \in \mathbf{o}(E)$ such that $\omega(w) > \omega(v)$ so our assertion follows directly from the preceding Theorem. \Box

6. The basic construction.

Let

$$\mathcal{P} = \{ (a, E) : E \in \mathcal{E}_{bdry} \text{ and } a \in \mathbf{v}(E) \}.$$

Our main goal in this section is to provide an algorithm for computing a function P as in the following Theorem.

Theorem 6.1. There is a function

$$P:\mathcal{P}\to\mathcal{P}$$

such that if $(a, E) \in \mathcal{P}$ and (b, F) = P(a, E) then there is $J \in \mathbb{N}^+$ such that $F = \sigma^J[E]$

and such that, whenever $\gamma \in \Gamma_{\text{special}}$ and $\gamma(E) = a$, then

(7)
$$\gamma(F) = b \text{ and } \{\gamma(\sigma^j[E]) : j \in \mathbb{I}(0, J) \subset \mathbf{c}(a, b).$$

Theorem 6.2. Suppose $\gamma_i \in \Gamma_{\text{special}}$ for $i \in \{1, 2\}$ Then $\gamma_1 \approx \gamma_2$.

Proof. Suppose $\mathcal{O} \in \mathbf{O}$. By Theorem 5.1 there is $E \in \mathcal{O}$ are such that $\gamma_1(E) = a = \gamma_2(E)$. Applying the previous Theorem repeatedly we obtain $b : \mathbb{N} \to \mathcal{V}$ and $\lambda : \mathbb{N} \to \mathbb{N}$ be such that $b_0 = a$, $\lambda_0 = 0$ and such that if $j \in \mathbb{N}$ then

$$(b_{j+1}, \sigma^{\lambda_{j+1}}[E]) = P(b_j, \sigma^{\lambda_j}[E]),$$

 $b_{j+1} = \gamma_i(b_j) \text{ for } i \in \{1, 2\},$

and

$$\{\gamma_i(\sigma^k[E]): k \in \mathbb{I}(\lambda_j, \lambda_{j+1}) \subset \mathbf{c}(b_j, b_{j+1}) \text{ for } i \in \{1, 2\}.$$

It follows that

$$\cup \{ \mathbf{c}(\gamma_1(\sigma^k[E], \sigma^{k+1}[E])) : k \in \mathbb{N} \} = \cup \{ \mathbf{c}(\gamma_2(\sigma^k[E], \sigma^{k+1}[E])) : k \in \mathbb{N} \}.$$

This in turn implies that $\mathbf{p}(\gamma_1) = \mathbf{p}(\gamma_2)$ so that, by Theorem 4.1, $\gamma_1 \approx \gamma_2$.

6.1. The sets $\mathbf{w}_a(B)$. Out construction will make use of these sets.

Definition 6.1. Whenever $a \in \mathbb{R}^2$ and $B \subset \mathbb{R}^2$ we let

 $\mathbf{w}_{a}(B) = \{ a + t(x - a) : 0 < t < \infty \text{ and } x \in B \}.$

We fix

$$a \in \mathbb{R}^2$$
.

The following four Propositions are geometrically obvious; we leave their proofs to the reader.

Proposition 6.1. Suppose \mathcal{E} is a finite subfamily of \mathbf{E} , $V = \cap \{\mathbf{w}_a(E) : E \in \mathcal{E}\}$ and $\mathbf{int } V \neq \emptyset$.

There are $b, c \in \bigcup \{ \mathbf{v}(E) : E \in \mathcal{E} \}$ such that [a, b, c] > 0 and $V = \mathbf{w}_a(\mathbf{c}(b, c))$.

Moreover, for each $E \in \mathcal{E}$ there are $d, e \in E$ such that [a, d, e] > 0 and

$$W = \mathbf{w}_a(\mathbf{c}(d, e)).$$

Proposition 6.2. Suppose $E \in \mathbf{E}$, $\operatorname{int} \mathbf{w}_a(E) \neq \emptyset$ and b, c are such that $\mathbf{v}(E) = \{b, c\}$ and [a, b, c] > 0. Then $\mathbf{w}(E) = \mathbf{h}_+(a, b) \cap \mathbf{h}_-(a, c)$.

Proposition 6.3. Suppose $b, c \in \mathbb{R}^2$, [a, b, c] > 0, $E = \mathbf{c}(b, c)$, $H \in \mathbf{H}$, $E \subset \mathbf{bdry} H$ and $a \notin H$. Suppose $F \in \mathbf{E}$ is such that $E \subset H$ and $F \cap \mathbf{int} \mathbf{w}_a(E) = \emptyset$. Then either $F \subset \mathbf{h}_-(a, b)$ or $F \subset \mathbf{h}_+(a, c)$. Proposition 6.4. Suppose

- (i) $E \in \mathbf{E}$, int $\mathbf{w}_a(E) \neq \emptyset$, $H \in \mathbf{H}$, $E \subset \mathbf{bdry} H$ and $a \notin H$;
- (ii) $F \in \mathbf{E}, \mathbf{v}(E) \cap \mathbf{v}(F) = \{e\}$ for some $e \in \mathbb{R}^2$ and $F \sim \{e\} \subset \operatorname{int} H$;
- (iii) $I \in \mathbf{H}, F \subset \mathbf{bdry} I$ and $E \sim \{e\} \subset \mathbf{int} I$;
- (iv) int $V \neq \emptyset$ where we have set $V = \mathbf{w}_a(E) \cap \mathbf{w}_a(F)$.

Then

- (v) $a \in \operatorname{int} I$;
- (vi) for each $x \in V$ there exist unique $s, t \in (0, \infty)$ such that $a + s(x a) \in E$ and $a + t(x - a) \in F$;
- (vii) if x, s, t are as in (vi) then $s \le t$ with equality only if a + s(x a) = e = a + t(x a).

6.2. The construction of P and the proof of Theorem 6.1. Suppose $(a, E) \in \mathcal{P}$.

If E is degenerate we let $P(a, E) = (a, \sigma[E])$. If $\gamma \in \Gamma_{\text{special}}$ we infer from Proposition 4.8 that $\gamma(F) = a$ for all $F \in \mathbf{o}(E)$ so (7) holds.

So suppose E is not degenerate. Let $E_i = \sigma^i[E]$ for $i \in \mathbb{Z}$ and let

$$I = \max\{i \in \mathbb{N} : a \in \mathbf{v}(E_i)\}.$$

For each $i \in \mathbb{N}$ with i > I

$$W_i = \mathbf{w}_a(E_i)$$
 and we let $V_i = \bigcap_{i=I+1}^i W_i$.

Let

$$\mathcal{I} = \{ i \in \mathbb{N} : i > I \text{ and } \mathbf{int} \, V_i \neq \emptyset \}.$$

Proposition 6.5. There is a positive integer $J \ge I + 1$ such that $\mathcal{I} = \mathbb{I}(I+1, J)$. Moreover, $E_i \ne E_j$ whenever $i, j \in \mathbb{I}(I, J)$ and i < j.

Proof. Let $T \in \mathcal{T}_{bdry}$ be such that $\mathbf{e}(T) = \{E_I, E_{I+1}\}$ Since $T \subset W_{I+1} = V_{I+1}$ we find that $I + 1 \in \mathcal{I}$.

If N is the number of edges in $\mathbf{o}(E)$ and $m \in \mathbb{Z}$ then $\sigma^{mN}[E] = E$ and, therefore, int $V_{mN} = \emptyset$ if $mN \ge I + 1$. This implies \mathcal{I} is bounded.

int $V_{mN} = \emptyset$ if $m_i V \leq I + 1$. This implies \mathcal{I} is a second Let $J = \max \mathcal{I}$. If $i, j \in \mathbb{N}^+$, $I + 1 \leq j < i$ and $i \in \mathcal{I}$ then $j \in \mathcal{I}$ since $V_i \subset V_j$. Thus $\mathcal{I} = \mathbb{I}(I+1, J)$.

By Proposition 6.1 there are for each $i \in \mathcal{I}$ unique points $r_i, s_i \in E_i$ such that $[a, r_i, s_i] > 0$ and

$$V_J = \mathbf{h}_+(a, r_i) \cap \mathbf{h}_-(a, s_i) = \mathbf{w}_a(\mathbf{c}(r_i, s_i)).$$

Let

$$R = \{a + t(r_J - a) : 0 < t < \infty\} \text{ and let } S = \{a + t(s_J - a) : 0 < t < \infty\}.$$

(Of course $R = \{a + t(r_i - a) : 0 < t < \infty\}$ and $S = \{a + t(s_i - a) : 0 < t < \infty\}$ for any $i \in \mathcal{I}$.) By Prop 6.3 we have

either (I)
$$E_{J+1} \subset \mathbf{h}_{-}(a, r_J)$$
 or (II) $E_{J+1} \subset \mathbf{h}_{+}(a, s_J)$.

Let

$$B = \{i \in \mathcal{I} : r_i \in \mathbf{v}(E_i)\}$$

and let

$$C = \{i \in \mathcal{I} : s_i \in \mathbf{v}(E_i)\}$$

From Proposition 6.1 we infer that neither B nor C is empty and that

$$V_J = \mathbf{w}_a(\mathbf{c}(r_i, s_j))$$
 whenever $i \in B$ and $j \in C$.

We let

$$K = \begin{cases} \max B & \text{in case (I) holds,} \\ \max C & \text{in case (II) holds.} \end{cases}$$

and we let

$$P(a, E) = \begin{cases} (r_K, E_K) & \text{in case (I) holds,} \\ (s_K, E_K) & \text{in case (II) holds.} \end{cases}$$

In case (I) holds we let $\omega \in \mathbb{R}_2$ be such that if $m = \omega(a)$ then $R \subset \{\omega = m\}$ and $S \subset \{\omega > m\}$. In case (II) holds we let $\omega \in \mathbb{R}_2$ be such that if $m = \omega(a)$ then $S \subset \{\omega = m\}$ and $R \subset \{\omega > m\}$.

We have

(8)
$$E_i \cap \{\omega = m\} \neq \emptyset \text{ and } E_i \cap \{\omega > m\} \neq \emptyset \text{ for } i \in \mathbb{I}(I, J).$$

Now suppose γ is special and $\gamma(E) = a$.

From Proposition 4.14 we infer that

(9)
$$\gamma(E_i) = a \text{ for } i \in \mathbb{I}(0, I-1) \text{ which implies } a \in \mathbf{c}(\gamma(E_{I-1}), \gamma(E_I)).$$

Suppose (I) holds. Since $r_K \in R \cap \mathbf{v}(E_K)$ and E_K meets the interior of V_K we find that $\gamma(E_K) \in \mathbf{h}_+(a, r_K) = \mathbf{h}_+(a, r_J)$. Since $\gamma(E_{J+1}) \in E_{J+1} \subset \mathbf{h}_-(a, r_K)$ we infer that for some $L \in \mathbb{I}(K, J)$ the segment $\mathbf{c}(\gamma(E_L), \gamma(E_{L+1}))$ meets R in a point c. Applying Theorem 4.2 with I, J there equal I, L and a, b there equal a, c we find that $\omega(\gamma(E_i)) = m$ for $i \in \mathbb{I}(I, K)$ and that $\gamma(E_K) = r_K$.

Suppose (II) holds. Since $s_K \in S \cap \mathbf{v}(E_K)$ and E_K meets the interior of V_K we find that $\gamma(E_J) \in \mathbf{h}_-(a, s_J) = \mathbf{h}_-(a, s_I)$. Since $\gamma(E_{J+1}) \in E_{J+1} \subset \mathbf{h}_+(a, s_K)$ we infer that some some $L \in \mathbb{I}(K, J)$ the segment $\mathbf{c}(\gamma(E_L), \gamma(E_{L+1}))$ meets R in a point c. Applying Theorem 4.2 with I, J there equal I, L and a, b there equal a, c we find that $\omega(\gamma(E_i)) = m$ for $i \in \mathbb{I}(I, K)$ and that $\gamma(E_K) = s_K$.

6.3. Computational complexity. Now let us suppose that $\mathcal{V} = A[\mathbb{Z}^2]$ for some affine isomorphism A of \mathbb{R}^2 .

We will show that

$$(10) \qquad (J-I) \le 3(K-I)$$

Let

$$U = \{a + t(x - a) : 0 < t \le 1 \text{ and } x \in \mathbf{c}(r_J, s_J) \sim \{r_J, s_J\}\} = \operatorname{int} V_J.$$

Proposition 6.6. For any $E \in \mathcal{E}$ we have

 $E \cap S \neq \emptyset$ and $E \cap U \neq \emptyset \iff E = E_i$ for some $i \in \mathcal{I} \iff E \cap S \neq \emptyset$ and $E \cap U \neq \emptyset$.

Proof. Suppose $F \in \mathcal{E}$, $F \cap R \neq \emptyset$ and $F \cap U \neq \emptyset$. Then there are $s \in (0, 1]$ and $x \in \mathbf{c}(r_J, s_J) \sim \{r_J, s_J\}$ such that $a + s(x - a) \in F$. For each $i \in \mathcal{I}$ we let t_i be such that $e_i = a + t_i(x - a) \in E_i$; by Lemma 4.15 (viii) we have $t_j < t_k$ whenever $j, k \in \mathcal{I}$ and j < k. We must have $s = t_i$ for some $i \in \mathcal{I}$ since otherwise F would meet the interior of the triangle T such that $\{E_i, E_{i+1}\} \in \mathbf{e}(T)$ for some $i \in \mathcal{I} \sim \{I\}$. Thus $a + t_i(x - a) \in E_i \cap F$ for some $i \in \mathcal{I}$. Since $e_i \notin \mathbf{v}(E_i)$ we find that $E = E_i$.

By a similar argument one shows that if $F \in \mathcal{E}$, $F \cap R \neq \emptyset$ and $F \cap U \neq \emptyset$ then $E = E_i$ for some $i \in \mathcal{I}$.

It follows directly from definitions that if $i \in \mathcal{I}$ then $E_i \cap R \cap S \cap U \neq \emptyset$. \Box

Suppose A is an orientation preserving affine isomorphism of \mathbb{R}^2 and P_A is the function arising from the construction just described with $a, \mathcal{T}, \mathcal{V}_{in}$ replaced by $A(a), \{A[T] : T \in \mathcal{T}\}, \{A(v) : v \in \mathcal{V}_{in}\}$, respectively. Then

 $P_A(A(a), A[E]) = (A(b), A[F])$ whenever $(a, E), (b, F) \in \mathcal{P}$, and (b, F) = P(a, E).

It follows that we may assume without loss of generality that

$$\mathcal{V} = \mathbb{Z}^2, \qquad a = 0.$$

It follows that for any $E \in \mathcal{E}$ there is one and only $\lambda(E) = (\lambda_1(E), \lambda_2(E)) \in \mathbb{Z}^2$ such that if $z = \lambda(E)$ then exactly one of the following holds:

(i) $E = \mathbf{c}(z, z + \mathbf{e}_1);$ (ii) $E = \mathbf{c}(z, z + \mathbf{e}_2);$ (iii) $E = \mathbf{c}(z + \mathbf{e}_2, z + \mathbf{e}_1);$ (iv) $E = \mathbf{c}(z, z + \mathbf{e}_1 + \mathbf{e}_2).$

Suppose (I) holds. Since $B \neq \emptyset$ there will exist $d = (d_1, d_2) \in \mathcal{V} \sim \{0\}$ such that $R \cap \mathcal{V} = \{wd : w \in \mathbb{N}^+\}.$

Let
$$M \in (0, \infty)$$
 be such that $r_J = Md$. Let $L \in \mathbb{N}$ be such that $L \leq M < L + 1$.
Applying counterclockwise rotation by $n\pi/2$ radians for some $n \in \mathbb{N}^+$ if necessary

we may assume without loss of generality that

$$d_1 > 0$$
 and $d_2 \ge 0$.

Let

$$m = \frac{d_2}{d_1}$$

We suppose $0 \le m \le 1$ in proving (10) and leave it to the reader to carry out modify what we do below in a straightforward way to deal with case 1 < m.

Proposition 6.7. $B = \{wd : w \in \mathbb{N}^+ \text{ and } w \leq L\}$. Also, $r_K = Ld$, $\lambda(E_K) = Ld$ and $\lambda_1(E_J) < (L+1)d_1$.

Proof. Suppose $w \in \mathbb{N}^+$ and $w \leq L$. Let v = wd. If w = M then $v = b_I \in B$ so suppose w < M.

Since $\operatorname{int} V_I \neq \emptyset$ there is $F \in \mathcal{E}$ such that $v \in \mathbf{v}(F)$ and $F \cap U \neq \emptyset$. By Lemma 6.6 we have $F = E_i$ for some $i \in \mathcal{I}$. Thus $v \in B$.

Let $F = \mathbf{c}(Ld, Ld + \mathbf{e}_1)$ and $G = \mathbf{c}(Ld, Ld + \mathbf{e}_1 + \mathbf{e}_2)$. Since $0 < d_2 \leq d_1$ we find that F and G meet U and that $\mathbf{c}(Ld, Ld + \mathbf{e}_1)$ does not meet U. From Proposition 4.15 (viii) and Proposition 6.6 we find that

$$E_K = \begin{cases} F & \text{if } G \notin \mathcal{E}, \\ G & \text{if } G \in \mathcal{E}. \end{cases}$$

it follows that $\lambda(E_K) = Ld$.

Since $r_J = Md$ and M < L+1 we find that $\lambda_1(E_J) \le Md_1 < (L+1)d_1$. \Box

Lemma 6.1. Suppose $i, j \in \mathcal{I}$ and i < j. Then

$$\lambda_1(E_i) \le \lambda_1(E_j).$$

Proof. Let $x = (x_1, x_2) \in E_j$ be such that $x_1 = \lambda_1(E_j)$ and let $t \in (0, \infty)$ be such that $tx \in E_i$. Then $t \leq 1$ by Lemma 4.15 (viii). Thus

$$\lambda(E_i) \le tx_1 \le x_1 = \lambda(E_j).$$

Let

$$\mathcal{K} = \{k \in \mathbb{N} : k \leq \lambda_1(E_I)\};$$

$$\mathcal{K}' = \{k \in \mathcal{K} : \text{for some } w \in [k, k+1], \ mw \in \mathbb{N}\};$$

$$\mathcal{K}'' = \mathcal{K} \sim \mathcal{K}'.$$

For each $k \in \mathcal{K}$ let

$$N(k) = \{i \in \mathcal{I} : \lambda_1(E_i) = k\}.$$

Proposition 6.8. Suppose $k \in \mathcal{K}'$. Then $2 \leq N(k) \leq 4$.

Proof. Suppose $0 < m \le 1$. Let $l \in \mathbb{N}$ be such that $l \le mw < l + 1$. Let a = (k, l), b = (k, l + 1), c = (k, l + 2), d = (k + 1, l), e = (k + 1, l + 1) and let

$$\mathcal{F} = \{ \mathbf{c}(a, b), \mathbf{c}(b, e) \}$$
 and let $\mathcal{G} = \{ \mathbf{c}(b, d), \mathbf{c}(c, e) \}$

Then $\mathcal{F} \cup \mathcal{G}$ is the set of $F \in \mathcal{E}$ such that $\lambda_1(F) = k$ and $F \cap R \neq \emptyset$. Keeping in mind Proposition 6.6 we find that

$$\mathcal{F} \subset \{i \in \mathcal{I} : \lambda_1(E_i) = k\} \subset \mathcal{F} \cup \mathcal{G}.$$

We leave it to the reader to verify that N(k) = 2 in case m = 0.

Proposition 6.9. Suppose $k \in \mathcal{K}''$. Then N(k) = 3.

Proof. Note that 0 < m < 1 and let $l \in \mathbb{N}$ be such that $l \leq mk < l + 1$. Then l < mk and l < m(k+1) < l+1. Let a = (k, l), b = (k, l+1), c = (k+1, l), d = (k+1, l+1) and let

$$\mathcal{F} = \{ \mathbf{c}(a, b), \mathbf{c}(a, d), \mathbf{c}(b, c), \mathbf{c}(b, d).$$

Then \mathcal{F} is the set of $F \in \mathbf{E}$ such that $\lambda_1(F) = k$ and $F \cap R \neq \emptyset$. Keeping in mind Proposition 6.6 and the fact that exactly one of $\mathbf{c}(a, d)$ and $\mathbf{c}(b, c)$ belongs to \mathcal{E}_{bdry} we find that N(k) = 3.

$$K - I \ge 1 + \sum_{k \in \mathcal{K}', \ k \le Ld_1} N(k) + \sum_{k \in \mathcal{K}'', k \le Ld_1} N(k)$$

$$\ge 1 + 2Ld_2 + 3L(d_1 - d_2)$$

$$= 1 + L(3d_1 - d_2).$$

$$(J-I) - (K-I) \le \sum_{k \in \mathcal{K}', \ Ld_1 < k < (L+1)d_1} N(k) + \sum_{k \in \mathcal{K}''} \sum_{Ld_1 < k < (L+1)d_1} N(k) \le 4d_2 + 3(d_1 - d_2)$$

Thus

$$\begin{aligned} \frac{J-I}{K-I} &\leq 1 + \frac{J-I) - (K-I)}{K-I} \\ &\leq 1 + \frac{(3d_1 + d_2)}{1 + L(3d_1 - d_2)} \\ &\leq 1 + \frac{4d_1}{1 + L(2d_1)} \\ &\leq 1 + \frac{4d_1}{1 + 2d_1} \leq 3. \end{aligned}$$

7. Some theorems on plane curves.

Throughout this section we fix

$$R \in (0, \infty).$$

Definition 7.1. For each $c \in \mathbb{R}^2$ and $v \in \mathbb{S}^1$ we define

$$\mathbf{D}(c, v, R)$$

as follows. We let $\mathbf{D}(0, \mathbf{e}_2, R)$ equal

$$\left\{ x \in \mathbb{R}^2 : |x_1| < R \text{ and } -R + \sqrt{R^2 - x_1^2} \le x_2 \le R - \sqrt{R^2 - x_1^2} \right\}$$

and if $(c, v) \neq (0, \mathbf{e}_2)$ we let $\mathbf{D}(c, v, R) = \rho[\mathbf{D}(0, \mathbf{e}_2, R)]$ where ρ is the rigid motion of \mathbb{R}^2 which carries 0 to c, \mathbf{e}_1 to $c+v^{\perp}$ and \mathbf{e}_2 to c+v. Alternatively, $\mathbf{D}(c, v, R)$ is the bounded connected component of the complement in $\{x \in \mathbb{R}^2 : |(x-c) \bullet v^{\perp}| < R\}$ of $\mathbf{U}(c+Rv, R) \cup \mathbf{U}(c-Rv, R)$.

Definition 7.2. Suppose $a, b \in \mathbb{R}^2$, $0 < R < \infty$ and 0 < |a - b| < 2R. We let

$$\mathbf{c}_+(a,b,R)$$
 and $\mathbf{c}_-(a,b,R)$

be the points on the perpendicular bisector of $\mathbf{c}(a, b)$ such that

$$|a - \mathbf{c}_{\pm}(a, b, R)| = R = |b - \mathbf{c}_{\pm}(a, b, R)|$$

and whose inner products with $(b-a)^{\perp}$ are positive and negative, respectively. We let

$$\mathbf{L}(a, b, R) = \mathbf{B}(\mathbf{c}_+(a, b, R), R) \cap \mathbf{B}(\mathbf{c}_-(a, b, R), R).$$

For $e \in \{a, b\}$ we let

$$\mathbf{W}_e(a, b, R) = \{t(x - e) : x \in \mathbf{L}(a, b, R)\}$$

Proposition 7.1. Suppose $a, b \in \mathbb{R}^2$, 0 < |a - b| < 2R, $u \in \mathbb{S}^1 \cap \mathbf{W}_a(a, b, R)$ and $v \in \mathbb{S}^1 \cap \mathbf{W}_b(a, b, R)$. Then

$$|u+v| \le \frac{|a-b|}{R}$$

Proof. Let $A = \mathbb{S}^1 \cap \mathbf{W}_a(a, b, R)$ and let $B = \mathbb{S}^1 \cap \{t(x - \mathbf{c}_-(a, b, R)) : x \in \mathbf{c}(a, b)\}$. Now $-v \in \mathbf{W}_a(a, b, R)$ so |u + v| does not exceed the diameter of A. Moreover A is congruent to B the diameter of which equals |a - b|/R.

Lemma 7.1. Suppose |a - b| < 2R. Then $\mathbf{L}(a, b, R) \subset \mathbf{B}((1/2)(a + b), |a - b|/2)$. In particular, **diam** $\mathbf{L}(a, b, R) = |a - b|$.

Proof. Exercise for the reader.

Definition 7.3. We let

$\mathcal{P}(R)$

be the set of ordered pairs (I, P) such that

- (i) *I* is a nonempty open interval;
- (ii) $P: I \to \mathbb{R}^2$;
- (iii) P is continuously differentiable and |P'(s)| = 1 for $s \in I$;
- (iv) $\limsup_{t\to s} |P'(t) P'(s)|/|t-s| \le 1/R$ whenever $s \in I$;

Remark 7.1. Suppose $(I, P) \in \mathcal{P}(R)$ and $s_* \in \{\inf I, \sup I\} \sim \{-\infty, \infty\}$. Owing to (iii) and (iv) in the preceding definition we find that the limits

$$\lim_{I \ni s \to s_*} P(s) \quad \text{and} \quad \lim_{I \ni s \to s_*} P'(s)$$

exist.

Lemma 7.2. Suppose $0 < R < \infty$, $c \in \mathbb{R}^2$, I is an open interval and

$$P(s) = c + R\mathbf{u}(s/R)$$
 for $s \in I$ and $C = \{P(s) : s \in I\}$

Then $(I, P) \in \mathcal{P}(R)$. Moreover, the diameter of the range of P is less than 2R if and only if the length of I is less than πR .

Proof. Obvious.

Theorem 7.1. Suppose

- (i) $(I, P) \in \mathcal{P}(R);$
- (ii) $s_* \in I$ and $c = P(s_*)$;
- (iii) $u = P'(s_*), v \in \mathbb{S}^1, u \bullet v = 0$ and

$$U(s) = (P(s) - c) \bullet u$$
 and $V(s) = (P(s) - c) \bullet v$ for $s \in I$;

- (iv) I_* is the connected component of s_* in $\{s \in I : |U(s)| < R\}$ and $J_* = \{U(s) : s \in I_*\}$;
- (v) $f = \{(U(s), V(s)) : s \in I_*\};$

Then

(vi) I_* is an open interval, $s_* \in I_*$, J_* is an open interval and $0 \in J_* \subset (-R, R)$; (vii) $f: J_* \to \mathbb{R}$, f is continuously differentiable and

$$\{P(s): s \in I_* := \{c + tu + f(t)v : t \in J_*\};\$$

(viii) $|f(t)| \leq R - \sqrt{R^2 - t^2}$ whenever $t \in J_*$ and

$$\{P(s): s \in I_*\} \subset \mathbf{D}(c, v, R);$$

- (ix) $|f'(t)| \leq |t|/\sqrt{R^2 t^2}$ whenever $t \in J_*$;
- (x) if $\{P(s) : s \in I \text{ and } s < s_*\} \sim \mathbf{D}(c, v, R) \neq \emptyset$ then inf $J_* = -R$ and if $\{P(s) : s \in I \text{ and } s > s_*\} \sim \mathbf{D}(c, v, R) \neq \emptyset$ then $\sup J_* = R$;

Proof. (vi) is obvious.

Without loss of generality we may assume R = 1, $s_* = 0$, c = 0, $u = \mathbf{e}_1$ and $v = \mathbf{e}_2$. Let Q = P'.

Let I_{**} be the connected component of 0 in $\{s \in I_* : Q(s) \bullet \mathbf{e}_1 > 0\}$ and let $J_{**} = \{U(s) : s \in I_{**}\}$; and let $g = \{(U(s), V(s)) : s \in J_{**}\}$. Evidently, $I_{**} \subset I_*$ and $J_{**} \subset J_*$. Since $U'(s) = P'(s) \bullet u > 0$ for $s \in I_{**}$ we find that (vi) and (vii) hold with I_*, J_*, f replaced by I_{**}, J_{**}, g , respectively. Let $s_- = \inf I_* < 0 < \sup I_* = s_+$ and let $t_- = \inf J_* < 0 < \sup J_* = t_+$.

It follows that

$$Q(t,g(t)) = \mathbf{w}(g'(t))^{-1}(1,g'(t)) \quad \text{whenever } t \in J_*$$

where we have set $\mathbf{w}(m) = \sqrt{1+m^2}$ for $m \in \mathbb{R}$.

Let Q = P' and for each $s \in I$ let

$$\kappa(s) = \limsup_{h \to 0} \frac{|Q(s+h) \bullet Q(s)^{\perp}|}{|h|};$$

since $Q(t) \bullet Q(s)^{\perp} = (Q(t) - Q(s)) \bullet Q(s)^{\perp}$ whenever $s, t \in I$ we infer from (ii) that $|\kappa(s)| \leq 1$ for $s \in I$.

Suppose $s \in J_{**}$, $0 < h < \infty$ and $s + h \in J_{**}$. We have

$$\frac{Q(s+h) \bullet Q(s)^{\perp}}{h} = A(h)B(h)C(h)$$

where we have set

$$A(h) = \frac{g'(U(s+h)) - g'(U(s))}{U(s+h) - U(s)};$$

$$B(h) = \frac{U(s+h) - U(s)}{h};$$

$$C(h) = \frac{1}{\mathbf{w}(g'(U(s+h)))\mathbf{w}(g'(U(s)))}$$

Now

$$B(h)C(h) \to \frac{1}{\mathbf{w}(g'(U(s)))^3}$$

as $h \to 0$. Since $\mathbf{w}''(m) = 1/\mathbf{w}(m)^3$ for $m \in \mathbb{R}$ we find that

$$\operatorname{Lip}(\mathbf{w}' \circ g') \leq 1.$$

Since $\mathbf{w}(0) = 0$ and g'(0) = 0 this implies that

$$\mathbf{w}'(g'(x))| = |\mathbf{w}'(g'(x)) - \mathbf{w}'(g'(0))| \le |x| \text{ for } x \in J_{**};$$

since \mathbf{w}' is increasing we find that

(11)
$$|g'(x)| \le |\mathbf{v}(x)| = \frac{|x|}{\sqrt{1-x^2}}$$
 whenever $x \in J \cap (-1,1)$

where \mathbf{v} is the function inverse to \mathbf{w}' . This in turn implies that

(12)
$$|g(x)| \le 1 - \sqrt{1 - x^2}$$
 for $x \in J_{**} \cap (-1, 1)$.

Thus (viii) and (ix) hold with J_* , f replaced by J_{**} , g, respectively, and the Theorem will be proved if we can show $J_{**} = J_*$. Suppose $x_0 = \sup I_{**} \in I_*$. From (viii) we infer that $|\lim_{t\uparrow t_0} g'(t)| < \infty$ which in turn implies that $y_0 = \lim_{t\uparrow t_0} g(t)$ exists and is finite. Thus $Q(x_0, y_0) \bullet \mathbf{e}_1 > 0$ which implies there is a larger open interval than I_{**} on which $Q \bullet \mathbf{e}_1 > 0$. Thus $\sup J_{**} = \sup J_*$ and, therefore, $\sup I_{**} = \sup I_*$. In a similar fashion one shows that $\inf J_{**} = \inf J_*$ and $\inf I_{**} = \inf I_*$.

Theorem 7.2. Suppose $(I, P) \in \mathcal{P}(R)$; diam $I < \infty$;

$$a = \lim_{s \downarrow \inf I} P(s) \text{ and } b = \lim_{s \uparrow \sup I} P(s);$$
$$r = \frac{|a-b|}{2} < R \text{ and } m = \frac{1}{2}(a+b);$$

 $w \in \mathbb{S}^1$ and

(13)
$$a \bullet w < P(s) \bullet w < b \bullet w$$
 whenever $s \in I$.

Then

$$\{P(s): s \in I\} \subset \mathbf{B}(m, r).$$

Proof. We may suppose without loss of generality that m = 0 and $w = \mathbf{e}_1$. Let $\rho = \sup\{|P(s)| : s \in I\}$ and suppose, contrary to the Lemma, that $\rho > r$. Since $|a| < \rho$ and $|b| < \rho$ there is $s_* \in I$ such that $|P(s_*)| = \rho$ and $P(s_*) \bullet Q(s_*) = 0$. Let $v \in \mathbb{S}^1$ be such that $P(s_*) = \rho v$. Let $u = v^{\perp}$; then $Q(s_*) = \pm u$. Let $c = P(s_*)$ and let I_*, f, J_* , etc., be as in Theorem 7.1. Since $\mathbf{B}(0, r) \cap \mathbf{D}(c, v, R) = \emptyset$ we find that $(-R, R) \subset J_*$.

Suppose

(14)
$$u \bullet w > 0 \text{ and } v \bullet w \ge 0.$$

Let

$$\zeta_{\pm}(t) = c \mp Rv + R(tu \pm \sqrt{1 - t^2}v) \quad \text{for } 0 \le t \le 1,$$

let $A_{\pm} = \{\zeta_{\pm}(t) : 0 \le t < 1\}$ and note that

$$A_+ \cup A_- = \{ x \in \mathbf{bdry} \, \mathbf{D}(c, v, R) : c \bullet u \le x \bullet u < R + c \bullet u \}.$$

We have

 $\zeta_+(0) \bullet w = ((c - Rv) + Rv) \bullet w = c \bullet w < b \bullet w$

Since $w = (w \bullet u)u + (w \bullet v)v$ we find in view of (14) that

$$(w \bullet u)u + \sqrt{1 - (w \bullet u)^2}v = (w \bullet u)u + (w \bullet v)v = w$$

so that

$$\zeta_+(w \bullet u) = ((c - Rv) + Rw) \bullet w = \rho v \bullet w + R(1 - v \bullet w) > r > b \bullet w$$

that there is $t_* \in [0, w \bullet u)$ such that $\zeta_+(t_*) \bullet w = b \bullet w$. Thus for any $\lambda \in [$

so that there is $t_* \in [0, w \bullet u)$ such that $\zeta_+(t_*) \bullet w = b \bullet w$. Thus for any $\lambda \in [0, 1]$ we have

$$((1-\lambda)\zeta_{+}(t_{*}) + \lambda\zeta_{-}(t_{*})) \bullet w = \zeta_{+}(t_{*}) \bullet w + 2\lambda R(1-\sqrt{1-t_{*}^{2}})v \bullet w \ge b \bullet w.$$

Since $(-R,R) \subset J_{*}$ we find that $P(s) \in \mathbf{c}(\zeta_{+}(t_{*}),\zeta_{-}(t_{*}))$, contrary to (13).

Theorem 7.3. Suppose $(I, P) \in \mathcal{P}(R)$ and

(15)
$$\operatorname{diam} \{ P(s) : s \in I \} < 2R.$$

Then **diam** $I \leq \pi R$ and

(16)
$$\{P(s): s \in I\} \subset \mathbf{L}(a, b, R).$$

Moreover, if

$$a = \lim_{I \ni s \to \inf I} P(s) \quad \text{and} \quad b = \lim_{I \ni s \to \sup I} P(s)$$

and

$$t_a = \lim_{I \ni s \to \inf I} P'(s)$$
 and $t_b = \lim_{I \ni s \to \sup I} P'(s)$

then

$$|t_a - t_b| \le \frac{|a - b|}{R}.$$

Proof. Suppose $s_0, s_1 \in I$ and $s_0 < s_1$. Let $s_* = (s_0 + s_1)/2$. Let $u = P'(s_*)$ and let $v = u^{\perp}$. If $i \in \{0, 1\}$ and $P(s_i) \in \mathbf{D}(P(s_*), v, R)$ we infer from Theorem 7.1 (ix) that $|s_i - s_*| \leq \pi R/2$ so that $s_1 - s_0 \leq \pi R$.

Were it the case that $\{P(s_0), P(s_1)\} \cap \mathbf{D}(P(s_*), v, R) = \emptyset$ we could infer from Theorem 7.1 (x) that there would be $\tilde{s}_0 \in [s_0, s_*)$ and $\tilde{s}_1 \in (s_*, s_1]$ such that $(P(\tilde{s}_0) - P(s_*)) \bullet u = -R$ and $(P(\tilde{s}_1 - P(s_*)) \bullet u = R$ and this would imply $|P(\tilde{s}_1) - P(\tilde{s}_0| \ge 2R$, contrary (15). It follows that diam $I \leq \pi R$. Keeping in mind Remark 7.1 we infer the existence of a, b, t_1 and t_b as in the statement of the Theorem.

We now prove (16). Let $C = \{P(s) : s \in I\}$ and let $d \in \{\mathbf{c}_+(a, b, R), \mathbf{c}_-(a, b, R)\}$. Suppose, contrary to (16), $C \not\subset \mathbf{B}(c, R)$. Let $c \in \mathbf{cl} C$ be such that $|x - d| \leq |c - d|$ whenever $x \in C$. Let $S \in (0, \infty)$ and $w \in \mathbb{S}^1$ be such that c - d = Sw. Suppose, contrary to (16), S > 1. Since $c \notin \{a, b\}$ we have $c = P(s_*)$ for some $s_* \in I$ and $P'(s_*) = \pm w^{\perp}$. But $\mathbf{D}(d, v, R) \cap \mathbf{U}(c, R) = \emptyset$ so $\{a, b\} \cap \mathbf{D}(d, w, R) = \emptyset$. We infer from Theorem 7.1 (x) that there are $s_{\pm} \in I$ such that $|(P(s_{\pm}) \pm d) \bullet w^{\perp}| = R$ which implies $|P(s_+) - P(s_-)| \geq 2R$ which is contrary (15). Thus $C \subset \mathbf{B}(c, R)$ and, therefore, (16) holds. The final assertion of the Theorem now follows from Proposition 7.1.

7.1. Length.

Theorem 7.4. Suppose $(I, P) \in \mathcal{P}(R)$ and

$$d=\frac{1}{2}\mathbf{diam}\left\{P(s):s\in I\right\}<2R.$$

Then

$$\operatorname{\mathbf{diam}} I \le 2 \arcsin \frac{d}{R}$$

with equality if and only $\{P(s) : s \in I\}$ is a subset of a circle or radius R.

Proof. The hypotheses of Theorem 7.3 hold so diam $I \leq \pi R$ and we may let a, b, t_a, t_b be as in the statement of that Theorem. Let

$$f(s) = |(P(s) - a) \bullet P'(s)| - |(P(s) - b) \bullet P'(s)|$$
 for $s \in I$.

It follows that

$$\lim_{s \downarrow \inf I} f(s) = -|(a-b) \bullet t_a| < 0 \quad \text{and} \quad \lim_{s \downarrow \sup I} f(s) = |(a-b) \bullet t_b| > 0$$

so there is $s_* \in I$ such that if $c = P(s_*)$ and $u = P'(s_*)$ then for some $r \in (0, \infty)$ we have

$$|(P(s_*) - x) \bullet u| = r \quad \text{for } x \in \{a, b\}.$$

Let $v = u^{\perp}$, let f, I_* , J_* , etc., be as in Theorem 7.1 and let $C = \{P(s) : s \in J_*\}$. Suppose $\sup J_* \leq r$. Then $b \notin C$ so $\sup J_* = R \leq r$. But this forces $a \notin C$ so $\inf J_* = -R$ and diam $C \geq 2R$ which we have excluded so $(-r, r) \subset J_*$. From Theorem 7.1 (ix) we infer that the length of C does not exceed $2 \arcsin(r/R) \operatorname{lambda}(r)$ thus establishing our length estimate. We also find that equality holds in the length estimate if and only if either $f(t) = R - \sqrt{R^2 - t^2}$ for $t \in (-r, r)$ or $f(t) = -R + \sqrt{R^2 - t^2}$ for $t \in (-r, r)$ which is to say C is a subset of a circle of radius R.

8. The open set Ω .

We assume that throughout this section that Ω is a bounded open subset of \mathbb{R}^2 whose boundary $\partial \Omega$ is a continuously differentiable embedded submanifold of \mathbb{R}^2 with length L.

We do *not* assume Ω is connected.

We let $T, N : \partial \Omega \to \mathbb{S}^1$ be such that N is the unit normal to $\partial \Omega$ which points out of Ω and $T = N^{\perp}$. We let

$$\rho(x) = \operatorname{dist}(x, \partial\Omega) \quad \text{for } x \in \mathbb{R}^2$$

and we let

$$h(y,r) = y + rN(y)$$
 for $(y,r) \in (\partial\Omega) \times \mathbb{R}$.

Proposition 8.1. Suppose $0 < R < \infty$ and

$$U = \{ x \in \mathbb{R}^2 : \rho(x) < R \}.$$

Then the following statements are equivalent.

- (i) $\xi | U$ is a function.
- (ii) $h|((\partial \Omega) \times (-R, R))$ is univalent.
- (iii) $(\partial \Omega) \cap (\mathbf{B}(b + RN(b), R) \cup \mathbf{B}(b RN(b), R)) = \{b\}$ whenever $b \in \partial \Omega$.
- (iv) $|(y-b) \bullet N(b)| \le |y-b|^2/2R$ whenever $y, b \in \partial\Omega$.

Proof. We leave the proof as a straightforward exercise for the reader. We suggest showing (i) implies (ii) implies (ii) implies (i). That (iii) and (iv) are equivalent follows by directly calculation. \Box

We now assume that there are a positive real number R such that with $U = \{x \in \mathbb{R}^2 : \rho(x) < R\}$ the equivalent conditions of Proposition 8.1 hold.

Inequality (i) implies that the normal N is Lipschitzian. Our assumption about the reach of $\partial\Omega$ is global; in particular, if $\partial\Omega$ is twice differentiable and the absolute value of the curvature of $\partial\Omega$ at any point is less than 1/R for some positive real number R then our assumptions need not hold; consider

$$\Omega = \{x \in \mathbb{R}^2 : |x| \in \{R, R+h\}\}$$

where h is a small positive number; it is not too difficult to construct examples of this sort where $\partial \Omega$ is connected.

We assume that

$$\operatorname{\mathbf{diam}} T < h < R \quad \text{whenever } T \in \mathcal{T}_{\operatorname{bdry}}$$

where T is as in 4 and where

$$\mathcal{V}_{\rm in} = \{ v \in \mathcal{V} : v \in \Omega \}.$$

We will prove the following Theorem.

Theorem 8.1. Suppose $\gamma \in \Gamma_{\min}$. Then

$$\frac{R-h}{R}L \le \mathbf{l}(\gamma) \le L$$

where L is the length of $\partial \Omega$.

8.1. More on the geometry of $\partial \Omega$.

Lemma 8.1. The length of each connected component of $\partial \Omega$ is at least $2\pi R$.

Proof. Let C be a connected component of $\partial\Omega$ and let G be the bounded open subset of \mathbb{R}^2 with boundary C. Note that $G \subset \Omega$ or $G \cap \Omega = \emptyset$. Let

$$\zeta = \begin{cases} 1 & \text{if } G \subset \Omega, \\ -1 & \text{if } G \cap \Omega = \emptyset \end{cases}$$

Suppose $u \in \mathbb{S}^1$. Since C is compact there is $a \in C$ be such that

$$\{x \bullet u : x \in C\} \le a \bullet u;$$

clearly, $N(a) = \zeta u$.

Thus $\{N(x) : x \in C\} = \mathbb{S}^1$. It follows that

 $2\pi \leq \int_C |N'| \leq \frac{L}{R}$

where L is the length of C.

Theorem 8.2. Suppose $a, b \in \partial \Omega$ and 0 < |a-b| < 2R. Then there is one and only one connected component C of $(\partial \Omega) \sim \{a, b\}$ such that $\{a, b\} \in \mathbf{cl} C$ and whose length is less than πR . Moreover,

(17)
$$\operatorname{diam} C = |a - b|, \quad C \subset \mathbf{L}(a, b, R) \quad \text{and} \quad |T(a) - T(b)| \le \frac{|a - b|}{R}.$$

Finally, if $X = \mathbf{c}(a, b)$ then $X \subset U, \xi | X$ is univalent and $\xi | X | = \mathbf{cl} C$.

Proof. Let m be the midpoint of line segment joining a to b. Then

$$\operatorname{dist}(m, \partial \Omega) \le |a - m| = |b - m| = \frac{|a - b|}{2} < R$$

so $m \in U$. Let $c = \xi(m)$, let u = T(c) and let v = N(c). We may assume without loss of generality that c = 0.

We also have

(18)
$$|e| \le |e-m| + |m| = \frac{|a-b|}{2} + \operatorname{dist}(m, \partial\Omega) = \frac{3R}{2} < 2R \text{ for } e \in \{a, b\}.$$

Let $S = \{x \in \mathbb{R}^2 : |x_1| < R\}$. If $e \in \{a, b\}$ we have

$$|e \bullet u| = |(e - m) \bullet u| \le |e - m| = \frac{|a - b|}{2} < R$$

so

(19)
$$\{a,b\} \subset S.$$

Let D be the connected component of 0 in $\partial\Omega$ and let $h \in (0,\infty)$ be such that the length of D equals 2h. Let I, P, \tilde{c} be such that $I = (-h, h); (I, P) \in \mathcal{P}(R);$ P(0) = 0; P is univalent; and $\{P(s) : s \in I\} = D \sim \{\tilde{c}\}$. Then $h \geq \pi R$ by Lemma 8.1. Let I_*, J_*, f , etc., be as in Theorem 7.1 with s_* there equal 0 and let $E = \{P(s) : s \in I_*\}$. By (viii) and (ix) of Theorem 7.1 $E \subset \mathbf{D}(0, v, R)$ and the length of E does not exceed πR . If $s \in I_*$ then $|s| < \pi R/2 \le h$ by Theorem 7.1 (viii). Thus neither $\{P(s): -h < s < 0\}$ nor $\{P(s): 0 < s < h\}$ is a subset of $\mathbf{D}(c, v, R)$. It follows from Theorem 7.1 that $I_* = (-R, R)$.

It follows from Theorem 7.2 that $C \subset \mathbf{B}(m, r)$. Thus diam $C \leq 2r < 2R$ so, by Theorem 7.3, $C \subset \mathbf{L}(a, b, R)$ and the assertions of (17) follow from Theorem ??.

Let $\eta(t) = (1 - t)a + tb$ for $t \in [0, 1]$. Then

dist
$$(\eta(t), \partial \Omega) \le \min\{|\eta(t) - a|, |\eta(t) - b|\} \le \frac{|a - b|}{2} < R$$

for any $t \in [0, 1]$ so $X \subset U$.

Suppose there were $s, t \in [0, 1]$ such that $s \neq t$ and $\xi(\eta(s)) = d = \xi(\eta(t))$. Then there would be $\rho, \sigma \in (-R, R)$ such that $\eta(s) = d + \rho N(d)$ and $\eta(t) =$ $d + \sigma N(d)$. It would then follow that $\{a, b\} \subset \{d + zN(d) : z \in \mathbb{R}\}$. But since $\partial\Omega \cap (\mathbf{B}(d+RN(d),R) \cup \mathbf{B}(d-RN(d),R)) = \{d\}$ we would have that $|a-b| \geq 2R$. Thus $\xi \circ \eta$ is univalent so $\xi | X$ is univalent. Thus $\{\xi \circ \eta(t) : 0 < t < 1\}$ is a connected component of $(\partial \Omega) \sim \{a, b\}$ which contains $c = \xi(m) = \xi \circ \eta(1/2)$. It follows that $\xi[X] = \mathbf{cl} \, C.$

28

Τ.

Definition 8.1. Suppose $a, b \in \partial \Omega$ and 0 < |a - b| < 2R. Keeping in mind the previous Theorem, we let

 $\mathbf{a}(a,b)$

be the unique connected component of $\partial \Omega \sim \{a, b\}$ whose length is less than πR .

Remark 8.1. The following Theorem and its proof come from [?, 4.4(8)].

Theorem 8.3. Suppose $x, a \in U$ and $r = \max\{\rho(x), \rho(a)\}$. Then

$$|\xi(x) - \xi(a)| \le \frac{R}{R-r}|x-a|.$$

Proof. Let $y = \xi(x)$ and let $b = \xi(y)$. From Proposition 8.1 (iv) we obtain

$$(x-y) \bullet (y-b) \ge -\frac{|y-b|^2||x-y|}{2R} \ge -\frac{r|y-b|^2}{2R}$$

and

$$(a-b) \bullet (y-b) \ge -\frac{|y-b|^2||a-b|}{2R} \ge -\frac{r|y-b|^2}{2R}$$

Thus

$$\begin{aligned} |x-a||y-b| &\ge (x-a) \bullet (y-b) \\ &= \left[(y-b) + (x-y) + (b-a) \right] \bullet (y-b) \\ &\ge \left(1 - \frac{r}{2R} - \frac{r}{2R} \right) |y-b|^2 \\ &= \frac{R-r}{R} |y-b|^2. \end{aligned}$$

8.2. Inscribing the polygon.

Definition 8.2. Let $\beta \in \Gamma$ be such that for each $E \in \mathcal{E}_{bdry}$ we have $\beta(E) \in \partial \Omega$ and $\{(1-t)\mathbf{v}_{out}(()E) + t\gamma(E) : 0 \le t < 1\} \cap \partial \Omega = \emptyset$.

Theorem 8.4. Suppose $E \in \mathcal{E}_{bdry}$, $F = \sigma(E)$, $a = \gamma(E)$, $b = \gamma(F)$, $a \neq b$ and $u \in \mathbb{S}^1$ is such that b - a = |b - a|u. Then

$$|u - T(x)| < \text{whenever } x \in \mathbf{a}(a, b).$$

Proof. Choose f, etc., as in ?? such that... We may assume without loss of generality that a = 0, $T(a) = -\mathbf{e}_1$ and $N(a) = \mathbf{e}_2$. Let $x \in (-R, R)$ be such that b = (w, f(w)). We will show that w < 0.

Case One. $\mathbf{v}_{out}(E) = \mathbf{v}_{out}(F)$. Suppose $\mathbf{v}_{out}(E) = (x, y)$. Then ty > f(tx) whenever $0 < t \le 1$.

Lemma 8.2. (WRONG!) Suppose $E \in \mathcal{E}_{bdry}$, $a \in E \cap \partial\Omega$, $b \in \sigma[E] \cap \partial\Omega$ and $a \neq b$. Then |a - b| < R and no vertex of $T = \mathbf{c}(E \cup \sigma[E])$ lies in $\mathbf{a}(a, b)$.

Proof. Suppose, contrary to the Lemma, c is a vertex of E which lay on the interior of $\mathbf{a}(a, b)$ relative to $\partial\Omega$. Keeping in mind ?? and using the Mean Value Theorem

we obtain $a_*, b_* \in \mathbf{a}(a, b)$ such that $c - a = |a - c|T(a_*)$ and $b - c = |b - c|T(b_*)$ where we have interchanged a and b if necessary. But then, by ? of Theorem 7.1,

$$0 \le \frac{(c-a) \bullet (b-c)}{|c-a||b-c|} \\= T(a_*) \bullet T(b_*) \\= (T(a_*) - T(b_*)) \bullet T(b_*) - 1 \\\le \frac{|a_* - b_*|}{R} - 1 \\\le \frac{|a-b|}{R} - 1$$

which contradicts our hypothesis that $\operatorname{diam} T < R$.

Lemma 8.3. Suppose γ is a choice function for \mathcal{E}_{bdry} such that

$$\gamma(E) \in \partial \Omega \quad \text{for } E \in \mathcal{E}_{\text{bdry}}.$$

Then the family of the interiors of $\mathbf{a}(\gamma(E), \gamma(\sigma[E]))$ relative to $\partial\Omega$ corresponding to $E \in \mathcal{E}_{bdry}$ with $\gamma(E) \neq \gamma(\sigma[E])$ is disjointed.

In particular, $\mathbf{l}(\gamma)$ does not exceed the length of $\partial\Omega$.

Proof. Suppose the Lemma were false. Keeping in mind that $\mathbf{a}(\gamma(E), \mathbf{c}(\sigma[E]))$ is homeomorphic to (0, 1) whenever $E \in \mathcal{E}_{bdry}$ there would be for each i = 1, 2,

$$E_i, a_i, b_i, A_i, B_i$$

such that

(i) $E_i \in \mathcal{E}_{bdry};$

(ii) $a_i = \gamma(E_i)$ and $b_i = \gamma(\sigma[E_i])$;

(iii) A_i is the interior of $\mathbf{a}(a_i, b_i)$ relative to $\partial \Omega$;

(iv) B_i is the interior of the triangle which is the convex hull of $E_i \cup \sigma[E_i]$ but such that

$$B_1 \cap B_2 = \emptyset$$
 and $\{a_2, b_2\} \cap A_1 \neq \emptyset$.

Suppose $c \in \{a_2, b_2\}$ and $c \in A_1$. Since $B_1 \cap B_2 = \emptyset$, c would lie on an edge F of the triangle which is the closure of B_1 . If c lay on the interior of F we would have $F = E_2$ or $F = \sigma[E_2]$ so that $F \in \mathcal{E}_{bdry}$, which would imply that $F = E_1$ or $F = \sigma[E_1]$; but then

$$c = \gamma(F) \in \{\gamma(E_1), \gamma(\sigma[E_1])\} = \{a_1, b_1\};\$$

that is, $c \notin A_1$. So c is a vertex of F and therefore a vertex of the triangle which is the convex hull of $E_1 \cup \sigma[E_1]$. But this contradicts Lemma 8.2.

That $l(\gamma)$ does not exceed L follows from the triangle inequality.

Theorem 8.5. Suppose $\gamma \in \Gamma$. Then $\xi[\mathbf{p}(\gamma)] = \partial \Omega$ and

$$L \le \frac{R}{R-h} \mathbf{l}(\gamma)$$

where L is the length of $\partial \Omega$.

Proof. For each $E \in \mathcal{E}_{bdry}$ choose $\beta(E) \in E \cap \partial \Omega$.

Suppose $b \in \partial\Omega$ and let $B = \{x \in \mathbb{R}^2 : |(x-b) \bullet T(b)| < R \text{ and } |(x-b) \bullet N(b)| \le R\}$. Let $T_{\pm} \in \mathcal{T}$ be such that $b \pm RN(b) \in T_{\pm}$. Choose $v_{\pm} \in B \cap \mathbf{v}(T_{\pm})$; this is possible since h < R. Choose a continuous map $\zeta : [0,1] \to B \cap (\cup \mathcal{E})$ such that

 $\zeta(0) = v_{-} \in \Omega$ and $\zeta(1) = v_{+}$; this is possible since h < R. It follows from Theorem 7.1 that $K = \{t \in [0,1] : \zeta(t) \in \partial \Omega\}$ is a nonempty compact subset of (0,1). Let $E \in \mathcal{E}$ be such that $\zeta(\inf K) \in E$. It follows that $E \in \mathcal{E}_{bdry}$.

Given $\zeta \in \Gamma$ we can define a map $f_{\zeta} : Z_{1/2} \to \mathbf{p}(\zeta)$ by assigning $(1-t)\zeta(E) + t\zeta(\sigma[E])$ to $(1-t)\mu_{1/2}(E) + t\mu_{1/2}(\sigma[E])$ whenever $E \in \mathcal{E}_{bdry}$ and $t \in [0, 1]$.

Let *C* be the connected component of $\beta(E)$ in $Z_{1/2}$ and let *D* be the connected component of *b* in $\partial\Omega$. Let $\mu : \mathbb{S}^1 \to C$ and $\nu : \mathbb{S}^1 \to D$ be homeomorphisms. It follows from the preceding Lemma that the degree of $\nu^{-1} \circ \xi \circ f_\beta \circ \mu$ is ± 1 . Since f_γ is homotopic to f_β we infer that the degree of $\nu^{-1} \circ \xi \circ f_\gamma \circ \mu$ is ± 1 which in turn implies that $D \subset \xi[\mathbf{p}(\gamma)]$.

Thus $\partial \Omega \subset \xi[\mathbf{p}(\beta)]$; this implies

$$L \leq \operatorname{Lip} \xi \mathbf{l}(\beta) \leq \frac{R}{R-h} \mathbf{l}(\beta).$$

8.3. **Proof of Theorem 8.1.** For each $E \in \mathcal{E}_{bdry}$ choose $\beta(E) \in \partial \Omega \cap E$. From the preceding Theorem and ?? we infer that

$$\frac{R-h}{R}L \leq \mathbf{l}(\gamma) \leq L \leq \mathbf{l}(\beta) \leq L.$$

9. The tangent estimate.

We suppose throughout this section that $\gamma \in \Gamma_{\min}$.

Theorem 9.1. Suppose $E \in \mathcal{E}_{bdrv}$, $u \in \mathbb{S}^1$ is such that

$$\gamma(\sigma[E]) - \gamma(E) = |\gamma(\sigma[E]) - \gamma(E)|u,$$

and $a \in \mathbf{c}(\gamma(E), \gamma(\sigma[E]))$. Then

$$|u - T(\xi(a))| \le$$

Proof. We may assume without loss of generality that a is the midpoint of E, $\xi(a) = 0, T(0) = -\mathbf{e}_1$ and $N(0) = \mathbf{e}_2$. By ?? we obtain $f : (-R, R) \to (-R, r)$ such that $\partial \Omega \cap \mathbf{D}(0, \mathbf{e}_2, R) = f$.

For 0 < r < R let $S(r) = \{(x, y) \in \mathbb{R}^2 : |x| < r\}$. Since $E \cap \partial \Omega \neq \emptyset$,

$$|a| = \operatorname{dist} a, \partial \Omega \leq \operatorname{diam} E < h.$$

In particular, $E \subset S(R-h) \cap \mathbf{D}(0, \mathbf{e}_2, R)$.

Let C be the connected component of a in $\mathbf{p}(\gamma) \cap S(R-h)$.

For each $i \in \mathbb{Z}$ let $E_i = \sigma^i[E]$; let $T_i = \mathbf{c}(E_i \cup E_{i+1})$; let $g_i = \gamma(E_i)$; and let $S_i = \mathbf{c}(b_i, b_{i+1})$.

Let β be a choice function on \mathcal{E}_{bdry} such that $\beta(E) \in \partial \Omega$ whenever $E \in \mathcal{E}_{bdry}$ and let $x_i = \xi(\beta(E_i)) \bullet \mathbf{e}_1$ for $i \in \mathbb{Z}$.

Let \mathcal{F} be the largest connected subset of $\{F \in \mathcal{E}_{bdry} : F \subset S(R)\}$. Since $E \in \mathcal{F}$ and since the diameter of the connected component of 0 in $\partial\Omega$ is at least $2\pi R$ we find that there are $I, J \in \mathbb{Z}$ such that $I \leq 0 \leq J$ and $\mathcal{F} = \{E_i : i \in \mathbb{I}(I, J)\}$. It follows that $(E_{I-1} \cup E_{J+1}) \subset \mathbb{R}^2 \sim S(R-h)$. Since the degree of the restriction of ξ to each connected component of $\mathbf{p}(\beta)$ is one we have

$$x_j \leq x_i$$
 if $i, j \in \{I, J\}$ and $i < j$.

It follows that that there are points q_{\pm} such that $q_{+} \in S_{I-1}$, $q_{-} \bullet \mathbf{e}_{1} = R - h$, $q_{+} \in S_{J}$ and $q_{+} \bullet \mathbf{e}_{1} = -R + h$. This in turn implies that

$$(b_{I-1} - q_{-}) \bullet \mathbf{e}_1 < 0$$
 and that $(q_{+} - b_{J+1}) \bullet \mathbf{e}_1 < 0$.

Let

$$\mathcal{F}_{\rm in} = \{ F \mathcal{E}_{\rm in} : F \subset V_{\rm in} \cap S \} \text{ and let } \mathcal{F}_{\rm out} = \{ F \mathcal{E}_{\rm out} : F \subset V_{\rm in} \cap S \}$$

Suppose \mathcal{G} is a nonempty maximal connected subset of \mathcal{F}_{in} . Let $I^* = \min\{i : E_i \in \mathcal{G} \text{ and let } J^* = \max\{i : E_i \in \mathcal{G}.$

Suppose $I < I^*$ and $J^* < J$. Then there are $p_+ \in E_{J^--1} \sim E_{J^-}$ and $p_- \in E_{J^+}$ such that either $p_+ \bullet \mathbf{e}_1 = R - h$ or there is $x_{\pm} \in (-R + h, R - h)$ such that $p_{\pm} = (x_{\pm}, f(x_{\pm}))$ then

$$\mathbf{c}(g_{J^-}, p_-) \cap \mathbf{c}(g_{J^+}, p_+) \subset U^+$$

Let

$$v_{\pm} = \frac{1}{\sqrt{1 + f'(x_{\pm})^2}} (-f'(x_{\pm}), 1).$$

We have

$$u_{J^--1} \bullet v_- \ge 0$$
 as well as $u_{J^+} \bullet v_+ \ge 0$.

Let P be the union of the segments S_i , $i \in \{J^-, \ldots, J^- - 1\}$ and the segments $\mathbf{c}(p_-, g_{J^-})$ and $\mathbf{c}(g_{J^+-1}, p_+)$ and let Q be the union of the segments $\mathbf{c}(p_{\pm}, (x_{\pm}, -R))$ and the segment $\mathbf{c}((x_+, -R), (x_+, -R))$. Then $P \cup Q$ is a simple closed polygon.

Let $\theta_i = \arcsin u_i \times u_{i+1}$ for $i \in \{J^-, \ldots, J^{-1}\}$; let $\alpha_- = \arcsin \mathbf{e}_2 \times u_{J^-}$ and let $\alpha_+ = -\arcsin u_{J^+} \times \mathbf{e}_2$. By the Gauss-Bonnet Theorem for simple closed polygons we infer that

$$\pi + \alpha_{-} + \alpha_{+} + \sum_{i=J^{-}}^{J^{+}-1} \theta_{i} = 2\pi$$

Since $\theta_i \leq 0$ for $i \in \{J^-, \ldots, J^{-1}\}$ we find that $\alpha_- + \alpha_+ \geq \pi$. Since $|\alpha_{\pm}| \leq ??$ we find that $\alpha_{\pm} \geq 0$. Thus $P = \{(s, g(s)) : x_- \leq s \leq x_+\}$ for some convex $g : [x_-, x_+] \to [-R, R]$ for which $f(x_{\pm}) = g(x_{\pm})$. Moreover, $f(x) \leq g(x)$ for $x \in [x_-, x_+]$ which implies that

$$f'(x_{-}) \le g'(x_{-})$$
 and $g'(x_{+}) \le f'(x_{+})$.

Since g is convex we have

$$f'(x_-) \le g'(x) \le f'(x_+)$$
 whenever $x_- \le x \le x_+$.

For each $\zeta \in \Gamma$ and $T \in \mathcal{T}_{bdry}$ let

$$\mathbf{q}_{\pm}(T,\zeta) \in \mathbf{H}$$

be defined as follows. Let E, F be such that $\mathcal{E}_{bdry} \cap \mathbf{e}(T) = \{E, F\}$ and $F = \sigma(E)$. In case $\zeta(E) \neq \zeta(F)$ we let

$$\mathbf{q}_{\pm}(T,\zeta) = T \cap \mathbf{int} \, \mathbf{h}_{\pm}(\gamma(E),\gamma(F)).$$

In case $\zeta(E) = \zeta(F) \in \mathcal{V}_{in}$ we let

$$\mathbf{q}_+(T,\zeta) = \emptyset$$
 and we let $\mathbf{q}_-(T,\zeta) = T \sim \{\zeta(E)\}.$

In case $\zeta(E) = \zeta(F) \in \mathcal{V}_{in}$ we let

$$\mathbf{q}_+(T,\zeta) = T \sim \{\zeta(E)\}$$
 and we let $\mathbf{q}_-(T,\zeta) = \emptyset$.

We let

$$U^{+} = \bigcup_{i=I^{-}}^{J-1} \mathbf{q}_{+}(T_{i},\beta) \sim \mathbf{cl} \, \mathbf{q}_{+}(T_{i},\gamma)$$
$$U^{-} = \bigcup_{i=I^{-}}^{J-1} \mathbf{q}_{+}(T_{i},\gamma) \sim \mathbf{cl} \, \mathbf{q}_{+}(T_{i},\beta)$$

and we let

Proof.

$$b_i = \beta(E_i)$$
 and $g_i = \gamma(E_i)$.
 $S_i = \mathbf{c}(b_i, b_{i+1})$ and $T_i = \mathbf{c}(g_i, g_{i+1})$.
 $u, v : \mathcal{I} \to \mathbb{S}^1 \cup \{0\}$

are such that

$$u_i = b_{i+1} - b_i$$
 and $v_i = g_{i+1} - g_i$.

Note that

 $b_i \bullet \mathbf{e}_1 < 0.$

Let \mathbb{M}_{in} be the set of $(A, B)\mathbb{I}(I, J) \times \mathbb{I}(I, J)$ such that $b_i \in \mathcal{V}_{in}$ whenever $i \in \mathbb{I}(A, B)$ and let \mathbb{M}_{out} be the set of $(A, B)\mathbb{I}(I, J) \times \mathbb{I}(I, J)$ such that \mathcal{V}_{out} whenever $i \in \mathbb{I}(A, B)$.

Lemma 9.1. $v_i \bullet \mathbf{e}_2 \neq 0$.

Proof. Suppose $v_i = s\mathbf{e}_2$ and $s \neq 0$. Then $S_i \subset \mathbf{h}_+(g_i, g_{i+1})$. Suppose s > 0.

9.1. Computing X. For 0 < x < R let

$$f(x) = R - \sqrt{R^2 - x^2}$$
 and let $g(x) = \frac{f(x) + h}{x}$.

Then g has a unique minimum on (0, R) at

$$X = \frac{R}{R+h}\sqrt{h^2 + 2Rh}$$

and both f(X) and f'(X) equal

$$\sqrt{\frac{h}{R}\left(\frac{h}{R}+2\right)}.$$

Lemma 9.2. There are $I, J \in \mathbb{Z}$ such that I < 0 < J and

$$\{i \in \mathbb{Z} : E_i \cap f \neq \emptyset\} = \mathbb{I}(I, J).$$

References

[AW2] W. K. Allard: Total variation regularization for image denoising; I. Geometric theory. to appear in SIAM Journal on Mathematical Analysis.

[FE] H. Federer: Curvature Measures, Transactions of the American Mathematical Society, Vol. 93 (Dec., 1959), pp. 418-491.

33