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TOTAL VARIATION REGULARIZATION FOR IMAGE DENOISING,
I. GEOMETRIC THEORY∗

WILLIAM K. ALLARD†

Abstract. Let Ω be an open subset of Rn, where 2 ≤ n ≤ 7; we assume n ≥ 2 because the
case n = 1 has been treated elsewhere (see [S. S. Alliney, IEEE Trans. Signal Process., 40 (1992),
pp. 1548–1562] and is quite different from the case n > 1; we assume n ≤ 7 because we will make use
of the regularity theory for area minimizing hypersurfaces. Let F(Ω) = {f ∈ L1(Ω)∩L∞(Ω) : f ≥ 0}.
Suppose s ∈ F(Ω) and γ : R → [0,∞) is locally Lipschitzian, positive on R ∼ {0}, and zero at zero.
Let F (f) =

∫
Ω γ(f(x) − s(x)) dLnx for f ∈ F(Ω); here Ln is Lebesgue measure on R

n. Note that
F (f) = 0 if and only if f(x) = s(x) for Ln almost all x ∈ R

n. In the denoising literature F would
be called a fidelity in that it measures deviation from s, which could be a noisy grayscale image.
Let ε > 0 and let Fε(f) = εTV(f) + F (f) for f ∈ F(Ω); here TV(f) is the total variation of f . A
minimizer of Fε is called a total variation regularization of s. Rudin, Osher, and Fatemi and Chan
and Esedoḡlu have studied total variation regularizations where γ(y) = y2 and γ(y) = |y|, y ∈ R,
respectively. As these and other examples show, the geometry of a total variation regularization
is quite sensitive to changes in γ. Let f be a total variation regularization of s. The first main
result of this paper is that the reduced boundaries of the sets {f > y}, 0 < y < ∞, are embedded
C1,μ hypersurfaces for any μ ∈ (0, 1) where n > 2 and any μ ∈ (0, 1] where n = 2; moreover, the
generalized mean curvature of the sets {f ≥ y} will be bounded in terms of y, ε and the magnitude of
|s| near the point in question. In fact, this result holds for a more general class of fidelities than those
described above. A second result gives precise curvature information about the reduced boundary of
{f > y} in regions where s is smooth, provided F is convex. This curvature information will allow
us to construct a number of interesting examples of total variation regularizations in this and in a
subsequent paper. In addition, a number of other theorems about regularizations are proved.
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1. Introduction and statement of main results. Throughout this paper, n
is an integer, 2 ≤ n ≤ 7, Ω is an open subset of Rn, and Ln is Lebesgue measure on
Rn.

We require n ≥ 2 because the problems we consider are very different in case
n = 1; see [Alli]. We require n ≤ 7 because we will be using the regularity theory of
mass minimizing integral currents in Rn of codimension one; as is well known, these
currents are free of interior singularities when n ≤ 7 but may possess singularities if
n > 7; see [FE, sect. 5.4.15]. This work is motivated by image denoising applications
in which it is often the case that 1 ≤ n ≤ 4.

After a fairly lengthy discussion of results which occur in a setting more general
than that of denoising, we treat denoising in section 1.8. See also sections 1.9, 8, and
10 as well as the examples in section 11 for more on denoising.

1.1. Some basic notation and conventions. Whenever E ⊂ Ω we frequently
identify “E” with “ 1E ,” the indicator function of E.

The first appearance of any term which is about to be defined will always appear
in italics or be displayed.
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We let

F(Ω) = {f ∈ L1(Ω) ∩ L∞(Ω) : f ≥ 0}

and

M(Ω) = {D : D ⊂ Ω and 1D ∈ F(Ω)} ;

thus a subset D of Ω belongs to M(Ω) if and only if D is Lebesgue measurable
and Ln(D) < ∞. We endow Lloc

1 (Ω) with the topology induced by the seminorms
Lloc

1 (Ω) � f 	→ ∫
K
|f | dLn corresponding to compact subsets K of Ω. Whenever

f ∈ Lloc
1 (Ω) and K is a compact subset of Ω we let

k(f,K) = {g ∈ Lloc
1 (Ω) : g(x) = f(x) for Ln almost all x ∈ Ω ∼ K};

in other words, g ∈ k(f,K) if the support of the generalized function corresponding
to g − f is a subset of K. We let

k(f) = ∪{k(f,K) : K is a compact subset of Ω}.

Whenever D is a Lebesgue measurable subset of Ω and K is a compact subset of Ω
we let

k(D,K) = {E : E ⊂ Ω and 1E ∈ k(1D,K)}

and

k(D) = ∪{k(D,K) : K is a compact subset of Ω}.

Whenever A,D,E are Lebesgue measurable subsets of Ω we let

ΣA(D,E) = Ln(A ∩ ((D ∼ E) ∪ (E ∼ D))) =

∫
A

|1D − 1E | dLn;

note that M(Ω) ×M(Ω) � (D,E) 	→ ΣA(D,E) is a pseudometric on M(Ω).
Whenever a ∈ Rn and 0 < r <∞ we let

Un(a, r) = {x ∈ Rn : |x− a| < r} and Bn(a, r) = {x ∈ Rn : |x− a| ≤ r}.

We let

int, cl, and bdry

stand for “interior,” “closure,” and “boundary,” respectively, with respect to Ω.
Whenever A ⊂ Rn and a is an accumulation point of A we let

Tan(A, a) =
⋂

0<r<∞
cl {t(x− a) : 0 < t <∞ and x ∈ A ∩ (Bn(a, r) ∼ {a})}

and

Nor(A, a) =
⋂

w∈Tan(A,a)

{v ∈ Rn : v • w ≤ 0}.
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Whenever 0 ≤ m <∞ we let

Hm

be an m-dimensional Hausdorff measure on Rn.
We let

X (Ω)

be the space of smooth compactly supported vector fields on Ω.
Whenever y, z ∈ R we let

y ∨ z = max{y, z}, y ∧ z = min{y, z},
and we note that y + z = y ∨ z + y ∧ z.

1.2. Total variation. This work is based on the notion of the total variation of
a locally summable function, which we now define.

Definition 1.1. Suppose f ∈ Lloc
1 (Ω). Then TV(f, ·), the total variation of f ,

is the largest Borel regular measure on Ω such that, for any open subset U of Ω,

TV(f, U) = sup

{∫
U

fdivX dLn : X ∈ X (U) and |X| ≤ 1

}
.

In particular, if f is C1 on Ω and B is a Borel subset of Ω, then

(1.1) TV(f,B) =

∫
B

|∇f | dLn.

Moreover, if E a Lebesgue measurable subset of Ω with Lipschitz boundary, then
TV(E,B) equals the (n−1)-dimensional Hausdorff measure of the intersection of the
boundary of E with B.

Suppose f ∈ Lloc
1 (Ω). We say f is of bounded variation on Ω if TV(f,Ω) is

finite. If TV(f, ·) is a Radon measure on Ω, which will be the case if and only if
TV(f,K) < ∞ whenever K is a compact subset of Ω, we say f is of locally bounded
variation on Ω. We let

BV(Ω) and BVloc(Ω)

be the vector spaces of those f ∈ L1(Ω) which are of bounded variation on Ω and
those f ∈ Lloc

1 (Ω) which are of locally bounded variation on Ω, respectively.
If E is a Lebesgue measurable subset of Ω, the perimeter of E is, by definition,

TV(E,Ω); we say E is of locally finite perimeter if E ∈ BVloc(Ω). As is well known,
if f ∈ BVloc(Ω), then {f > y} is of locally finite perimeter for L1 almost all y. As
is well known, sets of locally finite perimeter have nice rectifiability properties; see
section 2.8 below.

1.3. Total variation regularization.
Definition 1.2. Suppose F : F(Ω) → R and 0 < ε <∞. We let

Fε : F(Ω) → R ∪ {∞},
the total variation regularization of F (with respect to ε), be defined by setting

Fε(g) = εTV(g) + F (g) for g ∈ F(Ω).
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We let

mloc
ε (F ) = {f ∈ F(Ω) ∩ BV(Ω) : Fε(f) ≤ Fε(g) whenever g ∈ F(Ω) ∩ k(f)}.

All of the statements and proofs of this paper, after straightforward modification,
go through with the condition “f ≥ 0,” omitted in the definition of F(Ω); however, the
modified statements and proofs often break into two cases because if f ∈ L1(Ω) and
y ∈ R, one can only be sure that Ln({f > y}) <∞ if y > 0 and that Ln({f < y}) <∞
if y < 0.

It will be useful to extend the foregoing notions to functionals defined on sets, as
follows.

Definition 1.3. Suppose M : M(Ω) → R and 0 < ε <∞. We let

Mε : M(Ω) → R ∪ {∞},
the total variation regularization of M (with respect to ε), be defined by setting

Mε(E) = εTV(E) +M(E) for E ∈ M(Ω).

We let

nloc
ε (M) = {D ∈ M(Ω) ∩ BV(Ω) : Mε(D) ≤Mε(E) whenever E ∈ M(Ω) ∩ k(D)}.

The main purpose of this paper is to study the geometry and regularity of the
sets {f > y} and {f ≥ y}, y ∈ (0,∞), when f ∈ mloc

ε (F ), provided F satisfies certain
conditions which we now describe. We will relate these results to certain methods for
image denoising.

1.4. Admissibility. Suppose

F : F(Ω) → R.

All our results will require F to be admissible, a notion we now define.
Definition 1.4. We say F is admissible if the restriction of F to any subset of

F(Ω) which is bounded with respect to || · ||L∞(Ω) is Lipschitz with respect to || · ||L1(Ω).
In other words, F is admissible if whenever 0 < Y <∞ we have

l(F, Y ) <∞,

where l(F, Y ) is the infimum of the set of L ∈ (0,∞) such that

|F (f) − F (g)| ≤ L

∫
Ω

|f − g| dLn

whenever f, g ∈ F(Ω) and max{||f ||L∞(Ω), |g||L∞(Ω)} ≤ Y .
The notion of admissibility extends naturally to functionals on sets, as follows.
Definition 1.5. Suppose M : M(Ω) → R. We let

l(M)

be the infimum of the set of L ∈ (0,∞) such that

|M(D) −M(E)| ≤ LΣΩ(D,E) whenever D,E ∈ M(Ω).

We say M is admissible if l(M) <∞.
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1.5. Bλ(Ω) and Cλ(Ω). These spaces will be indispensable in this work.

Definition 1.6. Suppose 0 ≤ λ <∞. We let

Bλ(Ω)

be the set of those f ∈ BVloc(Ω) such that for each compact subset K of Ω we have

TV(f,K) ≤ TV(g,K) + λ

∫
Ω

|f − g| dLn whenever g ∈ k(f,K).

We let

Cλ(Ω)

be the set of those Lebesgue measurable subsets D of Ω with locally finite perimeter
such that for each compact subset K we have

TV(D,K) ≤ TV(E,K) + λΣΩ(D,E) whenever E ∈ k(D,K).

The following result is based on ideas found in [BDG].

Theorem 1.1. Suppose 0 ≤ λ <∞ and f ∈ BVloc(Ω). Then

f ∈ Bλ(Ω) ⇒ {f > y} ∈ Cλ(Ω) for y ∈ R.

Conversely, if D is a dense subset of R, then

{f > y} ∈ Cλ(Ω) for y ∈ D ⇒ f ∈ Bλ(Ω).

An immediate corollary is that D ∈ Cλ(Ω) if and only if 1D ∈ Bλ(Ω).

More results on Cλ(Ω) and Bλ(Ω) may be found in section 5.1.

1.5.1. The regularity theorem for Cλ(Ω). The proof of the following theorem
is an exercise, carried out in section 5.4, in the use of techniques from geometric
measure theory which have been in the literature for over thirty years.

Note that in the following theorem, θ does not depend on D.

Theorem 1.2 (regularity). Suppose 0 < μ < ∞ and 0 < β < 1. There exists θ
such that 0 < θ < 1 and with the following property:

Suppose

(i) a ∈ Rn and 0 < R <∞;
(ii) 0 ≤ λ <∞, λR ≤ θ, and D ∈ Cλ(Un(a,R));
(iii) Γ is the interior of the support of the generalized function corresponding to

the indicator function of D and M is the boundary of Γ relative to Un(a,R).

Then ΣUn(a,R)(D,Γ) = 0 and M is an embedded hypersurface in Un(a,R) of
class C1,μ; moreover, if N is a continuous field of unit normals to M and r = θR,
then

|N(x) −N(w)| ≤ β (|x− w|/r)μ whenever x,w ∈M ∩ Un(a, r);

finally, if L is a line perpendicular to Tan(M,a), then L intersects M ∩ Un(a, r) in
at most one point.

In case n = 2 we may take μ = 1.
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1.5.2. The relationship between admissibility and Cλ(Ω). The following
simple proposition relates the notion of admissibility to the spaces Bλ(Ω).

Proposition 1.1. Suppose F : F(Ω) → R, F is admissible, 0 < ε < ∞,
f ∈ mloc

ε (F ), Y = ||f ||L∞(Ω), and λ = l(F, Y )/ε.
Then f ∈ Bλ(Ω).
Proof. Suppose g ∈ k(f,K). Let h = (g ∧ Y ) ∨ 0. Then h ∈ k(f,K), so

ε (TV(f,K) − TV(h,K)) ≤ F (f) − F (h) ≤ l(F, Y )

∫
Ω

|f − h|.

As is well known and shown in Proposition 2.3 below, TV(h,K) ≤ TV(g,K), and it
is evident that

∫
Ω
|f − h| dLn ≤ ∫

Ω
|f − g| dLn, so the proposition is proved.

We leave the even simpler proof of the following proposition to the reader.
Proposition 1.2. Suppose M : M(Ω) → R, M is admissible, 0 < ε < ∞,

D ∈ nloc
ε (M), and λ = l(M)/ε.

Then D ∈ Cλ(Ω).
Remark 1.1. Thus if f ∈ mloc

ε (F ), where F is admissible, the regularity theorem,
Theorem 1.2, for Cλ(Ω) applies to the sets {f > y}, 0 < y < ∞. In particular, if
n > 2 and 0 < μ < 1 or if n = 2 and 0 < μ ≤ 1, the boundaries of the support of
[{f > y}], 0 < y <∞, are always embedded C1,μ hypersurfaces.

In order to obtain yet more information about {f > y} we need to assume more
about F , as follows.

1.6. Locality.
Definition 1.7. Suppose F : F(Ω) → R. We say F is local if F is admissible

and

F̂ (f + g) = F̂ (f) + F̂ (g) whenever f, g ∈ F(Ω) and fg = 0,

where we have set

F̂ (f) = F (f) − F (0) for f ∈ F(Ω).

The notion of locality extends naturally to functionals on sets, as follows.
Definition 1.8. Suppose M : M(Ω) → R. We say M is local if M is admissible

and

M̂(D ∪ E) = M̂(D) + M̂(E) whenever D,E ∈ M(Ω) and D ∩ E = ∅,
where we have set

M̂(E) = M(E) −M(∅) for E ∈ M(Ω).

The proofs of the following four propositions, which we carry out in section 6, are
exercises in real variable theory.

Proposition 1.3. Suppose M : M(Ω) → R, M is admissible, and

μ(x) = lim sup
r↓0

M̂(Bn(x, r))

Ln(Bn(x, r))
for x ∈ Ω.

Then M is local if and only if

(1.2) M(E) = M(φ) +

∫
E

mdLn for E ∈ M(Ω)
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for some bounded Borel function m : Ω → R, in which case m(x) = μ(x) for Ln

almost all x ∈ Ω.
Proposition 1.4. Suppose F : F(Ω) → R, F is admissible, and

κ(x, y) = lim sup
r↓0

F̂ (y1Bn(x,r))

Ln(Bn(x, r))
for (x, y) ∈ Ω × [0,∞).

Then F is local if and only if

(1.3) F (f) = F (0) +

∫
Ω

k(x, f(x)) dLnx whenever f ∈ F(Ω)

for some Borel function k : Ω × [0,∞) → R such that
(i) k(x, 0) = 0 for Ln almost all x ∈ Ω;
(ii) whenever 0 < Y <∞ there is L ∈ [0,∞) such that if 0 ≤ y < z < Y , then

|k(x, y) − k(x, z)| ≤ L|y − z| for Ln almost all x ∈ Ω,

in which case, for each y ∈ [0,∞), k(x, y) = κ(x, y) for Ln almost x ∈ Ω.
Remark 1.2. Suppose β : R → R is locally Lipschitzian and

F (f) = β

(∫
Ω

f dLn

)
for f ∈ F(Ω).

It is a evident that F is admissible but not local unless β is an affine function.
Perhaps a more interesting example is as follows. Suppose K, s ∈ L1(R

n) and

F (f) =

∫
Rn

|K ∗ f − s| dLn for f ∈ F(Rn).

Evidently, l(F, Y ) = ||K||L1(Rn) < ∞ whenever 0 < Y < ∞, so F is admissible. If κ
is as in Proposition 1.4, we find that κ(x, y) = |K(x)y− s(x)| for Ln almost all x and
all y ∈ (0,∞). It is easy to see that F is not local if both {K > 0} and {K < 0} have
positive Lebesgue measure.

Proposition 1.5. Suppose F : F(Ω) → R, F is admissible, κ is as in Proposition
1.4,

u(x, y) = lim sup
z→y

κ(x, z) − κ(x, y)

z − y
for (x, y) ∈ Ω × (0,∞),

and, for each y ∈ (0,∞),

Uy(E) = lim sup
z→y

F (z1E) − F (y1E)

z − y
for E ∈ M(Ω).

Then
(i) u is a Borel function and |u(x, y)| ≤ l(F, Y ) whenever x ∈ Ω and 0 < y <

Y <∞;
(ii) |Uy(E)| ≤ l(F, Y )Ln(E) whenever 0 < y < Y and E ∈ M(Ω);
(iii) for any f ∈ F(Ω), (0,∞) � y 	→ Uy({f > y}) is a Borel function.
Moreover, if F is local, then
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(iv) for L1 almost all y ∈ (0,∞), Uy is local, l(Uy) ≤ l(F, Y ) whenever y < Y <
∞, and

Uy(E) =

∫
E

u(x, y) dLnx whenever E ∈ M(Ω);

(v) for any f ∈ F(Ω),

F (f) = F (0) +

∫ ∞

0

Uy({f > y}) dL1y.

Proposition 1.6. Suppose F : F(Ω) → R, F is local, κ is as in Proposition 1.4,
and Uy, 0 < y <∞, and u are as in Proposition 1.5.

The following are equivalent:
(i) F is convex.
(ii) R � y 	→ F (y1E) is convex for any E ∈ M(Ω).
(iii) For any x ∈ Ω,

R � y 	→ κ(x, y) is convex.

(iv) R � y 	→ Uy(E) is nondecreasing for any E ∈ M(Ω).
(v) For any x ∈ Ω,

R � y 	→ u(x, y) is nondecreasing.

Moreover, if F is convex and 0 < y <∞, then Uy is local and

(1.4) lim
z↓y

Uz(E) = Uy(E) whenever E ∈ F(Ω).

Remark 1.3. Suppose F : F(Ω) → R, F is admissible, κ is as in Proposition 1.4,

l(x, y) = lim inf
z→y

κ(x, z) − κ(x, y)

z − y
for (x, y) ∈ Ω × (0,∞),

and, for each y ∈ (0,∞),

Ly(E) = lim inf
z→y

F (z1E) − F (y1E)

z − y
for E ∈ M(Ω).

Modifying the proof of Proposition 1.5 in a straightforward way one finds that
this proposition holds with u and Uy, 0 < y < ∞, replaced by l and Ly, 0 < y < ∞,
respectively. Evidently, for any E ∈ M(Ω) we have

Ly(E) ≤ Uy(E) whenever 0 < y <∞
with equality for L1 almost all y ∈ (0,∞).

Moreover, if F is local, one finds that by modifying the proof of Proposition 1.6 in
a straightforward way that this proposition holds with u and Uy, 0 < y <∞, replaced
by l and Ly, 0 < y <∞, respectively, except that (1.4) must be replaced by

(1.5) lim
z↑y

Lz(E) = Ly(E) whenever E ∈ F(Ω).

We will show at the end of section 6 that for all but countably many y ∈ (0,∞)

(1.6) Ly(E) = Uy(E) whenever E ∈ M(Ω).

See section 1.9 for a natural example where Ly �= Uy for some y ∈ (0,∞).
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1.6.1. When F is local and convex. Things get a lot more interesting when
F is local and convex. An important result, which will be proved in section 6, is the
following.

Theorem 1.3. Suppose F : F(Ω) → R, F is local and convex, and f ∈ mloc
ε (F ).

Then

{f ≥ y} ∈ nloc
ε (Ly) and {f > y} ∈ nloc

ε (Uy) whenever 0 < y <∞.

When I wrote the initial version of this paper I thought this theorem was com-
pletely new. I was wrong. As a referee has pointed out, essentially the following result
appears as Proposition 2.2 of [CA2].

Suppose s ∈ F(Ω),

F (g) =
1

2

∫
Ω

|g − s|2 dL2 for g ∈ L2(Ω),

0 < ε <∞, and f ∈ L2(Ω) is such that

εTV(f,Ω) + F (f) ≤ εTV(g,Ω) + F (g) for g ∈ L2(Ω).

Then f(x) ≥ 0 for Ln almost all x ∈ Ω and, whenever 0 < y <∞,

εTV({f > y}) + Uy({f > y}) ≤ εTV(E) + Uy(E) for E ∈ M(Ω),

where Uy(E) =
∫
E
y − s dLn for E ∈ M(Ω).

Note that f above is a global minimizer of L2(Ω) � g 	→ εTV(g,Ω) + F (g). In
fact, the method used to prove this result in [CA2] can be extended to a very general
class of local and convex F ’s but still for global minimizers. For example, I do not
see how to apply this method to the case when Ω has Lipschitz boundary and one
minimizes in the class of f ’s with a given trace on the boundary of Ω, a situation in
which Theorem 1.3 clearly applies.

The following theorem, which will be proved in section 6, is more than a converse
of the preceding theorem. This result is of particular interest when γ(y) = |y| for
y ∈ R in section 1.8; it is the essential ingredient in the proof of Theorem 1.7.

Theorem 1.4. Suppose F : F(Ω) → R, F is local and convex, G is a Ln × L1

measurable subset of Ω × (0,∞) such that
(i) (Ln × L1)(G) <∞;
(ii) {y ∈ (0,∞) : {(x, y) ∈ G} �= ∅} is bounded;
(iii) {x : (x, y) ∈ G} ∈ nloc

ε (Uy) for L1 almost all y ∈ (0,∞),
and f : Ω → [0,∞) is such that

f(x) = L1{y : (x, y) ∈ G} for x ∈ Ω.

Then f ∈ mloc
ε (F ).

It turns out that a set G as in the previous theorem is essentially unique, provided
F is strictly convex. Simple examples in [CE] show this is not the case if F is merely
convex. Bear in mind that f below is essentially unique because F is strictly convex.

Theorem 1.5. Suppose F , G, and f are as in the preceding theorem and F is
strictly convex. Then

(Ln × L1)((G ∼ {(x, y) : f(x) > y > 0}) ∪ ({(x, y) : f(x) > y > 0} ∼ G)) = 0.

See section 9.3 for the proof.
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1.7. Results on curvature. A good deal of the following theorem, which will
be proved in section 7, is well known. If one assumes that M below is of class C2,
the formula for H in (1.7) may be derived by a straightforward variational argument
which appears in [M]; in our case, in the light of the regularity theorem for Cλ(Ω) we
know only that M is of class C1,μ, 0 < μ < 1, so one must proceed a bit more carefully.
We represent M locally as a graph of a function which satisfies an elliptic equation
and appeal to higher regularity results for such equations as appear, for example, in
[GT]. One may then obtain the second variation formula (1.8) which, obviously, is a
global constraint on a member of nloc

ε (Z) to which it applies. I believe (1.8) is new; it
will be used in section 11 and [AW2] when we construct minimizers.

See section 4 for the definitions of mean curvature and second fundamental form
which we use.

Theorem 1.6. Suppose
(i) ζ ∈ L∞(Ω) and Z(E) =

∫
E
ζ dLn whenever E ∈ M(Ω);

(ii) U is an open subset of Ω, j is a nonnegative integer, 0 < μ < 1, and ζ|U is
of class Cj,μ;

(iii) 0 < ε <∞ and D ∈ nloc
ε (Z);

(iv) Γ is the intersection of U with the interior of the support of the generalized
function corresponding to the indicator function of D and M is the boundary
of Γ relative to U .

Then ΣU (D,Γ) = 0, M is an embedded hypersurface of class Cj+2,μ, and

(1.7) H(x) = −1

ε
ζ(x)ν(x) for x ∈M,

where H is the mean curvature vector of M and ν is the unit normal along M which
points out of Γ.

Moreover, if ζ is of class C1 on U and Q is the square of the length of the second
fundamental form of M , then

(1.8)

∫
M

ε
(|∇Mφ(x)|2 − φ(x)2Q(x)

)− φ(x)2∇ζ(x) • ν(x) dHn−1x ≥ 0

for any smooth compactly supported function φ on U ; here, for each x ∈M , ∇Mφ(x)
is the orthogonal projection of ∇φ(x) on Tan(M,x).

In case n = 2 we may take μ = 1.
This theorem will apply in the context of denoising if s as in section 1.8 is suffi-

ciently regular in U .

1.8. Denoising. Suppose
(i) s ∈ F(Ω);
(ii) γ : R → [0,∞), γ is locally Lipschitzian, γ is decreasing on (−∞, 0), γ(0) = 0,

and γ is increasing on (0,∞);
(iii) F (f) =

∫
Ω
γ(f(x) − s(x)) dLnx for f ∈ F(Ω).

Here s could be a grayscale representation of a degraded image which we wish to
denoise. In the context of denoising F would be called a fidelity; it is a measure
of how much f differs from s. If 0 < ε < ∞, the members of mloc

ε (F ) would be
called total variation regularizations of s (with respect to the fidelity F and smoothing
parameter ε).

In the literature Fε is often replaced by Fε/ε and λ = 1/ε is thought of as a
Lagrange multiplier.
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For a very informative discussion of the use of total variation regularizations in
the field of image processing, see the introduction of [CE]. We will not discuss image
processing any further except to note that the notion of total variation regularization
in image processing is useful for other purposes besides denoising.

Evidently, F is admissible, so Proposition 1.1 holds and the results of section 1.5
apply. It is also evident that F is local.

Let us now assume γ is convex. It follows that F is convex. Set

α(y) = lim inf
z→y

γ(z) − γ(y)

z − y
and β(y) = lim sup

z→y

γ(z) − γ(y)

z − y
for y ∈ R

and let Ly and Uy, 0 < y <∞, be as in Remark 1.3 and Proposition 1.5, respectively.
It is a simple matter to verify that if 0 < y <∞ and E ∈ M(Ω), then

(1.9) Ly(E) =

∫
E

α(y − s(x)) dLnx and Uy(E) =

∫
E

β(y − s(x)) dLnx.

In view of Theorem 1.3 the results of section 1.7 apply when α or β and s are suffi-
ciently regular.

Of particular interest is when 1 ≤ p <∞ and

(1.10) γ(y) =
1

p
|y|p whenever y ∈ R.

Rudin, Osher, and Fatemi [ROF] studied the case p = 2 and Chan and Esedoḡlu [CE]
studied the case p = 1. The results of section 1.7 will allow us to construct a number
of interesting examples of minimizers in [AW2], a sequel to this paper; we believe
these examples provide insights into the nature of total variation regularization. At
the end of this paper we will determine mloc

ε (F ) when Ω = R2, s is the indicator
function of a square, and γ is as in (1.10). Note that F is strictly convex if p > 1 and
merely convex if p = 1.

Suppose K ∈ L1(R
n). Let

F (f) =

∫
Rn

γ(K ∗ f(x) − s(x)) dLnx for f ∈ F(Rn).

It is easy to see that F is admissible but not local except in degenerate situations.
Nonetheless, the results of section 1.5 apply.

1.9. Some results on the Chan–Esedoḡlu functional. Suppose s, γ, F are
as in section 1.8 with γ(y) = |y| for y ∈ R. Whenever 0 < y < ∞ and E ∈ M(Ω) we
use (1.9) to obtain

Ly(E) = Ln(E ∩ {y > s}) − Ln(E ∩ {y ≤ s}) = N̂{y≤s}(E),

Uy(E) = Ln(E ∩ {y ≥ s}) − Ln(E ∩ {y < s}) = N̂{y<s}(E),

where for each S ∈ M(Ω) we have set

NS(E) = ΣΩ(E,S) for E ∈ M(Ω).

We use Theorem 1.4 to obtain interesting results about NS , S ∈ M(Ω), one of
which is as follows; it was suggested by a similar result in a different context in [CA1]
and will be used in [AW2] in determining nloc

ε (NS), 0 < ε < ∞, for certain S, which
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in view of the above formulae for Ly and Uy, 0 < y <∞, and Theorem 1.3 will allow
us to determine mloc

ε (F ), 0 < ε <∞, where F (f) =
∫

R2 |f − 1S | dL2 for f ∈ F(R2).
Theorem 1.7. Suppose S ∈ M(Ω), 0 < ε <∞, and A is a nonempty subfamily

of nloc
ε (NS). Then

∩A ∈ nloc
ε (NS) and, provided Ln(∪A) <∞, ∪ A ∈ nloc

ε (NS).

2. Geometric measure theoretic background. We find the mathematical
infrastructure of normal and integral currents to be convenient in carrying out this
work. For that reason we will adopt, for the most part, the notation and terminology
of [FE]; note the extensive glossary, list of notation, and index starting on page 669
of that book. We avoided using that notation and terminology in the introduction in
order to make it more accessible to readers not familiar with [FE].

2.1. More notations and conventions. Suppose μ measures Ω, which is to
say μ maps the power set of Ω countably subadditively into [0,∞]; whenever A ⊂ Ω
we let

μ A(B) = μ(A ∩B) whenever B ⊂ Ω

and note that μ A measures Ω.
Whenever f is a function mapping a subset of a normed vector space into another

normed vector space, a is an interior point of the domain of f , and f is Fréchet
differentiable at a, we let

∂f(a)

be the Fréchet differential of f at a.
If V is a vector space, v ∈ V , and ψ belongs to the dual space of V , we frequently

write

〈v, ψ〉 instead of ψ(v).

We use spt as an abbreviation for “support.”

2.2. Spaces of smooth functions; currents. Whenever Y is a Banach space
we let

E(Ω, Y ) and D(Ω, Y )

be the space of smooth Y valued functions on Ω and the space of compactly supported
members of E(Ω, Y ), respectively, with the strong topologies as described in [FE,
sect. 4.1.1]. Thus X (Ω) = D(Ω,Rn).

We let

E(Ω) and D(Ω)

equal E(Ω,R) and D(Ω,R), respectively. For each nonnegative integer m we let

Em(Ω) and Dm(Ω)

equal E(Ω, Y ) and D(Ω, Y ), respectively, with Y =
∧m

Rn. Thus Em(Ω) is the space
of smooth differential m-forms on Ω, and Dm(Ω) is the space of those members of
Em(Ω) with compact support. We let

Em(Ω) and Dm(Ω)
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be the duals of Em(Ω) and Dm(Ω), respectively. Thus Dm(Ω) is the space of m
dimensional currents on Ω, and Em(Ω) is the space of m-dimensional currents with
compact support on Ω. We define the boundary operator

∂ : Dm(Ω) → Dm−1(Ω)

by setting ∂T (ω) = T (dω) whenever T ∈ Dm(Ω) and ω ∈ Dm−1(Ω); here d is exterior
differentiation.

Suppose T ∈ Dm(Ω). As in [FE, sect. 4.1.5] we let

||T ||,
the total variation measure of T , be the largest Borel regular measure on Ω such that

||T ||(G) = sup{|T (ω)| : ω ∈ Dm(Ω), ||ω|| ≤ 1 and sptω ⊂ G}
for each open subset G of Ω; here || · || is the comass which in case m ∈ {0, 1, n− 1, n}
is the Euclidean norm; these are the only cases we will encounter in this paper. It
follows immediately from this definition that

(2.1) ||T ||(G) ≤ lim inf
ν→∞ ||Sν ||(G) for any open subset G of Ω

whenever S is a sequence in Dm(Ω) such that Sν(ω) → T (ω) as ν → ∞ whenever
ω ∈ Dm(Ω). We let

M(T ) = ||T ||(Ω)

and call this nonnegative extended real number the mass of T . We say T is repre-
sentable by integration if ||T || is a Radon measure which is equivalent to the statement

that ||T ||(K) <∞ whenever K is a compact subset of Ω. If this is the case and
−→
T is

the ||T || measurable function with values in {ξ ∈ ∧m Rn : ||ξ|| = 1} defined in [FE,
sect. 4.1.7], there is a unique extension of T to the ||T || summable functions on Ω
with values in

∧m
Rn, which we continue to denote by T , such that

T (ω) =

∫
〈−→T (x), ω(x)〉 d||T ||x

whenever ω is a ||T || summable function on Ω with values in
∧m

Rn. If T ∈ Dm(Ω)
is representable by integration, l is a nonnegative integer not exceeding m, and η is a
bounded Borel function on Ω with values in

∧l
Rn, then we let

T η ∈ Dm−l(Ω)

be such that

T η(ω) =

∫
〈−→T (x), (η ∧ ω)(x)〉 d||T ||x for ω ∈ Dm−l(Ω).

2.3. The current corresponding to a locally summable function. We let

e1, . . . , en and e1, . . . , en

be the standard basis vectors and covectors for Rn and its dual space, respectively.
We let

En = e1 ∧ · · · ∧ en ∈
∧n

Rn
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be the standard orientation on Rn.
We let

(2.2) Vn ∈ Dn(Ω)

be such that Vn(x) = En for x ∈ Ω.
Definition 2.1. Whenever f ∈ Lloc

1 (Ω) we define

[f ] ∈ Dn(Ω)

by setting

[f ](φVn) =

∫
Ω

φf dLn whenever φ ∈ D(Ω).

Suppose f ∈ Lloc
1 (Ω). For anyX ∈ X (Ω) we have d(X Vn) = (−1)n−1(divX)Vn

so that

(2.3) ∂[f ](X Vn) = (−1)n−1

∫
f divX dLn;

here is as in [FE, sect. 1.5.1]. It follows that

(2.4) TV(f,B) = ||∂[f ]||(B) whenever B is a Borel subset of Ω.

2.4. Mapping currents. Whenever T ∈ Dm(Ω) and F is a smooth map from
Ω to the open subset Γ of some Euclidean space whose restriction to the support of
T is proper, we let

F#T ∈ Dm(Γ)

be such that F#T (ω) = T (F#ω) for any ω ∈ Dm(Γ); here the pullback F# is as
in [FE, sect. 4.1.6]. If F carries Ω diffeomorphically onto Γ, T is representable by

integration, and
−→
T (x) is decomposable for ||T || almost all x ∈ Ω, then we have

(2.5)

∫
b(y) d||F#T ||y =

∫
b(F (x))

∣∣∣∧
m
∂F (x)(

−→
T (x))

∣∣∣ d||T ||x
for nonnegative Borel function b on Γ. By a simple approximation argument one need
only assume that F is of class C1 if T is representable by integration.

2.5. A mapping formula. Suppose Γ is an open subset of Rn; f ∈ Lloc
1 (Ω);

F : Ω → Γ is locally Lipschitzian; the restriction of F to the support of [f ] is proper;
A is the set of y ∈ Γ such that F−1[{y}] is finite and such that if F (x) = y, then F
is differentiable at x; and g : Γ → R is such that

g(y) =

{∑
x∈F−1[{y}] f(x) sgn det ∂F (x) if y ∈ A,

0 else.

Then g ∈ Lloc
1 (Γ) and

(2.6) F#[f ] = [g].

In particular, if F is univalent and det ∂F (x) > 0 for Ln almost all x ∈ Ω, then

F#[f ] = [f ◦ F−1].

See [FE, sect. 4.1.25] for the proof.
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2.6. Slicing. Suppose m, l are positive integers, m ≥ l, T ∈ Dm(Ω), T is locally
flat as defined in [FE, sect. 4.1.12], and f : Ω → Rl is locally Lipschitzian. Note that
if both T and ∂T are representable by integration, then T is locally flat; this will
always be the case when we apply slicing in this paper. For y ∈ Rl we follow [FE,
sect. 4.3.1] and define

〈T, f, y〉
the slice of T in f−1[{y}] to be that member of Dm−l(Ω) which, if it exists, satisfies

〈T, f, y〉(ψ) = lim
r↓0

T [f#(Bl(y, r) ∧ Vl)](ψ)

Ll(Bl(y, r))
whenever ψ ∈ Dm−l(Ω),

where T [f#(Bl(y, r)∧Vl)] is defined as in [FE, sect. 4.3.1]. Then, by [FE, sect. 4.3.1],
the slice 〈T, f, y〉 exists for Ll almost all y and satisfies

(2.7) spt 〈T, f, y〉 ⊂ f−1[{y}] and ∂〈T, f, y〉 = (−1)l〈∂T, f, y〉.
Moreover, we have from [FE, sect. 4.3.2] that

(2.8)

∫
Φ(y)〈T, f, y〉(ψ) dLly = [T f#(Φ ∧ Vl)](ψ)

whenever Φ is a bounded Borel function on Rl and ψ ∈ Dm−l(Ω) and that

(2.9)

∫ (∫
b||〈T, f, y〉||

)
dLly =

∫
b d||T f#Vl]||

whenever b is a nonnegative Borel function on Ω.
Proposition 2.1. Suppose K is a compact subset of Ω, u(x) = dist (x,K)

for x ∈ Ω, R is the supremum of the set of r ∈ (0,∞) such that {u ≤ r} ⊂ Ω,
f, g ∈ BVloc(Ω), and

hr = g1{u≤r} + f1{u>r} for each r ∈ (0, R).

Then hr ∈ BVloc(Ω) for L1 almost all r ∈ (0, R), and whenever 0 < r < s < R
we have

(2.10)

∫ s

r

||∂[hρ]||({u ≤ ρ}) dL1ρ ≤
∫
{r<u<s}

|f−g| dLn+

∫ s

r

||∂[g]||({u ≤ ρ}) dL1ρ.

Proof. From [FE, sect. 4.2.1] and [FE, sect. 4.3.4] we find that

∂[hρ] = 〈[g] − [f ], u, ρ〉 + (∂[g]) {u ≤ ρ} + (∂[f ]) {u > ρ}
for L1 almost all ρ ∈ (0, R). Now multiply by 1{u≤ρ}, integrate from r to s, and
invoke (2.9).

2.7. Densities and density ratios. Suppose μ measures Ω, m is a nonnegative
integer, and α(m) = Lm(Um(0, 1)). For each a ∈ Ω we set

Θm(μ, a, r) =
μ(B(a, r))

α(m)rm
whenever 0 < r < dist (a,Rn ∼ Ω)

and

Θm(μ, a) = lim
r→0

Θm(μ, a, r),

provided this limit exists.
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2.8. Sets of finite perimeter. Suppose E is a Lebesgue measurable subset of
Ω. Proceeding as in [FE, sect. 4.5.5], we say u ∈ Rn is an exterior normal to E at
b ∈ Ω if |u| = 1 and

Θn(Ln {x ∈ E : (x− b) • u > 0} ∪ {x ∈ Ω ∼ E : (x− b) • u < 0}, b) = 0.

We let

nE

be the set of (b, u) ∈ Ω×Rn such that either u is an exterior normal to E at b or u = 0
and there is no exterior normal to E at b; note that nE is a function with domain Ω.
We let

b(E),

the reduced boundary of E, be equal to the set of points b ∈ Ω such that there is an
exterior normal to E at b.

Theorem 2.1 (see [FE, sect. 4.5.6]). Suppose E is a subset of Ω with locally
finite perimeter. The following statements hold:

(i) b(E) is a Borel set which is countably (Hn−1, n− 1) rectifiable.
(ii) ||∂[E]|| = Hn−1 b(E).
(iii) For Hn−1 almost all b ∈ b(E) we have

∗nE(b) =
−−→
∂[E](b) and Θn−1(||∂[E]||, b) = 1;

here ∗ is the Hodge star operator as defined in [FE, sect. 1.7.8].
(iv) For Hn−1 almost all b ∈ Ω ∼ b(E), Θn−1(||∂[E]||, b) = 0 and

either Θn(Ln E, b) = 0 or Θn(Ln (Ω ∼ E), b) = 0.

It follows that if E is a subset of Ω with locally finite perimeter, then

(2.11) ∂[E](X Vn) = (−1)n−1

∫
X • nE d||∂[E]|| whenever X ∈ X (Ω).

Proposition 2.2. Suppose E is a subset of Ω with finite perimeter and C is a
closed convex subset of Rn. Then

(2.12) M(∂[C ∩ E]) ≤ M(∂[E]).

Proof. Let ρ : Rn → C be such that |x− ρ(x)| = dist (x,C) for x ∈ Rn. In case
spt [E] is compact we infer from (2.6) that [C ∩ E] = ρ#[E] so that, as Lip ρ ≤ 1,
(2.12) holds. In case spt [E] is not compact we let Er = E ∩ Un(0, r), 0 < r < ∞,
and apply the result just obtained together with (2.10) and (2.1).

2.9. Basic facts about functions of bounded variation. Proofs of the fol-
lowing formulae, which are absolutely fundamental for this work, may be found in
[FE, sect. 4.5.9, eq. (13)]. Suppose f ∈ BVloc(Ω); then R � y 	→ ∂[{f ≥ y}](ω) is L1

summable and

(2.13) ∂[f ](ω) =

∫
∂[{f > y}](ω) dL1y whenever ω ∈ Dn−1(Ω);
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moreover, if B is a Borel subset of Ω, then R � y 	→ ||∂[{f > y}||(B) is L1 measurable
and

(2.14) ||∂[f ]||(B) =

∫
||∂[{f > y}]||(B) dL1y.

The following well-known theorem follows from (2.1) and the discussion in [FE,
sect. 4.5.7] concerning locally flat currents of dimension n in Ω.

Theorem 2.2 (compactness theorem). Suppose C is a sequence of nonnegative
real numbers and K is a sequence of compact subsets of Ω such that ∪∞

ν=1Kν = Ω.
Then

∞⋂
ν=1

{
f ∈ BVloc(Ω) :

∫
Kν

|f | dLn + ||∂[f ]||(Kν) ≤ Cν

}
is a compact subset of Lloc

1 (Ω).
Proposition 2.3. Suppose f ∈ BVloc(Ω) and y ∈ R. Then f ∧ y, f ∨ y ∈

BVloc(Ω) and

(2.15) ||∂[f ∧ y]|| + ||∂[f ∨ y]|| = ||∂[f ]||.
Proof. Since f + y = f ∧ y + f ∨ y it is trivial that the right-hand side of (2.15)

does not exceed the left-hand side of (2.15). Using (2.13) one readily shows that

[f ∧ y](ω) =

∫ y

−∞
[{f ≥ z}](ω) dL1z and [f ∨ y](ω) =

∫ ∞

y

[{f > y}](ω) dL1y

whenever ω ∈ Dn(Ω). Applying ∂ one infers

||∂[f ∧ y]|| ≤
∫ y

−∞
||∂[{f > y}]|| dL1y and ||∂[f ∨ y]|| ≤

∫ ∞

y

||∂[{f > y}]|| dL1y.

By (2.14) the sum of the right-hand sides of these inequalities is ||∂[f ]||. Thus the
left-hand side of (2.15) does not exceed the right-hand side.

2.10. The “layer cake” formula. Chan and Esedoḡlu in [CE] call the following
elementary formula the “layer cake” formula; it is indispensable in this work.

Proposition 2.4. Suppose f, g are real valued Lebesgue measurable functions on
Ω. Then

(2.16)

∫
Ω

|f − g| dLn =

∫ ∞

−∞
ΣΩ({f > y}, {g > y}) dL1y.

Proof. Apply Tonelli’s theorem to calculate the Ln × L1 measure of {(x, y) ∈
Ω × R : g(x) < y ≤ f(x)} and {(x, y) ∈ Ω × R : f(x) < y ≤ g(x)} and add the
results.

3. Deformations and variations. We suppose throughout this section that
(i) X : Ω → Rn is continuously differentiable and K = sptX is compact;
(ii) I is an open interval containing 0 such that if t ∈ I and

ht(x) = x+ tX(x) for x ∈ Ω,

then ht carries Ω diffeomorphically (in the C1 sense) onto itself;
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(iii) D is a Lebesgue measurable subset of Ω with locally finite perimeter and

Et = {ht(x) : x ∈ D} for t ∈ I;

(iv) for x ∈ b(D)

P (x) is orthogonal projection of Rn onto {v ∈ Rn : v • nD(x) = 0},

l1(x) = P (x) ◦ ∂X(x) ◦ P (x) and l2(x) = P (x)⊥ ◦ ∂X(x) ◦ P (x).

Note that given X as in (i) there is always I as in (ii).

3.1. Some useful variational formulae.
Proposition 3.1. Suppose

A(t) = ||∂[Et]||(K) for each t ∈ I.

Then A is smooth, and

Ȧ(0) =

∫
a1 d||∂[D]|| and Ä(0) =

∫
a2 d||∂[D]||,

where for x ∈ b(D) we have set

a1(x) = trace l1(x) and a2(x) = a1(x)
2 + trace(l2(x)

∗ ◦ l2(x) − l1(x) ◦ l1(x)).
Proof. It follows from (2.6) that [Et] = ht#[D] and therefore ∂[Et] = ht#∂[D]

for any t ∈ I. Now recall from Theorem 2.1(iii) that ∗nD(x) =
−−→
∂[D](x) for ||∂[D]||

almost all x, differentiate under the integral sign in (2.5), and use the formulae(
d

dt

)j∧
n−1

∂ht(x)(
−−→
∂[D](x))

∣∣∣
t=0

= aj(x), j = 1, 2, x ∈ b(D),

proofs of which may be found in [FE, sect. 5.1.8].
Since [Et] − [D] is compactly supported, ([Et] − [D])(φVn) is well defined in the

following proposition.
Proposition 3.2. For any φ ∈ E(Ω) we have

([Et] − [D])(φVn) =

∫ t

0

(∫
φ(hτ (x))Wτ (x) d||∂[D]||x

)
dL1τ,

where, for each t ∈ I, we have set

Wt(x) =
〈
X(x) ∧

∧
n−1

∂ht(x)(∗nD(x)),En
〉

for x ∈ b(D).

Proof. For each t ∈ I let Jt = [0, t] ∈ D1(R) as in [FE, sect. 4.1.8]. From [FE,
sect. 4.1.8] we have ||Jt×∂[D]|| = ||Jt||×||∂[D]|| for each t ∈ I. From [FE, sect. 4.1.8]
and Theorem 2.1(iii) we have

−−−−−−→
Jt × ∂[D](τ, x) = (1, 0) ∧ −−→

∂[D](x) = (1, 0) ∧ ∗nD(x) for (τ, x) ∈ (0, t) × b(D).

Suppose t ∈ I. We obtain

[Et] − [D] = ht#[D] − [D] = h#(Jt × ∂[D])
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from the homotopy formula of [FE, sect. 4.1.9]; the formula to be proved now follows
from (2.5).

Proposition 3.3. Suppose Ln(D) <∞, ζ ∈ L∞(Ω), and

B(t) =

∫
Et

ζ dLn for t ∈ I.

If ζ is continuous, then B is continuously differentiable and

(3.1) Ḃ(0) =

∫
ζ(X • nD) d||∂[D]||.

If ζ is continuously differentiable, then B is twice continuously differentiable and

(3.2) B̈(0) =

∫ (
ζY + (∇ζ •X)X

) • nD d||∂[D]||,

where for x ∈ b(D) we have set

Y (x) = (trace l1(x))X(x) − l2(x)(X(x)).

Proof. Using straightforward approximations if necessary, we may assume that ζ
is smooth. For each t ∈ I and x ∈ b(D) let

ξt(x) =
∧

n−1
∂ht(x)(∗nD(x)) and Wt(x) = 〈ḣt(x) ∧ ξt(x),En〉.

Suppose x ∈ b(D). Let u1, . . . , un be an orthonormal sequence of vectors in Rn

such that u1 = nD(x) and ∗u1 = u2 ∧ · · · ∧ un; since 〈u1 ∧ ∗u1,E
n〉 = 1 we have

〈w ∧ u2 ∧ · · · ∧ un,En〉 = w • u1〈u1 ∧ ∗u1,E
n〉 = w • u1 for any w ∈ Rn;

see [FE, sect. 1.7.8] for the properties of ∗.
It should now be clear from Proposition 3.2 that (3.1) holds.
Let u1, . . . , un be the sequence of covectors dual to u1, . . . , un and let ω1, . . . , ωn

be those covectors such that ∂X(x) =
∑n

j=1 ωjuj . We have

d

dt
Wt(x)

∣∣
t=0

= X(x) ∧ d

dt
ξt(x)

∣∣
t=0

= X(x) ∧
n∑

i=2

∂X(x)(ui) ∧
(
ui ξ0(x)

)
= X(x) ∧

n∑
i=2

n∑
j=1

〈ui, ωj〉uj ∧
(
ui ξ0(x)

)
= X(x) ∧

n∑
i=1

〈ui, ωi〉ui ∧
(
ui ξ0(x)

)
+X(x) ∧

n∑
i=2

〈ui, ω1〉u1 ∧
(
ui ξ0(x)

)
= ((trace l1(x)X(x) − l2(x)(X(x))) • nD(x))u1 ∧ ∗u1,

so (3.2) holds.
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4. Second fundamental forms and mean curvature. Suppose M is an em-
bedded hypersurface of class C2 in Ω.

The second fundamental form of M is the function Π on M whose value at a ∈M
is a linear map from Nor(M,a) into the symmetric linear maps from Tan(M,a) to
itself characterized by the requirement that if U is an open subset of Rn, a ∈ U ∩M ;
N : U → Rn; N is of class C1; and N(x) ∈ Nor(M,x) whenever x ∈ U ∩M , then

Π(a)(N(a))(v) • w = ∂N(a)(v) • w for v, w ∈ Tan(M,a).

The mean curvature vector of M is, by definition, the function H on M whose
value at a point a of M is that member H(a) of Nor(M,a) whose inner product with
u ∈ Nor(M,a) is the trace of Π(a)(u). In the classical literature the mean curvature
vector is 1/(n − 1) times H as defined here, hence the word “mean.” It turns out
the factor 1/(n− 1) is inconvenient when one is working, as we will be, with the first
variation of area; for this reason we omit it. The direction of the mean curvature
vector, and not just its magnitude, will be important in this work.

If a ∈ M , the length of Π(a) is, by definition, the square root of the sum of the
squares of the eigenvalues of Π(a)(u) whenever u ∈ Nor(M,a) and |u| = 1.

Suppose f : Ω → R is C2; ∇f(x) �= 0 whenever x ∈ Ω; y is in the range of f ; and
M = {f = y}, so M is an embedded hypersurface of class C2 in Ω. It follows that if
a ∈M then

Π(a)(∇f(a))(u) • v = ∂(∇f)(a)(u) • v whenever u, v ∈ Tan(M,a).

Suppose Ω = Rn ∼ {0}, f(x) = |x|2/2 for x ∈ Ω, 0 < R < ∞, and M = {x ∈
Rn : |x| = R}. Then ∇f(x) = x for x ∈ Ω. It follows that if a ∈M then

Π(a)(a)(v) • w =
v • w
|a| whenever v, w ∈ Tan(M,a), H(a) =

n− 1

R2
a

and the length Π(a) equals the square root of (n− 1)/R2.

5. The spaces Bλ(Ω) and Cλ(Ω), 0 ≤ λ < ∞. We suppose throughout this
section that 0 ≤ λ <∞, and we study the spaces Bλ(Ω) and Cλ(Ω).

5.1. Basic results on Bλ(Ω) and Cλ(Ω). In what follows we will frequently
make use of the following simple observation. Suppose f, g ∈ Lloc

1 (Ω), K is a compact
subset of Ω, g ∈ k(f,K), and y ∈ R. Then

(5.1) {g > y} ∈ k({f > y}).

Moreover, ≥ may be replaced by any of ≤, >, and <.
Remark 5.1. It is an elementary corollary of Theorem 5.1 below that if D is an

open subset of Ω with smooth boundary M and D ∈ Cλ(Ω), then the length of the
mean curvature vector of M does not exceed λ. The converse of this statement is
false as one sees in case λ = 0 by considering a set whose boundary is an unstable
minimal surface.

However, if f : Ω → R is smooth with nowhere vanishing gradient and, for each
y in the range of f , the length of the mean curvature vector of {f = y} never exceeds
λ, then a simple calibration argument shows that f ∈ Bλ(Ω).

Lemma 5.1. Suppose f ∈ Bλ(Ω), g ∈ BVloc(Ω), K is a compact subset of Ω,
u(x) = dist (x,K) for x ∈ Ω, 0 < h < ∞, and {u ≤ h} is a compact subset of Ω.
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Then

||∂[f ]||(K) ≤ ||∂[g]||({u ≤ h}) +

(
λ+

1

h

)∫
{u≤h}

|f − g| dLn.

In particular,

||∂[f ]||(K) ≤
(
λ+

1

h

)∫
{u≤h}

|f − y| dLn for y ∈ R.

Proof. For each r ∈ (0, h) let hr = g1{u≤r} + f1{u>r}. Then hr ∈ k(f, {u ≤ r})
and f − hr = (f − g)1{u≤r}, so

||∂[f ]||({u ≤ r}) ≤ ||∂[hr]||({u ≤ r}) + λ

∫
{u≤r}

|f − g|.

Now integrate this inequality from 0 to h and make use of (2.10) to prove the first
inequality; to obtain the second, set g(x) = y for x ∈ Ω.

Theorem 5.1. Suppose λ ∈ [0,∞), f ∈ Bλ(Ω), and y ∈ R. Then

{f + y, yf, f ∧ y, f ∨ y} ⊂ Bλ(Ω).

Proof. Suppose K is a compact subset of Ω. Obviously, 0f = 0 ∈ Bλ(Ω). Suppose
y ∈ R ∼ {0} and g ∈ k(yf,K). Then g/y ∈ k(f,K), so

||∂[yf ]||(K) = |y|||∂[f ]||(K)

≤ |y|
(
||∂[g/y]||(K) + λ

∫
Ω

|f − g/y| dLn

)
= ||∂[g]||(K) + λ

∫
Ω

|yf − g| dLn.

Thus yf ∈ Bλ(Ω).
Suppose g ∈ k(f + y,K). Then g − y ∈ k(f,K), so

||∂[f + y]||(K) = ||∂[f ]||(K)

≤ ||∂[g − y]||(K) + λ

∫
Ω

|f − (g − y)| dLn

= ||∂[g]||(K) + λ

∫
Ω

|(f + y) − g| dLn,

and thus f + y ∈ Bλ(Ω).
Suppose g ∈ k(f∧y,K). Let h = g+(f∨y)−y. Then f−h = f+y−(f∨y)−g =

f ∧ y − g, so h ∈ k(f,K). Using Proposition 2.3 we estimate

||∂[f ∧ y]||(K) + ||∂[f ∨ y]||(K)

= ||∂[f ]||(K)

≤ ||∂[h]||(K) + λ

∫
K

|f − h| dLn

≤ ||∂[g]||(K) + ||∂[f ∨ y]||(K) + λ

∫
K

|f ∧ y − g| dLn
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and conclude that f ∧ y ∈ Bλ(Ω).
Finally, f ∨ y = − ((−f) ∧ (−y)) ∈ Bλ(Ω).
Theorem 5.2. Suppose λ ∈ [0,∞), f is a sequence in Bλ(Ω), F ∈ Lloc

1 (Ω), and
fν → F in Lloc

1 (Ω). Then F ∈ Bλ(Ω) and

||∂[fν ]|| → ||∂[F ]|| weakly as ν → ∞.

Proof. Let K be a compact subset of Ω, let u(x) = dist (x,K) for x ∈ Ω, and let
R = sup{r ∈ (0,∞) : {u ≤ r} ⊂ Ω}.

Suppose h ∈ (0, R) and for each positive integer ν let yν be the average of fν on
{u ≤ h}. Let Y be the average value of F on {u ≤ h}. From Lemma 5.1 we obtain

||∂[fν ]||(K) ≤
(
λ+

1

h

)∫
{u≤h}

|fν − yν | dLn →
(
λ+

1

h

)∫
{u≤h}

|F − Y | dLn

as ν → ∞. Since K is arbitrary we infer from (2.1) that F ∈ BVloc(Ω).
For any r ∈ (0, R) we infer from Lemma 5.1 that

||∂[fν ]||(K) ≤ ||∂[F ]||({u ≤ r}) +

(
λ+

1

h

)∫
{u≤h}

|fν − F | dLn

for any positive integer ν. Keeping in mind (2.1) we conclude that ||∂[fν ]|| converges
weakly to ||∂[F ]|| as ν → ∞.

We now show that F ∈ Bλ(Ω). To this end, let G ∈ BVloc(Ω) ∩ k(F,K). For
each positive integer ν and each ρ ∈ (0, R) we let

gν,ρ = G {u ≤ ρ} + fν {u > ρ},
we note that gν,ρ ∈ k(fν , {u ≤ ρ}) and fν − gν,ρ = (fν −G)1{u≤ρ}, and we conclude
that

||∂[fν ]||({u ≤ ρ}) ≤ ||∂[gν,ρ||({u ≤ ρ}) + λ

∫
{u≤ρ}

|G− fν | dLn.

Suppose 0 < r < R and ν is a positive integer. Keeping in mind that G−fν = F −fν
at Ln almost all points of Ω ∼ K, we integrate this inequality from 0 to r and use
(2.10) to obtain

r||∂[fν ]||(K) ≤
∫ r

0

||∂[fν ]||({u ≤ ρ}) dL1ρ

≤
∫
{0<u<r}

|F − fν | dLn + r||∂[G]||({u ≤ r})

+ λr

∫
{u≤r}

|G− fν | dLn.

Letting ν → ∞ we find that

lim sup
ν→∞

||∂[fν ]||(K) ≤ ||∂[G]||({u ≤ r}) + λ

∫
{u≤r}

|G− F | dLn.

Letting r ↓ 0 we infer that

||∂[F ]||(K) ≤ ||∂[G]||(K) + λ

∫
K

|G− F | dLn,

as desired.
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Theorem 5.3. The following statements hold:
(i) If f ∈ Bλ(Ω) and y ∈ R, then {f > y} ∈ Cλ(Ω).
(ii) If f ∈ BVloc(Ω), D = {y ∈ R : {f > y} ∈ Cλ(Ω)}, and D is dense in R, then

f ∈ Bλ(Ω).
(iii) If E is a nonempty nested subfamily of Cλ(Ω), then ∪E and ∩E belong to

Cλ(Ω).
(iv) E ∈ Cλ(Ω) if and only if 1E ∈ Bλ(Ω) whenever E ⊂ Ω.
Proof. We begin with a lemma.
Lemma 5.2. Suppose f ∈ BVloc(Ω), D = {y ∈ R : {f > y} ∈ Cλ(Ω)}, and

L1(R ∼ D) = 0. Then f ∈ Bλ(Ω).
Proof. Suppose K is a compact subset of Ω and g ∈ BVloc(Ω)∩k(f,K). Keeping

in mind (5.1) we infer from (2.14) and (2.16) that

||∂[f ]||(K) =

∫ ∞

−∞
||∂[1{f>y}]||(K) dL1y

≤
∫ ∞

−∞

(
||∂[1{g>y}]||(K) + λ

∫
|1{f>y} − 1{g>y}| dLn

)
dL1y

= ||∂[g]||(K) + λ

∫
|f − g| dLn.

Suppose E ∈ Cλ(Ω). Evidently, {1E > y} ∈ Cλ(Ω) for all y ∈ R so, by the lemma,
1E ∈ Bλ(Ω). It being trivial that {E : 1E ∈ Bλ(Ω)} is a subset of Cλ(Ω), we find that
(iv) holds.

Suppose E is a nonempty nested subfamily of Cλ(Ω). Choose a nondecreasing
sequence A and a nonincreasing sequence B in E such that 1Aν → 1∪E and 1Bν

→ 1∩E
in Lloc

1 (Ω), as ν → ∞. From Theorem 5.2 we infer that the indicator functions of ∪E
and ∩E belong to Bλ(Ω), so (iii) now follows from (iv).

Suppose f and D are as in (ii). Since D is dense in R we have for any y ∈ R that

{f > y} = ∪z∈(y,∞)∩D{f > z},
so {f > y} ∈ Cλ(Ω) by (iii). The lemma now implies (ii).

Finally, suppose f ∈ Bλ(Ω) and y ∈ R. For each positive integer ν let

gν = ν

((
(f − y) ∧ 1

ν

)
∨ 0

)
and note that gν ∈ Bλ(Ω) by Theorem 5.1. One readily verifies that gν ↑ 1{f>y} as
ν ↑ ∞ so that, by Theorem 5.2, 1{f>y} ∈ Bλ(Ω), so {f > y} ∈ Cλ(Ω) by (iv), and
thus (i) holds.

5.2. Generalized mean curvature.
Proposition 5.1. Suppose λ ∈ [0,∞), D ∈ Cλ(Ω), and X ∈ X (Ω). Then∫

traceP (x) ◦ ∂X(x) ◦ P (x) d||∂[D]||x ≤ λ

∫
|X| d||∂[D]||,

where, for each x ∈ b(D), we have let P (x) be an orthogonal projection of Rn onto
{v ∈ Rn : v • nD(x) = 0}.

Remark 5.2. We restate this theorem in the language of [AW1]. Let V be the
(n− 1)-dimensional varifold in Ω naturally associated to ∂[D] as in [AW1, sect. 3.5];
the preceding theorem says that

||δV || ≤ λ||V ||,
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where δV is as in [AW1, sect. 4.2].

Proof. Let us adopt the notation of section 3. In particular, A(t) = ||∂[Et]||(K)
for t ∈ I. For any positive t ∈ I we infer from Proposition 3.2 that

A(t) −A(0)

t
≤ λ

t
||[Et] − [D]||(K) ≤ 1

t
λ

∫ t

0

(∫
|X|||∂ḣτ (x)||n−1 d||∂[D]||x

)
dL1τ.

The estimate to be proved now follows from Proposition 3.1.

5.3. Consequences of the monotonicity theorem.

Theorem 5.4. Suppose λ ∈ [0,∞), D ∈ Cλ(Ω), a ∈ Ω, and R = dist (a,Rn ∼
Ω). Then

(i) (0, R) � r 	→ eλrΘn−1(||∂[D]||, a, r) is nondecreasing;
(ii) Θn−1(||∂[D]||, a) exists and depends uppersemicontinuously on a;
(iii) Θn−1(||∂[D]||, a) ≥ 1 if a ∈ spt ∂[D];

if a ∈ spt [D], we have

(iv) e−λrα(n− 1)rn−1 ≤ ||∂[D]||(Un(a, r)) whenever 0 < r < R;

(v) e−λr α(n−1)
n rn ≤ (1 + λr)Ln(D ∩ Un(a, r)) whenever 0 < r < R.

Proof. In view of Remark 5.2, (i) follows from the monotonicity theorem of [AW1,
sect. 5.1]. (i) clearly implies (ii). (iii) is a consequence of Theorem 2.1(ii) and (iii).
(iv) follows directly from (i) and (iii).

Suppose 0 < r < R. For each ρ ∈ (0, r) let Eρ = D ∩ {u > ρ}, where we have set
u(x) = |x− a| for x ∈ Ω and note that Eρ ∈ k(E, {u ≤ ρ}), so

e−λrα(n− 1)ρn−1 ≤ e−λρα(n− 1)ρn−1

≤ ||∂[D]||({u ≤ ρ})
≤ ||∂[Eρ]||({u ≤ ρ}) + λΣΩ(Eρ, D).

Now integrate this inequality over (0, r) and make use of (2.10), with f and g there
equal to 1E and 0, respectively.

Remark 5.3. It follows from (iv) that if Ω = Rn and Ln(D) <∞, then spt [D] is
compact.

Corollary 5.1. Suppose 0 < R <∞, 0 < r <∞, a ∈ Ω, R+ r ≤ dist (a,Rn ∼
Ω), f ∈ Bλ(Ω), and

Y = {y ∈ R : ||∂[{f > y}]||(Un(a,R)) > 0}.

Then

L1(Y )e−λrα(n− 1)rn−1 ≤ ||∂[f ]||(Un(a,R+ r))

and

L1(Y )e−λrα(n− 1)

n
rn ≤ (1 + λr)

∫
Un(a,R+r)

|f | dLn.

Proof. For each y ∈ Y ∼ {0} we apply Theorem 5.4 with D there equal to {f > y}
to a ball of radius r with center at a point b, where Θn−1(||∂[{f > y}]||, b) = 1.
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5.4. Proof of the regularity theorem for Cλ(Ω). In view of the regularity
theorem of [AW1, sect. 8] the present regularity theorem, Theorem 1.2, will follow
from the following lemma.

Lemma 5.3. Suppose

1 < ζ <∞.

There exists η ∈ (0, 1) such that if 0 ≤ λ <∞, a ∈ Rn, 0 < R <∞,

λR ≤ η, E ∈ Cλ(Un(a,R)), and a ∈ spt ∂[E],

then

Θn−1(||∂[E]||, a, ηR) ≤ ζ.

Proof. Due to the way the various entities in the lemma change under application
of homotheties and translations, we find that we may assume without loss of generality
that a = 0 and R = 1.

Suppose the lemma were false. Then there would exist ζ ∈ (1,∞); a sequence η
in (0, 1) with limit zero; and sequences E, λ such that, for each positive integer ν,

λν ≤ ην , Eν ∈ Cλν
(Un(0, 1)), and 0 ∈ spt ∂[Eν ]

but such that

(5.2) Θn−1(||∂[Eν ]||, 0, ην) > ζ.

From the monotonicity theorem we have

(5.3) (0, 1) � t 	→ eλνtΘn−1(||∂[Eν ]||, 0, t) is nondecreasing

for each positive integer ν.
Replacing E by a subsequence if necessary we may use Theorems 2.2 and 5.2 to ob-

tain a Lebesgue measurable subset F of Un(0, 1) such that Eν → F in Lloc
1 (Un(0, 1))

as ν → ∞,

(5.4) F ∈
∞⋂
ν=1

Cλν (Un(0, 1)) = C0(U
n(0, 1)),

and

(5.5) ||∂[Eν ]|| → ||∂[F ]|| weakly as ν → ∞.

Letting B equal the set of t ∈ (0, 1) such that ||∂[F ]||({x ∈ Rn : |x| = t}) is positive
we observed that B is countable and infer from (5.5) and (2.1) that

lim
ν→∞Θn−1(||∂[Eν ], 0, t) = Θn−1(||∂[F ], 0, t) for any t ∈ (0, 1) ∼ B.

This together with (5.2), Theorem 5.4, and the fact that λν → 0 as ν → ∞ implies

(5.6) Θn−1(||∂[F ]||, 0, t) ≥ ζ whenever t ∈ (0, 1) ∼ B.

As F ∈ C0(U
n(0, 1)) we find that ∂[F ] is an absolutely area minimizing integral

current of dimension n− 1 in Un(0, 1). As Theorem 2.1 implies that

Θn−1(||∂[F ]||, x) = 1 for ||∂[F ]|| almost all x

it follows from the regularity theorem of [FE, sect. 5.4.15] that ∂[F ] is integration
over an oriented (n− 1)-dimensional real analytic hypersurface M of Un(0, 1). Con-
sequently, Θn−1(||∂[F ]||, 0) = 1, which is incompatible with (5.6).
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5.4.1. The case n = 2. One can do a little better than the preceding theorem if
n = 2, as follows. Let w(m) =

√
1 +m2 for m ∈ R. Suppose V and W are nonempty

open intervals, g : V →W is continuously differentiable, 0 ≤ λ <∞, and

D = {(v, w) ∈ V ×W : w < g(v)} ∈ Cλ(V ×W ).

We will show that

(5.7) Lip(w′ ◦ g′) ≤ λ.

Note that if g is twice differentiable, then (w′ ◦ g′)′ is the curvature function of the
graph of g.

We prove (5.7) as follows. Suppose φ ∈ D(V ) and for each t ∈ R let gt = g + tφ.
Let I be an open interval containing 0 such that if t ∈ I, then gt(v) ∈ W whenever
v ∈ V . Let Et = {(v, w) ∈ V ×W : w < gt(v)} for t ∈ I. We have

(||∂[D]|| − ||∂[Et]||)(V ×W ) ≤ λΣV×W (D,Et).

Now

lim
t↓0

1

t
(||∂[D]|| − ||∂[Et]||)(V ×W ) = −

∫
I

d

dt
w(g′ + tφ′)

∣∣
t=0

dL1 = −
∫
I

(w′ ◦ g′)φ′ dL1

and

lim
t↓0

1

t
ΣV×W (D,Et) =

∫
V

|φ| dL1.

To obtain (5.7) we let φ approximate plus or minus one times the indicator function
of a compact subinterval of V .

6. Locality. Suppose M and μ are as in Proposition 1.3.

6.1. Proof of Proposition 1.3. If M has a representation as in (1.2) where m
is a bounded Borel function, it is trivial that M is local.

Suppose M is local. Then ||μ||L∞(Ω) ≤ l(M), which implies there is a unique
Radon measure on Ω whose restriction to M(Ω) equals M̂ . That (1.2) holds with
m = μ follows from the theory of symmetrical derivation; see, for example, [FE,
sect. 2.9].

6.2. Proof of Proposition 1.4. If F has a representation as in (1.3) where k
satisfies (i) and (ii) of Proposition 1.4, it is trivial that M is local, and it follows from
the theory of symmetrical derivation that for 0 < y < ∞ we have k(x, y) = κ(x, y)
for Ln almost all x ∈ Ω.

Suppose F is local. For any y ∈ (0,∞) we have that M(Ω) � E 	→ F̂ (y1E) is
local so that, by Proposition 1.3,

F̂ (y1E) =

∫
E

κ(x, y) dLnx for E ∈ M(Ω).

Given f ∈ F(Ω) and 0 = y0 < y1 < y2 < · · · < yN < ∞ we infer from the locality of
F that

F̂

(
N∑
i=1

yi1{yi−1<f≤yi}

)
=

N∑
i=1

F̂
(
yi1{yi−1<f≤yi}

)
=

N∑
i=1

∫
{yi−1<f≤yi}

κ(x, yi) dLnx,

from which the representation for F (f) in (1.3) easily follows using the admissibility
of F , and (i) and (ii) of Proposition 1.4 hold with k = κ.
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6.3. Proof of Proposition 1.5. (i), (ii), and (iii) are immediate.
For any x ∈ Ω we have that (0,∞) � y 	→ κ(x, y) is absolutely continuous so that

κ(x, f(x)) =

∫ f(x)

0

u(x, z) dL1z =

∫ ∞

0

u(x, z)1{f≥z}(x) dL1z.

Integrating this equation over Ω and invoking Fubini’s theorem, we infer that

(6.1)

∫
Ω

κ(x, f(x)) dLnx =

∫ ∞

0

(∫
{f≥z}

u(x, z) dLnx

)
dL1z.

For each E ∈ M(Ω) let ζ(E) be the set of y ∈ (0,∞) such that

Uy(E) =

∫
E

u(x, y) dLnx.

Since (0,∞) � y 	→ F̂ (y1E) is absolutely continuous we find that

F̂ (y1E) =

∫ y

0

Uy(E) dL1y whenever y ∈ (0,∞).

Now assume F is local. Applying Proposition 1.4 together with (6.1) with f equal
to y1E , we find that∫ y

0

(∫
E

u(x, z) dLnx

)
dL1z =

∫ y

0

Uz(E) dL1z for y ∈ (0,∞),

which implies that L1((0,∞) ∼ ζ(E)) = 0. Let E be a countable subfamily of M(Ω)
which is dense with respect to ΣΩ(·, ·) and let Z = ∩{ζ(E) : E ∈ E}. Since M(Ω) �
E 	→ Uy(E) and M(Ω) � E 	→ ∫

E
u(x, y) dLnx are Lipschitzian with respect to

ΣΩ(·, ·), we find that

(6.2) Uy(E) =

∫
E

u(x, y) dLnx whenever y ∈ Z and E ∈ M(Ω).

Since L1((0,∞) ∼ Z) = 0 we find that (iv) of Proposition 1.5 holds.
Suppose f ∈ F(Ω). Use (1.3) with k = κ to represent F (f). (v) now follows from

(6.1) and (6.2).

6.4. Proof of Proposition 1.6. That (i) implies (ii) is immediate. That (ii)
implies (iii) is a direct consequence of the subadditivity of lim sup. That (iii) implies
(i) follows directly from (v) of Proposition 1.5. Thus (i), (ii), and (iii) are equivalent.

We leave the proof of the following elementary lemma to the reader.
Lemma 6.1. Suppose g : R → R, g is absolutely continuous, and

h(y) = lim inf
z→y

g(z) − g(y)

z − y
for y ∈ R.

Then g is convex if and only if h is nondecreasing. Moreover, if g is convex, then
h is right continuous.

The lemma implies that (iii) and (v) are equivalent. Since the admissibility of F
implies that R � y 	→ F̂ (yE) is locally Lipschitzian for any E ∈ M(Ω), the lemma
implies that (ii) and (iv) are equivalent.

The final assertion follows from the right continuity assertion of the lemma.
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6.5. The class G(Ω). Let

p : Ω × (0,∞) → Ω and q : Ω × (0,∞) → (0,∞)

carry (x, y) ∈ Ω × (0,∞) to x and y, respectively.
Whenever G is an Ln × L1 measurable subset of Ω × (0,∞) we let

[G] ∈ Dn+1(Ω × (0,∞))

be as in (2.2), with Vn there replaced by (p#Vn) ∧ dq; that is,

[G](ψ(p#Vn) ∧ dq) =

∫
G

ψ d(Ln × L1) whenever ψ ∈ D(Ω × (0,∞)).

Definition 6.1. We let

G(Ω)

be the family of Lebesgue measurable subsets G of Ω × (0,∞) such that

(Ln × L1)(G) <∞ and q[spt [G]] is bounded.

Note that if G ∈ G(Ω), then for L1 almost all y ∈ (0,∞) we have {x : (x, y) ∈
G} ∈ M(Ω).

Definition 6.2. Whenever G ∈ G(Ω) we let

G↓ : Ω → R

be such that

G↓(x) =

{
L1({y : (x, y) ∈ G}) if {y : (x, y) ∈ G} ∈ M((0,∞)),

0 otherwise.

Note that G↓ ∈ F(Ω) and
∫
Ω
G↓ dLn = (Ln × L1)(G).

Definition 6.3. Whenever f : Ω → [0,∞) we let

f↑ = {(x, y) ∈ Ω × (0,∞) : f(x) > y}.

Suppose f : Ω → [0,∞). Evidently,

f ∈ F(Ω) ⇔ f↑ ∈ G(Ω).

Tonelli’s theorem implies that

[(f↑)↓] = [f ] whenever f ∈ F(Ω).

Proposition 6.1. Suppose G ∈ G(Ω), φ ∈ D(Ω), and Ψ ∈ E((0,∞)). Then

p# (∂[G] Ψ ◦ q) (φVn)

= (−1)n[G]
(
p#(φVn) ∧ (Ψ′ ◦ q)dq)

= (−1)n
∫

Ω

φ(x)

(∫
{y:(x,y)∈G}

Ψ′ dL1

)
dLnx.

(6.3)
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Proof. The first equation follows from the fact that

d((Ψ ◦ q) ∧ p#(φVn)) = (Ψ′ ◦ q)dq ∧ p#(φVn),

and the second follows from Fubini’s theorem.
Corollary 6.1. Suppose G ∈ G(Ω). Then

[G↓] = (−1)np# ((∂[G]) q) and ∂[G↓] = (−1)n+1p#((∂[G]) dq).

Proof. Letting Ψ(y) = y for y ∈ R in the preceding proposition we deduce the
first equation; the second equation is an immediate consequence of the first.

Proposition 6.2. Suppose G ∈ G(Ω) and ∂[G] is representable by integration.
Then

||∂[G↓]||(B) ≤
∫ ∞

0

||∂[{x : (x, y) ∈ G}]||(B) dL1y for any Borel subset B of Ω.

Proof. Suppose U is an open subset of Ω, ω ∈ Dn−1(Ω), sptω ⊂ U , and |ω| ≤ 1.
For each y ∈ (0,∞) let iy(x) = (x, y) for x ∈ Ω. From [FE, sect. 4.3.8] we have

〈[G], q, y〉 = iy#[{x : (x, y) ∈ G}] for L1 almost all y.

From Corollary 6.1, (2.8), and (2.7) we find that

(−1)n+1∂[G↓](ω)| = ((∂[G]) dq)(p#ω)

=

∫ ∞

0

〈∂[G], q, y〉(p#ω) dL1y

= −
∫ ∞

0

∂[{x : (x, y) ∈ G}](ω) dL1y

≤
∫ ∞

0

||∂[{x : (x, y) ∈ G}]||(U) dL1y,

from which the inequality to be proved immediately follows.

6.6. Proof of Theorems 1.3 and 1.4. We now assume F : F(Ω) → R, F is
local, and F is convex. In order to prove the fundamental theorems, Theorems 1.3
and 1.4, we will use F to define a functional F ↑ on subsets of Ω × R, which will be
very useful in analyzing nloc

ε (F ). This is one of the main new ideas of the paper.
We leave to the reader the elementary proof of the following proposition.
Proposition 6.3. Suppose G ∈ G(Ω). Then

(0,∞) � y 	→ Uy({x : (x, y) ∈ G}) is L1 summable.

Definition 6.4. Let

F ↑ : G(Ω) → R

be such that

F ↑(G) = F (0) +

∫ ∞

0

Uy({x : (x, y) ∈ G}) dL1y whenever G ∈ G(Ω).

We have a useful comparison principle.
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Theorem 6.1. We have

F (G↓) ≤ F ↑(G) whenever G ∈ G(Ω).

Proof. As we shall see, the theorem will follow rather directly from the following
lemma.

Lemma 6.2. Suppose a ∈ Ω and E ∈ M((0,∞)). Then

κ(a,L1(E)) ≤
∫
E

u(a, y) dL1y.

Proof. Suppose φ ∈ D((0,∞)) and 0 ≤ φ ≤ 1. Let Φ ∈ E((0,∞)) be such that
Φ′ = φ and limy↓0 Φ(y) = 0. Then

(6.4) 0 ≤ Φ(y) ≤ y if 0 < y <∞.

Thus, as (0,∞) � y 	→ κ(a, y) is absolutely continuous and (0,∞) � y 	→ u(a, y) is
nondecreasing, we have

κ(a,Φ(y)) =

∫ y

0

u(a,Φ(y))φ(y) dL1y ≤
∫ y

0

u(a, y)φ(y) dL1y for 0 < y <∞.

We complete the proof by letting φ approximate the indicator function of E.
From the lemma we infer that

κ(x,G↓(x)) ≤
∫
{y:(x,y)∈G}

u(x, y) dL1y for Ln almost all x ∈ Ω.

Integrating this inequality over Ω we use (iv) and (v) of Proposition 1.5 to obtain

F (G↓) − F (0) ≤
∫ ∞

0

Uy({x : (x, y) ∈ G}) dL1y = F ↑(G) − F (0),

as desired.

6.7. Proof of Theorem 1.3. We may assume without loss of generality that
F = F̂ . For each y ∈ (0,∞) we let Dy = {f > y}.

Suppose 0 < b <∞, K is a compact subset of Ω, and E ∈ k(Db,K). We need to
show that

(6.5) ε||∂[Db]||(K) + Ub(Db) ≤ ε||∂[E]||(K) + Ub(E).

Let u(x) = dist (x,K) for x ∈ Ω and let R be the supremum of the set of
r ∈ (0,∞) such that {v ≤ r} ⊂ Ω. For each (y, r) ∈ (0,∞) × (0, R) let

Cy,r = (E ∩ {v ≤ r}) ∪ (Dy ∩ {v > r}) ∈ M(Ω),

a(y, r) = ε||∂[Dy]||({v ≤ r}) + Uy(Dy),

b(y, r) = ε||∂[Cr,y]||({v ≤ r}) + Uy(Cr,y).

Let

W = {(y, r) ∈ (0,∞) × (0, R) : a(y, r) ≤ b(y, r)}.
Lemma 6.3. For L1 almost all y ∈ (0,∞) we have

a(y, r) ≤ b(y, r)} for L1 almost all r ∈ (0, R).
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Proof. Suppose r ∈ (0, R), B is a Borel subset of (0,∞), and

G = {(x, y) ∈ Ω × ((0,∞) ∼ B) : x ∈ Dy} ∪ {(x, y) ∈ Ω ×B : x ∈ Cy,r}.
Evidently, G↓(x) = f(x) for Ln almost all x ∈ {v > r}, from which it follows that

ε||∂[f ]||({v ≤ r}) + F (f) ≤ ε||∂[G↓]||({v ≤ r}) + F (G↓).

Let

P =

∫
(0,∞)∼B

||∂[Dy]||({v ≤ r}) dL1y and Q =

∫
(0,∞)∼B

Uy(Dy) dL1y.

We have

||∂[f ]||({v ≤ r}) = P+

∫
B

||∂[Dy||({v ≤ r}) dL1y and F (f) = Q+

∫
B

Uy(Dy) dL1y.

From Corollary 6.1 and Proposition 6.2 we obtain

||∂[G↓]||({v ≤ r}) ≤ ||∂[G] dq||({v ≤ r} × (0,∞))

=

∫
||∂[{x : (x, y) ∈ G}]||({v ≤ r}) dL1y

= P +

∫
B

||∂[Cy,r]||({v ≤ r}).

From (6.1) we obtain

F (G↓) ≤ F ↑(G) = Q+

∫
B

Uy(Cr,y) dL1y,

which implies ∫
B

a(y, r) dL1y ≤
∫
B

b(y, r) dL1y.

Owing to the arbitrariness of B we infer that a(y, r) ≤ b(y, r) for L1 almost all
y ∈ (0,∞), so the lemma follows from Tonelli’s theorem.

We have (Dy ∼ Db) ∪ (Db ∼ Dy) = {b < f ≤ y} whenever b < y <∞, so that

(6.6) lim
y↓b

ΣΩ(Dy, Db) = 0.

This implies that

(6.7) lim
y↓b

ΣΩ∼K(Dy, E) = lim
y↓b

ΣΩ∼K(Dy, Db) = 0.

By Proposition 1.5(iv) we have

|Uy(Dy) − Ub(Db)| ≤ |Uy(Dy) − Uy(Db)| + |Ub(Dy) − Ub(Db)|
≤ l(F, Y )ΣΩ(Dy, Db) + |Ub(Dy) − Ub(Db)|

as well as

(6.8) |Uy(Cy,r) − Uy(E)| ≤ l(F, Y )Σ{u>r}(Dy, E) ≤ l(F, Y )ΣΩ∼K(Dy, Db)
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whenever 0 < y < Y <∞. With the help of (6.6) and Proposition 1.6 we infer that

(6.9) lim
y↓b

Uy(Dy) = Ub(Db).

Suppose 0 < r < R. Since (6.6) and (2.1) imply that

||∂[Db]||(K) ≤ lim inf
y↓b

||∂[Dy]||({u ≤ ρ}) for 0 < ρ < R,

we infer from (6.9) that

(6.10) r (||∂[Db]||(K) + Ub(Db)) ≤ lim inf
y↓b

∫ r

0

a(y, ρ) dL1ρ.

Applying (2.10), with f there equal to 1Dy
and g there equal to 1E , and using

(6.6), (6.7), (6.8), and (6.9), we find that

∫ r

0

b(y, ρ) dL1ρ ≤ Σ{u>r}(Dy, E) +

∫ r

0

||∂[E]||({u ≤ ρ}) dL1ρ+

∫ r

0

Uy(Cy,ρ) dL1ρ

→
∫ r

0

||∂[E]||({u ≤ ρ}) + Ub(E) dL1ρ as y ↓ b.

(6.11)

Using Lemma 6.2 and Tonelli’s theorem we may choose a sequence y in (b,∞)
with limit b such that

L1({r ∈ (0, R) : (yν , r) �∈W}) = 0 for ν = 1, 2, 3, . . . .

Thus ∫ r

0

a(yν , ρ) dL1ρ ≤
∫ r

0

b(yν , ρ) dL1ρ,

so (6.10) and (6.11) imply

r (||∂[Db]||(K) + Ub(Db)) ≤
∫ r

0

||∂[E]||({u ≤ ρ}) + Ub(E) dL1ρ;

dividing by r and letting r ↓ 0 we obtain (6.5).
We leave it to the reader to modify the proof just given in a straightforward way

to show that {f ≥ b} ∈ nloc
ε (Lb).

6.8. Proof of Theorem 1.4. Let K be a compact subset of Ω and let g ∈ F(Ω)
such that spt [G↓ − g] ⊂ K.

Suppose y ∈ (0,∞). Since G↓(x) = g(x) for Ln almost all x ∈ Ω ∼ K we find
that

spt [{G↓ > y}] − [{g > y}] ⊂ K,

so that if {x : (x, y) ∈ G} ∈ nloc
ε (Uy), we have

||∂[{G↓ > y}]||(K) + Uy({G↓ > y}) ≤ ||∂[{g > y}]||(K) + Uy({g > y}).
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Integrating over y ∈ (0,∞) with respect to L1 and using Proposition 6.2, Theorem
6.1, (2.6), and Proposition 1.5(v), we find that

||∂[G↓]||(K) + F (G↓)

≤
∫ ∞

0

||∂[{G↓ > y}]||(K) dL1y + F ↑(G)

=

∫ ∞

0

||∂[{G↓ > y}]||(K) + Uy({G↓ > y}) dL1y

≤
∫ ∞

0

||∂[{g > y}]||(K) + Uy({g > y}) dL1y

= ||∂[g]||(K) + F (g).

It remains to deal with (1.6). For each E ∈ M(Ω) let C(E) be the set of y ∈ (0,∞)
such that Ly(E) �= Uy(E). Since (0,∞) �	→ F (y1E) is convex we find that C(E) is
countable. Now choose a countable subfamily E of M(Ω) which is dense with respect
to the pseudometric ΣΩ(·, ·). By a straightforward approximation argument, which
we leave to the reader, we find that Ly(D) = Uy(D) whenever D ∈ M(Ω) and
y �∈ ∪{C(E) : E ∈ E}.

7. Proof of Theorem 1.6. Theorem 1.6 will be proved by calculating the ap-
propriate first and second variations, invoking the regularity theorem for Cλ(Ω), and
then utilizing higher regularity results for the minimal surface equation.

For each x ∈ b(D) we let P (x) equal the orthogonal projection of Rn onto {v ∈
Rn : v • nD(x) = 0}.

We may assume without loss of generality that U = Ω. It follows from Proposition
1.2 and Theorem 1.2 that ΣΩ(D,Γ) = 0, so [D] = [Γ].

Part 1. Suppose a ∈M . From Proposition 1.2 and Theorem 1.2 there are Ψ, V, r, g
such that Ψ carries Rn−1 ×R isometrically onto Rn, Ψ(0, 0) = a, V is an open subset
of Rn−1, 0 ∈ V , 0 < r <∞, g : V → (−r, r) is of class C1,μ, Ψ[V × (−r, r)] ⊂ Ω, and

Γ ∩ Ψ[V × (−r, r)] = Ψ[{(v, w) ∈ V × (−r, r) : w < g(v)}].

Suppose φ ∈ D(V ). Choose an open interval I such that 0 ∈ I and g(v) + tφ(v) ∈
(−r, r) whenever (v, t) ∈ V × I. For each t ∈ I let

Φ(t) = ε

∫
V

√
1 + |∇(g + tφ)|2 dLn−1 +

∫
V

(∫ (g+tφ)(v)

−r

ζ(Ψ(v, w)) dL1w

)
dLn−1v.

Then Φ(0) ≤ Φ(t) whenever t ∈ I since D ∈ nloc
ε (Z). Thus

0 = Φ′(0) = ε

∫
V

∇g • ∇φ√
1 + |∇g|2 dL

n +

∫
V

ζ(Ψ(v, g(v))φ(v) dLn.

That is, g is a weak solution of

−εdiv J−1∇g + ζ ◦ Ψ ◦G = 0,

where we have set J =
√

1 + |∇g|2 and G(v) = (v, g(v)) for v ∈ V .
Inasmuch as ∂g is Hölder continuous, standard results on regularity of weak so-

lutions of elliptic equations, as found, for example, in [GT, sect. 8.3], imply that g is
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of class Ck+2,μ. Since a is an arbitrary point of M we conclude that M is of class
Ck+2,μ, so M has a second fundamental form. Since H(a) • nΓ(a) = −div J−1∇g(0)
we find that (1.7) holds.

Part 2. We now suppose ζ is continuously differentiable. Let Π, Q,H be as in
section 4.

Since M is of class C2 by Part 1 there is a map N : Ω → Rn of class C1 such that
N |M = nΓ|M .

Suppose φ ∈ D(Ω). Let X = φN , and let K; I; ht, t ∈ I; Et, t ∈ I; P ; and a1 and
a2 be as in section 3. Let Y be as in Proposition 3.3. Since ∂X = (∂φ)N + φ(∂N)
we find that

l1 = P ◦ ∂(φN) ◦ P = φ (P ◦ ∂N ◦ P ),

l2 = P⊥ ◦ ∂(φN) ◦ P = ((∂φ) ◦ P )N,

trace l1 = φ(H •N),

trace l∗2 ◦ l2 = |(∂φ) ◦ P |2,
trace l1 ◦ l1 = φ2Q.

(7.1)

For each t ∈ I let

Φ(t) = ε||∂[Et]||(K) + Z(Et).

Let A and B be as in Propositions 3.1 and 3.3, respectively, so Φ(t) = εA(t) + B(t)
for t ∈ I. Since Φ(0) ≤ Φ(t) for t ∈ I we have

(7.2) 0 ≤ εA′′(0) +B′′(0).

We have

a2 = (trace l1)
2 + trace(l∗2 ◦ l2 − l1 ◦ l1)

= φ2(H •N)2 + |∂φ ◦ P |2 − φ2Q2

= φ2 ζ
2

ε2
+ |∂φ ◦ P |2 − φ2Q2.

Making use of (1.7) we obtain

(ζY + (∇ζ •X)X
) •N

= (ζ(H • (φN)φN −∇ζ • (φN)φN) •N

= −ζ
2

ε
φ2 + φ2(∇ζ •N).

So (1.8) now follows from (7.2) and Propositions 3.1 and 3.3.

8. The denoising case revisited. Suppose
(i) s, γ, and F are as in section 1.8;
(ii) γ is convex and β is as in section 1.8;
(iii) U is an open subset of Ω, z ∈ R, and

s(x) = z for x ∈ U ;

(iv) 0 < y <∞ and β is continuously differentiable near y − z;
(v) 0 < ε <∞ and f ∈ mloc

ε (F );
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(vi) Γ is the intersection of U with the interior of the support of [{f > y}], and
M is the intersection of U with the boundary of Γ;

(vii) H is the mean curvature vector of M , and Q is the square of the length of
the second fundamental form of M .

From Theorems 1.3 and 1.6 we find that [Γ] = [U ∩ {f > y}], that

H(x) = −1

ε
β(y − z)nΓ(x) whenever x ∈M ,

and that ∫
M

|∇Mφ(x)|2 − φ(x)2Q(x) dHn−1x ≥ 0

for any φ ∈ D(Ω), where, for each x ∈ M , ∇Mφ(x) is the orthogonal projection of
∇φ(x) on Tan(M,x).

Now suppose n = 2, let a ∈M , and let A be the connected component of a in M .
If β(y − z) = 0, then A is a subset of a straight line. Suppose β(y − z) �= 0 and let

R =
ε

|β(y − z)| .

Then A is an arc of a circle of radius R. Let c be the center of this circle. Then
for each a ∈ A, there is an open subset G of U containing a such that

Γ ∩G =

{
U2(c,R) ∩G if β(y − z) < 0,

(Rn ∼ U2(c,R)) ∩G if β(y − z) > 0.

Finally, let L be the length of A. Since Q(x) = 1/R2 for x ∈M we find that∫ L

0

φ′(σ)2 − 1

R2
φ(σ)2 dL1σ ≥ 0

for all continuously differentiable φ : [0, L] → R which are differentiable on (0, L) and
which vanish at 0 and L. Letting φ(σ) = sin(πσ/L) for σ ∈ [0, L] we infer that

L ≤ πR.

9. Some results for functionals on sets.

9.1. Proof of Theorem 1.7. We begin with a simple lemma.
Lemma 9.1. Suppose A is a nested sequence in nloc

ε (NS). Then ∩∞
ν=1Aν ∈

nloc
ε (NS) and, provided Ln(∪∞

ν=1Aν) <∞, ∪∞
ν=1 ∈ nloc

ε (NS).
We leave to the reader the straightforward proof making use of (2.1) and cutoff

arguments like those used in the proof of Theorem 5.2.
Let

F (f) =

∫
Ω

|f − 1S | dLn for f ∈ F(Ω).

For each y ∈ R let Uy be as in Theorem 1.5. Recall from section 1.9 that

Uy =

{
0 if 1 ≤ y <∞,

N̂S if 0 < y < 1.
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Suppose A,B ∈ A and 0 < a < b < c < 1. Let

G = (A× (0, b)) ∪ (B × (b, 1)) ∈ G(Ω).

Then {x : (x, y) ∈ G} ∈ nloc
ε (Uy) whenever 0 < y <∞, so G↓ ∈ mloc

ε (F ) by Theorem
1.4. From Theorem 1.3 we infer that A ∪ B = {G↓ > a} ∈ nloc

ε (Ua) and A ∩ B
= {G↓ > c} ∈ nloc

ε (Uc), so A ∪B and A ∩B belong to nloc
ε (NS).

It follows that if F is a finite subfamily of A, then ∪F and ∩F belong to nloc
ε (NS).

Let B be a sequence in A such that

lim
ν→∞Ln(Bν) = inf{Ln(A) : A ∈ A}.

Since each of ∩N
ν=1Bν belongs to nloc

ε (NS) we infer from the preceding lemma that
C = ∩∞

ν=1Bν ∈ nloc
ε (NS). It is clear that Ln(C ∼ ∩A) = 0, so ∩A ∈ nloc

ε (NS).
Let us now assume Ln(∪A) <∞. Let D be a sequence in A such that

lim
ν→∞Ln(Dν) = sup{Ln(A) : A ∈ A}.

Since each of ∪N
ν=1Dν belongs to nloc

ε (NS) we infer from the preceding lemma that
E = ∪∞

ν=1Dν ∈ nloc
ε (NS). It is clear that Ln(∪A ∼ E) = 0, so ∪A ∈ nloc

ε (NS).

9.2. A comparison principle. The following proposition and its proof were
suggested by a similar result found in [CA1] in a different context.

Proposition 9.1. Suppose M,N ∈ M(Ω), M and N are local, 0 < ε < ∞,
D ∈ nloc

ε (M), E ∈ nloc
ε (N), and spt [D ∪ E] is compact. Then

N̂(E ∼ D) ≤ M̂(E ∼ D).

In particular, if

M̂(G) < N̂(G) whenever G ∈ M(Ω) and Ln(G) > 0,

then

Ln(E ∼ D) = 0.

Proof. Without loss of generality we may assume M = M̂ and N = N̂ . Since
spt [D] ∪ spt [E] ⊂ spt [D ∪ E] we have

εM(∂[D]) +M(D) ≤ εM(∂[D ∪ E]) +M(D ∪ E)

and

εM(∂[E]) +N(E) ≤ εM(∂[D ∩ E]) +N(D ∩ E).

Also,

M(∂[D ∪ E]) + M(∂[D ∩ E])

=

∫ 1

0

M(∂[{1D + 1E > y}] dL1y +

∫ 2

1

M(∂[{1D + 1E > y}] dL1y

= M(∂[1D + 1E ])

≤ M(∂[D]) + M(∂[E]).
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Since M and N are local it follows that

ε(M(∂[D]) + M(∂[E])) +M(D ∼ E) +M(D ∩ E) +N(E ∼ D) +N(E ∩D)

= ε(M(∂[D]) + M(∂[E])) +M(D) +N(E)

≤ ε(M(∂[D ∪ E]) + M(∂[D ∩ E])) +M(D ∪ E) +N(D ∩ E)

≤ ε(M(∂[D]) + M(∂[E])) +M(D ∪ E) +N(D ∩ E)

= ε(M(∂[D]) + M(∂[E])) +M(D ∼ E) +M(D ∩ E) +M(E ∼ D) +N(E ∩D).

9.3. Proof of Theorem 1.5. Suppose 0 < y < z < ∞. Since F is strictly
convex we have

β(x, y) < β(x, z) for Ln almost all x ∈ Ω.

This in turn implies that Uy(D) < Uz(D) whenever D ∈ M(Ω). Applying Proposition
9.1 with M,N there equal to Uy, Uz and D,E there equal to {f > y}, {x : (x, z) ∈ G}
and {x : (x, y) ∈ G}, {f > z}, respectively, we infer that

(i) Ln({x : (x, z) ∈ G} ∼ {f > y}) = 0

and

(ii) Ln({f > z} ∼ {x : (x, y) ∈ G}) = 0.

Suppose 0 < w <∞. Letting z = w and y ↑ w in (i) we find that

Ln({x : (x,w) ∈ G} ∼ {f ≥ w}) = 0.

Letting y = w and z ↓ w in (ii) we find that

Ln({f > w} ∼ {x : (x,w) ∈ G}) = 0.

Since Ln({f = w}) = 0 for all but countably many w ∈ (0,∞) we may use Tonelli’s
theorem to complete the proof.

10. Two useful theorems in the denoising case. We suppose throughout
this subsection that γ : R → R, γ is locally Lipschitzian, γ is decreasing on (−∞, 0),
and γ is increasing on (0,∞). We let

F (f) =

∫
Ω

γ(f(x) − s(x)) dLnx whenever f ∈ F(Ω).

10.1. A simple maximum principle.
Proposition 10.1. Suppose 0 < ε <∞, f ∈ mloc

ε (F ), and

u = inf{||1Ω∼Kf ||L∞(Ω) : K is a compact subset of Ω}.
Then ||f ||L∞(Ω) ≤ u ∨ ||s||L∞(Ω).

Remark 10.1. It follows from Corollary 5.1 that u = 0 if Ω = Rn.
Proof. Suppose u∨ ||s||L∞(Ω) < M <∞. Then K = spt [f − f ∧M ] is a compact

subset of Ω, so ∫
{f>M}

γ(f(x) − s(x)) − γ(M − s(x)) dLnx

= F (f) − F (f ∧M)

≤ ε(||∂[f ∧M ]||(K) − ||∂[f ]||(K))

= −
∫ ∞

M

||∂[{f > y}]||(K) dL1y

≤ 0.
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If f(x) > M > s(x), then f(x)−s(x) > M−s(x) > 0, so that γ(f(x)−s(x))−γ(M−
s(x)) > 0. Owing to the arbitrariness of M we find that the proposition holds.

Theorem 10.1. Suppose Ω = Rn, 0 < ε < ∞, f ∈ mloc
ε (F ), and, for each

y ∈ (0,∞),

C(y) equals the closed convex hull of spt [{s > y}].

Then

spt [{f > y}] ⊂ C(y) whenever 0 < y <∞.

Proof. Suppose 0 < b <∞. Let gb = f1{f<b} + b1{f≥b}∼C(b) + f1{f≥b}∩C(b) and
note that

{gb > y} =

{
{f > y} if y ≤ b,

{f > y} ∩ C(b) if y > b
whenever y ∈ R.

It follows from (2.12) that M(∂[{gb > y}]) ≤ M(∂[{f > y}]) whenever y ∈ R.
Let Kb = spt [f − gb]. Since {f − gb �= 0} ⊂ {f > b} we infer from Theorems 1.1

and 5.4(v) that Kb is compact. Since f ∈ mloc
ε (F ) we infer with the help of (5.1) that∫

{f>b}∼C(b)

γ(f(x) − s(x)) − γ(b− s(x)) dLnx

= F (f) − F (gb)

≤ ε(||∂[gb]||(Kb) − ||∂[f ]||(Kb))

= ε

∫ ∞

b

||∂[{gb > y}]||(Kb) − ||∂[{f > y}]||(Kb) dL1y

≤ 0,

which implies Ln({f > b} ∼ C(b)) = 0.

10.1.1. Convex containment.
Proposition 10.2. Suppose M ∈ M(Rn), M is local, C is a closed convex subset

of Rn, and

(10.1) M(E) ≥M(∅) whenever E ∈ M(Rn) and Ln(E ∩ C) = 0.

Then spt [D] is a compact subset of C whenever D ∈ nloc
ε (M).

Remark 10.2. Evidently, (10.1) is equivalent to the statement that μ(x) ≥ 0 for
Ln almost all x ∈ Rn ∼ C, where μ is as in Proposition 1.3.

Proof. SupposeD ∈ nloc
ε (M). It follows from Proposition 1.2 and Theorem 5.4(iv)

that spt [D] is compact. From (2.12) we find that

M(∂[C ∩D]) ≤ M(∂[D]).

Moreover, as M is local and D ∈ nloc
ε (M),

ε(M(∂[D]) − M(∂[D ∩ C])) ≤M(D ∩ C) −M(D) = M(∅) −M(D ∼ C) ≤ 0.

Thus M(∂[C ∩D]) = M(∂[D]), so the theorem now follows from (2.12).
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11. Some examples. Let

S = [−1, 1] × [−1, 1] ∈ M(R2),

suppose 1 ≤ p <∞, and let

F (g) =
1

p

∫
|g − 1S |p dL2 whenever g ∈ M(R2).

We will determine mloc
ε (F ), 0 < ε <∞.

11.1. The sets Ai,r. For each r ∈ (0, 1] let

A0,r = {(1 − r, 1 − r) + r{(cos θ, sin θ) : 0 ≤ θ ≤ π/2},
let Ai,r, i = 1, 2, 3, be a counterclockwise rotation about the origin of A0,r by iπ/2,
and let

C(r)

be the convex hull of ∪3
i=0Ai,r.

Theorem 11.1. Suppose 0 < ε <∞ and

T = {[f ] : f ∈ mloc
ε (F )}.

If (1 +
√
π/2)ε > 1, then

T = {0}.
If (1 +

√
π/2)ε = 1 and p = 1, then

T = {t[1C(ε)] : 0 ≤ t ≤ 1}.
If (1 +

√
π/2)ε < 1 and p = 1, then

T = {[1C(ε)]}.
If (1 +

√
π/2)ε = 1 and p > 1, then

T = {0}.
If (1 +

√
π/2)ε < 1 and p > 1, then

T = {[G↓]},
where

Y = 1 − (1 +
√
π/2)ε

)1/(p−1)

and

G =

{
(x, y) : 0 < y < Y and x ∈ C

(
ε

(1 − y)p−1

)}
∈ G(R2).

Proof. For each y ∈ (0,∞) let

Qy = {[D] : D ∈ nloc
ε (Uy)},
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where Uy is as in Theorem 1.5.
Using (1.9) we find that Uy(E) > 0 whenever 1 < y < ∞, E ∈ M(Rn), and

L2(E) > 0; since Uy(∅) = 0 we find that

Qy = {0} if 1 < y <∞.

Suppose 0 < y < 1, let

Z =

{
1 if p = 1,

(1 − y)p−1 if p > 1,
and let R =

ε

Z
.

Suppose R ≤ 1 and let

I = (Uy)ε (C(R)) = εM(∂[C(R)]) + Uy(C(R)).

We have

εM(∂[C(R)]) = ε(4(2 − 2R) + 2πR)

and

Uy(C(R)) = −ZL2(C(R)) = −Z(4 − (4 − π)R2),

so

I = ε(4(2 − 2R) + 2πR) − Z(4 − (4 − π)R2)

=
−4Z2 + 8εZ + (π − 4)ε2

Z

= −4
(Z − (1 +

√
π/2)ε)(Z − (1 −√

π/2)ε)

Z
.

Since R ≤ 1 we have

Z = ε/R ≥ ε > (1 −√
π/2)ε.

Thus

I

⎧⎪⎨⎪⎩
< 0 = Uy(∅) ⇔ Z > (1 +

√
π/2)ε,

= 0 = Uy(∅) ⇔ Z = (1 +
√
π/2)ε,

> 0 = Uy(∅) ⇔ Z < (1 +
√
π/2)ε.

Suppose D ∈ nloc
ε (Uy), [D] �= 0, and D = spt [D]. We claim that

(11.1) R ≤ 1 and D = C(R).

From Proposition 10.2 we infer that D ⊂ S. Let U equal the interior of S and let
M = U ∩ bdryD. Then U ∩M �= ∅ since otherwise we would have D = S, in which
case M would have corners, which is incompatible with Theorem 1.2. Let A be a
connected component of M . We infer from section 8 that A is an arc of a circle of
radius R, the length of which does not exceed πR. Because D can have no corners we
find that A meets the interior of the boundary of S tangentially. Thus (11.1) holds.

The theorem now follows from Theorems 1.3 and 1.4.
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