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Analysis of multi-arm tumor growth trials in
xenograft animals using phase change adaptive
piecewise quadratic models
Kingshuk Roy Choudhurya∗†, Ian Kasmanb and Greg D. Plowmanb

Xenograft trials allow tumor growth in human cell lines to be monitored over time in a mouse model. We consider the problem
of inferring the effect of treatment combinations on tumor growth. A piecewise quadratic model with flexible phase change
locations is proposed to model the effect of change in therapy over time. Each piece represents a growth phase, with phase
changes in response to change in treatment. Piecewise slopes represent phase-specific (log) linear growth rates and curvature
parameters represent departure from linear growth. Trial data are analyzed in two stages: (i) subject-specific curve fitting (ii)
analysis of slope and curvature estimates across subjects. A least-squares approach with penalty for phase change point location
is proposed for curve fitting. In simulation studies, the method is shown to give consistent estimates of slope and curvature
parameters under independent and AR (1) measurement error. The piecewise quadratic model is shown to give excellent fit
(median R2 =0.98) to growth data from a six armed xenograft trial on a lung carcinoma cell line. Copyright © 2010 John Wiley
& Sons, Ltd.
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1. Introduction

Developments in basic biology and biotechnology have led to a large number of new potential therapies for treatment
of cancer [1]. Tumor growth experiments are a convenient way to test the efficacy of potential new therapies for various
forms of human cancer in mice. In a tumor growth experiment, in vitro cultured human tumor tissue (xenograft) is
implanted subcutaneously into immunosuppressed mice. Experimenters monitor the growth of these tissue fragments
into tumors of measurable size, which happens approximately 15 days after implantation. Measurements can be made
once they are of palpable size (approximately 100mm3), i.e. they can be measured externally by pinching the skin over
the tumor mass and recording the tumor length and width using calipers. Once measurability is established, mice are
randomized to various treatment groups and treatment is started at a common date. Tumor size (usually quantified as
tumor volume) for these mice is recorded regularly at evenly spaced time points till the end of the experiment (usually
a few weeks). Each mouse is euthanized at the end of the study, or at the first time point after its tumor size exceeds a
preset threshold Vmax (this last observation is recorded). Treatments consist of placebos, single drugs, drug combinations
[2] or other therapy, such as surgery or radiation [3]. Typically, it is of interest to model tumor growth during treatment,
i.e. the period when drug is being delivered and identify the most effective treatments, as well as any ‘synergy’ when
treatments are offered in combination. It is also of interest to study whether the rate of tumor growth after drug(s) has
been turned off, known as the ‘regrowth’ or ‘rebound’ period.
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Figure 1. Plots of tumor volume growth curves for a six armed study involving MV-522 (lung carcinoma) tumor xenografts
against time (Section 4.1). The study lasted 89 days. Animals whose tumor volumes exceeded 1000mm3 were euthanized. Details
of treatments and dosing regimens are given in Table I. Each line corresponds to a single animal. Zero volumes are imputed as 0
on log scale. Day 1 represents the first day of treatment, approximately 2 weeks after implantation of the tumors. Vertical lines

indicate the last treatment dose.

1.1. Statistical modeling of tumor growth experiments

Xenograft studies produce longitudinal data consisting of a set of tumor size measurements Vgj(t), for animals j =1, . . . ,ng
in treatment groups g =1, . . . ,G and time points t = t0, t1, . . . , tm . Here t0 is the first date of therapy administration and
tm is the study end. For animal j , data are only recorded till time egj =min{l : Vgj(tl )>Vmax}, where Vmax is a preset size
threshold. With longitudinal data, we need to model two types of variability: (i) variation in time (t) (ii) variation across
subjects ( j) and treatment arms (g). A basic model for tumor growth over time, based on repeated cell division, is the
exponential model:

V (t)=V (0)exp(�t). (1)

Here V (t) denotes tumor volume at time t and � denotes (constant) growth rate. This model has been shown to be effective
when modeling data for a relatively short period of time during the fast growth period of a tumor, as demonstrated
by Skipper and Schabel [4]. During this phase of growth, the exponential model of growth is motivated by binary cell
division with constant doubling time [5]. In Figure 1, we see that tumors in the control and �VEGF arms appear to exhibit
roughly log-linear growth (except possibly for a couple of animals), which is consistent with the Skipper model (1).
However, the exponential model fails to adequately describe the more complex tumor growth patterns observed in some
of the other arms of the experimental data shown in Figure 1. More sophisticated models have been proposed to model
the effect of treatment, e.g. a mixture double exponential model with rates for cell growth, cell death and surviving
cell fraction [6]. A four-parameter model of tumor growth based on compartmental modeling was proposed in [7]. This
model also accommodates time-dependent dosing.
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The methods described above have all been shown to be successful for modeling data from tumor growth experi-
ments. In addition, they have scientific interpretability in terms of representing specific physiological processes such
as cell division, cell death, clearance of dead cells, etc. [3, 6]. However, specific models of growth can be a limitation
when making comparisons across a variety of different tumor types and treatment combinations, whose mechanism of
action may be different or indeed, unknown [3]. Additionally, different models will not necessarily be nested, making
parameter-based comparisons difficult. It is therefore desirable that these models: (i) have common functional form
across treatments and tumor types, enabling parameter comparisons across these factors, (ii) fit the data well, (iii) have
parsimonious parameterization, (iv) incorporate dosing information and (v) can be fit to data using automatic methods.
In Section 2, we present a piecewise quadratic approach to modeling tumor growth data. Properties of resulting esti-
mators are examined using a set of simulation studies in Section 3. The methodology is illustrated by application to a
multi-armed experiment in Section 4.

2. Tumor growth curve modeling

2.1. Piecewise quadratic model

Our modeling paradigm is based on the empirical observation, across a number of studies that tumor growth appears
to occur in distinct phases: e.g. during treatment and after treatment. This type of behavior is illustrated through a six
armed study (with one control and five treatment groups) described in Section 4 and visualized through longitudinal
profiles in Figure 1. In Figure 1, all treatments groups appear to exhibit a two-phase growth regime, except for the
control and �VEGF groups, which appear to exhibit a one-phase growth regime. To capture tumor growth in different
phases, we propose a subject-specific piecewise model:

Ygj(t) = E�gj[Ygj(t)]+εgj(t)

where E�gj[Ygj(t)] =
Kg∑

k=1
P(t,�g jk)I [�gj(k−1)�t<�g jk].

(2)

Here, Ygj(t)= log Vgj(t) and P(t,�g jk), k =1, . . . , Kg are pieces modeling the behavior of Ygj on the interval �gj(k−1) to
�g jk , with �gj0 = t0, �g jk = tm , �gj(k−1)<�g jk and �gj ={�g jk,k =1, . . . , Kg}. The expectation in (2) is taken with respect
to the distribution of measurement error, εgj(t), i.e. within subject variation. Each piece represents one phase of the
treatment regime. The number of phases depends on the sequence of treatments applied to the subject. In Figure 1, Kg =1
for the control group (no treatment). For all other treatment arms, Kg =2, with one piece representing the treatment
period and the second piece representing the regrowth/recovery period. Phase change points �gj1 do not necessarily
coincide with treatment change dates. Drug combinations administered simultaneously count as a single treatment.

The simplest parametric model for growth is piecewise linear: P(t,�g jk)=agjk +bgjk t , where �g jk = (agjk,bgjk). Here
ajk represents log(Vgj(�gj(k−1))), the initial tumor volume at commencement of the kth phase and bgjk represents the
(linear) growth rate for the kth phase. In Figure 1, a linear model appears to be adequate for the control group. However,
for the Doc treatment group, many growth profiles exhibit a trough shape, which is difficult to approximate well by two
linear pieces. To better accommodate this, we propose a piecewise quadratic model:P(t,�g jk)=agjk +bgjk t +cgjk t2,
where �g jk = (agjk,bgjk,cgjk). Here cgjk determines the curvature or non-linearity of growth: cgjk =0 represents linear
growth, cgjk>0 denotes increasing and cgjk<0 denotes decreasing growth rate. Since the question of non-linearity is of
interest in any phase of growth, we will apply the piecewise quadratic model to all subjects across all groups. Thus in
subsequent analysis, the parameter set �g jk is always three dimensional. With this formulation, it is possible to compare
parameter sets across groups and phases, e.g. b1 j1, the growth rate for the control group, which has only one phase, can
be compared with b2 j2 the growth rate for the recovery (second) phase of treatment group 2. Comparison of treatment
groups is accomplished by a second-stage analysis of the subject-specific parameter sets �g jk , also known as ‘derived
variables’, across subjects and treatments: details are given in Section 2.5.

2.2. Measurement error model

Assuming the tumor to be a prolate spheroid, i.e. cigar shaped, the volume of a tumor is V =�w2l/6, where l and w are
the largest and smallest diameters of the tumor, respectively, measured using calipers [8]. Assuming additive Gaussian
errors, we can model the measurements as:

w=w0 +εw =w0(1+w−1
0 εw); l = l0 +εl = l0(1+l−1

0 εl ). (3)

Here, l0 and w0 are the actual diameters and εw and εl are N (0,�2) errors in measurement. We can therefore write log V as:

log V = log�+2log(1+w−1
0 εw)+ log(1+l−1

0 εl )≈ log�+εv. (4)
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Here, �=�w2
0l0/6 is the true volume and εv =2w−1

0 εw +l−1
0 εl . Equation (4) suggests that Y = log V has an approximately

additive error structure, because if εw and εl have zero mean, then so has εv . Thus, log is a natural scale to model tumor
volume data. When tumor sizes are small, the log transformation can, however, lead to erroneous results [9].

2.3. Fitting piecewise models by penalized least squares

We propose a subject-specific weighted least-squares objective function to fit the piecewise tumor growth model as
follows:

Lgj =
ejg∑

i=1

(
Ygj(ti )−

Kg∑
k=1

P(t,�g jk)I [�g j(k−1)�ti<�g jk]

)2

. (5)

The piecewise nature of the model (2) allows the least-squares criterion to be broken into Kg sub-criteria: Lgj =
∑Kg

k=1 Lgjk ,
where Lgjk =∑t∈Sgjk

(Ygj (t)− P(t,�g jk))2 and Sgjk ={tl :�gj(k−1)�tl<�g jk}. Given the sets Sgjk , we can minimize the
criterion Lgj by minimizing each Lgjk separately. For two-phase models, we include the first data point of the second
phase in the criterion for the first phase, Lgj1. We have empirically observed that this yields approximate continuity
of the fitted growth curve. Minimization of each sub criterion can be achieved through ordinary least-squares (OLS)
regression. Additionally, we center the time variable using the transformation s = t − t̄g jk , where t̄g jk is the mean of t in
Sgjk . Thus, we rewrite P(t,�g jk)=agjk +bgjks+cgjks2 and the observation as Ygj (s). Although identical fits will be
obtained with or without this transformation, the variables s and s2 as well as 1 and s are approximately orthogonal.
In this case, estimates of the intercept agjk slope bgjk and curvature parameter cgjk become (approximately) mutually
uncorrelated. Hence separate inference can be performed on these parameters, see e.g. example 15.1 in [10]. Furthermore,
this transformation ensures that the estimator of slope bgjk will remain approximately the same if we instead used just
a piecewise linear approximating function, P(t,�g jk)=agjk +bgjk t,with or without centering.

In two-phase models, where there is a clear change in growth rate, the phase change point can be identified by
minimizing the criterion, L , over all admissible phase change points �gj1. However, in the special case when treatment
change has no effect, i.e. bgj1 =bgj2, cgj1 = cgj2, it is not possible to identify a unique phase change point using only the
least-squares criterion Lgj, since any choice of point between �gj0 and �gj2 will yield the same value of Lgj. This scenario
can occur for instance when placebo is used. In practice, noise in the data may lead to a unique minimum, but the
resulting phase change point may be at an extremal location, leading to potentially highly variable parameter estimates.
To ensure the choice of more meaningful phase change points, we propose to penalize phase change location by

Dgj(�gj1) = ∞ if �gj1<Tg1

= v−1
g1 (�gj1 −Tg1)2 if �gj1�Tg1, (6)

where Tg1 is the end time of the first treatment period, vg1 is the standard deviation of phase change points for this
treatment. The asymmetric nature of Dgj reflects our focus on measuring the effects of treatment change: change in
growth pattern before change in treatments would not reflect a causal effect, hence it is excluded. We combine (5) and (6)
to obtain a penalized least-squares criterion:LgjP = Lgj1 +Lgj2 +�Dgj, where � is a parameter that controls the influence
of the penalty term. As �→∞, the criterion Lgjp is dominated by the penalty term, which has a unique minimum at
Tg1. On the other hand, small values of � will lead to a solution that is close to least squares. We recommend choosing
the smallest � which ensures a unique minimum for LgjP for all subjects. Prior information about the standard deviation
vg1 is typically unavailable for experimental drugs and drug combinations. Instead, we have used an empirical estimate
v̂2

g1 = (ng −1)−1∑ (�̂gj1 −Tg1)2, the sample variance of phase change points �̂gj1, each estimated by visual inspection,
across subjects within group g. A scaled version of the penalized criterion LgjP , namely GgjP =1−LgjP/Var(Ygj), where
Var stands for sample variance, is used to choose the optimal phase change location (Figure 3(b)). Note that GgjP may
be negative.

2.4. Complete fitting algorithm

The main steps in fitting the piecewise quadratic model can be summarized as follows:

1. Determine range of admissible phase change locations from dosing regimen. Fix �=0.0001.
2. Choose a candidate phase change point p from feasible set.
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(a) Fit piecewise quadratic model:

(i) Compute transformed observation times for each piece
(ii) Fit piecewise parametric model by least squares

(b) Compute GgjP value for fitted piecewise quadratic model.

3. Maximize GgjP over all admissible change points p. If maximum is not unique, choose a bigger � (e.g. twice
old �) and repeat from step 2.

The above algorithm can be easily implemented on any statistical software package that will fit linear regression and
also allows looping, e.g. R, SAS, Stata, etc.

2.5. Analysis across subjects

The above fitting procedure generates subject-specific parameter sets �g jk = (agjk,bgjk,cgjk) for animals j =1, . . . ,ng in
treatment groups g =1, . . . ,G and treatment phases k =1, . . . , Kg , where Kg =1 for the control group, while Kg =2 for
all other treatment arms. Under the derived variables approach, these estimated parameter sets are used as data points for
the second stage of analysis, across subjects and treatment groups [11]. For analysis of growth, the specific parameters
of interest are slopes, bgjk and curvatures, cgjk . We have argued in Section 2.3 that estimates of these parameters are
approximately mutually uncorrelated. Furthermore, since �gj1 and �gj2 are calculated using data from mutually separate
time points (except one common endpoint), under the assumption of independent measurement error, estimates of these
parameter sets will also be approximately mutually uncorrelated. This mutual uncorrelatedness allows separate analysis
of slopes and curvatures within each phase of treatment, considerably simplifying the second-stage analysis across
subjects, groups and phases. For instance, the analysis of first (treatment) phase slopes can be done in the framework of
a one-way ANOVA model, across groups g =1, . . . ,G, using the estimated bgj1 as data points. Thus, hypotheses about
differences in mean growth rates between groups can be addressed using a standard linear model framework. For the
analysis of second- (recovery) phase slopes, we add estimates for the first-phase slopes of the control group, bgj1 to
the rest of the second-phase slopes bgj2, g =2, . . . ,G. Again, analysis of this combined set of slopes under the linear
model framework enables us to test hypotheses of differences between recovery (second) phase and control growth rates.
Finally, the analysis of curvatures cgjk is performed within each group g and phase k, with the null hypothesis that the
phase-specific group mean curvature is zero, i.e. growth is linear for that particular phase of treatment.

3. Consistency of parameter estimates

In this section, we study properties of the slope and curvature parameter estimates obtained by fitting the piecewise
quadratic model. Standard results for parameter estimates in linear models do not necessarily apply, because (a) of volume
endpoint censoring, which means that the number of observations per subject is data dependent, (b) adaptive phase
change point selection in the piecewise model (2), (c) randomness of the subject-specific initial tumor volume and (d)
potential dependence in the longitudinal tumor measurements [11]. In addition, the piecewise model is not differentiable,
making analysis of the estimator difficult (see Discussion). Using simulation studies, we examine whether estimates of
the growth rate and curvature parameter are consistent for true parameter values and remain robust under settings that
replicate these four sources of variation, as well as changes in the growth rate and level of measurement error.

In the simulation study, we consider a two-phase tumor growth model. Tumor volumes are recorded every 3 days for
a period of 90 days. In keeping with the sampling scheme for xenograft experiments, tumor volumes are measured until
the first time the tumor volume exceeds Vmax =1000mm3. Data are generated as:

yi =a+b1ti +(b2 −b1)(ti −23)++�εi . (7)

Here yi , i =0, . . . ,29, is the log tumor volume recorded at time ti and �εi is the measurement error. A (potential) change
in the growth rate occurs on day 23, the direction of change (increase or decrease) depending on the relative values of
b1 and b2. The change follows end of treatment on day 18 (i =6). For this model, data were generated by choosing the
intercept (initial log tumor volume), with exp(a) drawn as a random sample from a N (50mm3,10mm3) distribution. A
range of 5 equispaced values between 0.05 and 0.15 were used for the initial growth rate b1 and a range of 7 equispaced
values between 0.05 and 0.2 were used for second-phase growth rate b2. Data were generated for a range of 100 values
of standard deviation � between 0.1 and 0.5, equally spaced on a logarithmic scale. The parameters b1,b2 and � are
dimensionless, because yi −a = log(V (t)/V (0)) is dimensionless. For each realization, the squared error of estimation
was computed as: SqE(b̂k,�)= (b̂k −bk)2,SqE(q̂k,�)= (q̂k −qk)2, k = 1, 2, where b̂k and q̂k are estimated slope and
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Figure 2. Results of one run of the simulation experiment. Squared estimation error for the slope of the first piece of a two piece
linear growth model given in (7), with b1 =0.083, b2 =0.20, for a range of 100 different noise levels � equispaced between 0.1
to 0.5, plotted on a log–log scale. The solid line shows the fitted mean-squared error as a log-linear function of �. Fitting was

done using the robust (M) regression.

curvature parameters obtained by fitting a piecewise quadratic model of the form (2), with P(t,�k)=ak +bkt +qkt2,
k =1,2, using the procedure described in Section 2.3. For each data set, the change point �1 was estimated over a range
of time points starting from day 18 (end of treatment) to the last observed timepoint. Only 1 replication per parameter
set (b1, b2 and �) was carried out for a total of: 5×7×100=3500 parameter sets. Results are now presented for two
different specifications of measurement error.

IID case: Here, we assume εi ∼ i.i.d. N(0, x). In Figure 2, we see that the mean-squared error for estimation of
b1increases linearly (on a log–log scale) with � for one set of b1, b2 values. The rate of decrease/convergence is estimated
by fitting a line of the form: logSqE(b̂1,�)=mb +r log� to the squared error data using robust (M) regression [12], due
to the presence of outliers at the lower end of the plot. Similar lines were fit for all 35 b1, b2 sets in the simulation. The
average slope obtained across these parameter sets was r̄ =1.94 with a standard deviation of 0.37. This indicates that
b̂1 converges to the true parameter value b1 at the usual parametric rate [13]. Corresponding average convergence rates
and standard deviations (in parentheses) obtained for the estimates, b̂2, q̂1, and q̂2 were 2.50 (0.56), 1.97 (0.50), 3.04
(0.81), indicating that these estimators too converged at the desired parametric rate.

Correlated errors: Here, we assume that the errors are realizations of an AR(1) process (see Section 3.2). Specifically,
εi =	εi−1 +
i , where 
i ∼ i.i.d. N(0, x), with �=0.2. Other simulation settings are similar to above. Note that estimates
were computed using the OLS criterion (5), i.e. no allowance was made for correlation between observations while
fitting the models. As previously, we computed the average rate of convergence across 35 b1, b2 parameter sets in
the simulation. The average rates of convergence and standard deviations (in parentheses) obtained for the estimates,
b̂1, b̂2, q̂1 and q̂2 were 2.05 (0.39), 2.15 (0.67), 1.89 (0.46), 2.35(0.85) indicating that the OLS estimators converged
to the true parameter values at the desired parametric rate. Furthermore, we also computed parameter estimates using
generalized least squares (GLS) for each simulation realization, where the weighting matrix was the inverse of the
variance covariance matrix of the errors, computed using the true value of �=0.2. Although this is not a practical option
(correlation will have to be estimated in practice, see Discussion), with correlated errors, we would expect this estimator
to be optimal. We compared the OLS and GLS-squared errors using a paired t-test across noise levels �. For all 35 b1,
b2 parameter sets, the resulting p-values were not significant, i.e. above 0.05.

4. Analysis of multi-armed tumor growth experiment

4.1. Experimental protocol

Xenografts were initiated from MV-522 human non-small cell lung carcinoma tumors maintained by serial transplantation
in female nude (nu/nu, Harlan) mice. Each test mouse received a subcutaneous MV-522 tumor fragment (1mm3)
implanted in the right flank. Nude mice are athymic due to a genetic mutation. Because they lack a thymus gland, they
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Table I. Protocol design for the six armed MV-522 xenograft study.

Protocol design

Group n Drug 1 Dose (mg/kg) Duration Drug 2 Dose (mg/kg) Duration

1 9 Control
2 9 �VEGF 10 1/week × 3
3 9 Control Gem 160 1/4 days × 3
4 9 Control Doc 30 1/week × 3
5 9 �VEGF 10 1/week × 3 Gem 160 1/4 days × 3
6 9 �VEGF 10 1/week × 3 Doc 30 1/week × 3
The two factors are drug 1 (the presence or absence of anti-angiogenic factor �VEGF) and drug 2 (no drug,
gemcitabine or docetaxcel). Dosing regimen describes how often and how long each drug is administered, e.g.
1/week × 3 means: 1 dose per week for 3 weeks. n stands for number of mice per treatment arm.

are deficient in T cells and so do not present an immune rejection response against the injected tumor cells, which allows
a high proportion of tumor fragments to grow into fully fledged tumors [2]. The growth of tumors was monitored as
the average size approached 80–120mm3. Fifteen days later, designated as Day 1 of the study, the animals were sorted
into six size matched groups (each with n =9) with individual tumor volumes between 63 and 12mm3 and group mean
volumes of 75mm3. All tumors were measured twice weekly (on the same day) using calipers (Figure 1). Animals
were euthanized when their tumor size exceeded 1000mm3 or at the end of the study (Day 89), whichever came first.
An Institutional Animal Care and Use Committee approved all animal protocols.

4.1.1. Treatments and study design. A two factor experiment was performed. The design is given in Table I. One factor
is the presence or absence of chemotherapy (gemcitabine (Gem) or docetaxel (Doc)). Gemcitabine (Gemzar�, Eli Lilly
and Company) and docetaxel (Taxotere�, Aventis Pharmaceuticals) were administered and evaluated at the maximum
tolerated dose (MTD), defined as the dose level immediately above which excessive toxicity (i.e. more than one death)
occurred. The other factor is the presence or absence of anti-vascular endothelial growth factor (�VEGF), which is
a murine IgG2a monoclonal antibody (B20-4.1) from Genentech [14] that recognizes all isoforms of VEGF-A with
comparable affinity for both the mouse and human ligands. A murine IgG2a Mab specific to ragweed was used as a
control. Previous pharmacokinetic studies support their use at 10 mg/kg once a week. When administered on the same
day, chemotherapy drugs were administered within 30 min after antibodydosing.

4.2. Analysis using piecewise quadratic fits

In Figure 1, tumors in the control and �VEGF arms appear to exhibit roughly log-linear growth. For all other arms, we
see that the growth curves appear to be qualitatively affected by the treatment. Two-piece quadratic models (Kg =2)
were fit to all the curves in the MV-522 study using the penalized least-squares algorithm described in Section 2.3
(with �=0.001), except curves in the control arm, where a one-piece model was used (Kg =1). The values of the vg1
parameter in the penalty term were estimated to be 4 in the �VEGF, Gem and (Gem+�VEGF) treatment arms and 10
in the Doc and (Doc+�VEGF) treatment arms.

An example of this fitting criterion is shown in Figure 3 for a subject in the Doc treatment arm from Figure 1.
In this case Kg =2 and Tg1 =15. A value of �=0.001 was chosen by grid search. The algorithm searched over a range
of phase change point candidates �gj1, from 15 to 60. The median GgjP value across treatment arms was 0.98 with
a mean absolute deviation of 0.01, indicating very good fit in general, although there were one or two exceptions.
Residuals in the control arm were found to have sample autocorrelations of Corr(
t ,
t−1)=0.23, Corr(
t ,
t−2)=0.1 and
Corr(
t ,
t−3)=0.01. The decay in autocorrelations suggests an AR(1) model with �=0.2 for intrasubject correlation
[11]. The quantile–quantile analysis of residuals showed them to be approximately Gaussian. Autocorrelation analysis
of residuals in other arms was not pursued because of potential anomalies due to incorrect positioning of phase
change points.

Estimated phase change locations for the Gem and (Gem+�VEGF) treatment arm appear to be broadly similar across
subjects and are generally close to the end of treatment (Figure 4(a)). By contrast, phase change locations for the Doc
and (Doc+�VEGF) treatment arm have relatively higher variability, with many locations indicating a long delay for
regrowth after treatment. The phase change locations for the �VEGF treatment arm are somewhat artificial, induced by
the penalty term in the fitting criterion. This is confirmed by the fact that there are no significant differences in the slope
(p-value=0.34) and curvature parameter (p-value=0.15) estimates for the two pieces fitted to this treatment arm under
paired t-tests.

The distribution of slope parameter estimates exhibits substantial separation for certain treatment arms relative to
control (Figure 4 (b)). The slopes in the control arm mostly lie between 0.05 and 0.1. Treatment phase growth rates (b1)

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 29 2399--2409
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Figure 3. Example of piecewise quadratic fit to a growth curve from the docetaxel arm: (a) tumor volume data for one animal
and corresponding fit. Estimated phase change location is at 19 days; (b) plot of GgjP statistic used to choose phase change

location. The penalty function L p was computed with standard deviation of change points (vg1)=10 days and �=0.001.

Figure 4. Between subjects analysis for the MV-522 study: (a) distribution of phase change location by treatment arm; (b)
distribution of estimated treatment phase (circles) and regrowth phase (triangles) slopes by treatment arm; (c) distribution of

estimated treatment phase (circles) and regrowth phase (triangles) curvature parameters by treatment arm.2406
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Table II. Analysis of estimated treatment and regrowth phase slopes (growth rates) as well as time to
endpoint (TTE) data.

Treatment slopes Regrowth slopes Time to endpoint effect

Odds
Effect Estimate p-Value Estimate p-Value Median Ratio p-Value

Control 0.06 <0.001 0.06 <0.001 36.71 * *
�VEGF −0.006 0.75 −0.03 0.24 42.37 0.16 0.004
Gem −0.08 <0.001 −0.01 0.55 79.98 0.04 <0.001
Doc −0.16 <0.001 0.02 0.22 89 0.01 <0.001
Gem: �VEGF 0.004 0.84 0.03 0.31 68.32 1.05 0.005
Doc: �VEGF −0.0003 0.98 −0.04 0.17 89 <0.001 1
The first column gives estimated effects. For slopes, variation across treatment arms was analyzed using an
ANOVA model (R2 =0.81 for treatment phase and R2 =0.17 for regrowth phase). The second and fourth
columns give estimated effects. The p-values in columns 3 and 5 result from two sided t-tests of significance,
with H0: Effect=0. For control, the estimated effect is the average rate for the control arm (used in both
treatment and regrowth phases). For other treatments, the estimated effect is a difference from the control rate.
The time to endpoint data is analyzed using the Cox regression, yielding estimates of odds ratios of treatment
group effects and corresponding p-values.

appear to be substantially lower for all other treatment arms except possibly the �VEGF treatment arm. In order to assess
the significance of these differences, we fit an ANOVA-type linear model to the parameter estimates across subjects.

bgj1 = (1, I [�VEGF]gj, I [Gem]gj, I [Doc]gj, I [�VEGF∗Gem]gj, I [�VEGF∗Doc]gj)
T�+ε1g j . (8)

Here bgj1 denotes the treatment (first) phase growth rate estimate for the j th subject in the gth group, I stands for
an indicator of the relevant treatment, ∗ stands for interaction, � is a vector of treatment effects and ε1g j is i.i.d. the
Gaussian error. The estimated effects in Table II show a significant decrease in treatment phase growth rate due to Gem
and Doc relative to Control, but no significant decrease due to �VEGF. The effect of Gem during treatment appears
to inhibit growth, whereas Doc appears to cause significant reduction in tumor volume during (and some time after)
treatment. The interaction effects appear to be small and insignificant. A similar ANOVA of estimated intercepts showed
no significant differences across treatments arms.

Regrowth rates (b2) shown in Figure 4(b) appear to be generally similar to control for all treatment arms except possibly
the (Doc+�VEGF) arm. An identical model to (8) was fitted to the estimated regrowth phase rates bgj2 (treatment phase
rate estimates b1 j1 were used for the control arm), but Table II shows that no significant main effects or interactions
were found. However, since there was specific interest in the effect of combination therapy, two pairwise comparisons
were performed. A two sample t-test between (�VEGF+Gem) and Gem alone was not significant (p-value=0.69), but
(�VEGF+Doc) had a significantly lower regrowth phase rate than Doc alone (mean difference=0.07, p-value=0.03).
This is corroborated in Figure 4(b), where we see that all except one of the estimated regrowth phase rates for the
(�VEGF+Doc) are 0, whereas they are mostly positive for the Doc alone treatment arm.

A conventional method for analyzing xenograft experiments is by comparing time to endpoint (TTE), where TTE
is the last observed time per subject [3]. Median TTEs show differences between groups, except those for Doc and
(�VEGF+Doc), which are identical (Table II). With a multi-group, particularly factorial study design, an obvious
extension of log-ranks tests is the Cox regression, assuming proportional hazards across groups. We see that these
p-values are generally smaller than in the analysis based on either treatment phase or regrowth phase slopes (Table II).
In fact the main effect of �VEGF and �VEGF:gemcitabine is both highly significant in the TTE analysis, whereas they
are not significant using slopes. An intriguing result is for the �VEGF:docetaxel interaction, where the TTE p-value is
less significant.

Curvature parameters (cgj1 and cgj2) for the most treatment arms appear to be close to 0 (Figure 4(c)). The only
exceptions are treatment phase curvature parameters for the (�VEGF+Gem) and Gem treatment arms, which appear to
be largely negative (growth is slowing). Only the main effect of Gem is significant (Table III). No significant differences
in curvature parameter were found between treatment arms during the regrowth phase.

5. Discussion

Apart from facilitating comparisons between treatment arms, piecewise quadratic models can capture tumor growth
behavior during both treatment and regrowth phases adequately, as evidenced by high goodness of fit (GgjP ) values.
The analysis of curvature parameters appears to suggest that the simple exponential model for tumor growth (1) may

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 29 2399--2409
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Table III. Analysis of estimated treatment and regrowth phase curvature parameters.

Treatment curvature parameter Regrowth curvature parameter

Effect Estimate p-Value Estimate p-Value

Control −0.001 0.74 0.0 *
�VEGF −0.0005 0.90 0.0006 0.40
Gem −0.02 <0.001 −0.0003 0.64
Doc −0.0008 0.87 −0.001 0.14
Gem: �VEGF 0.003 0.64 −0.0006 0.54
Doc: �VEGF 0.001 0.78 0.0002 0.83

Variation across treatment arms was analyzed using an ANOVA model (R2 =0.09 for both treatment and
regrowth phase). The second and fourth columns give estimated effects. The p-values in columns 3 and 5
result from two sided t-tests of significance, with H0: Effect=0. For control, the estimated effect is the average
curvature parameter for the control arm (used in both treatment and regrowth phases). For other treatments,
the estimated effect is a difference from control.

be adequate for modeling treatment and regrowth phases for this study. The only exceptions are the arms involving
gemcitabine, where the rate of growth appears to be decreasing during the treatment phase. However, since this curvature
parameter was typically estimated from only 3 time points, further studies may be necessary to confirm this effect.
Nonlinear models have been found to be good fits in other studies [6, 7]. Analysis of curvature parameters may help in
the selection of a plausible model in such settings.

The estimation and model fitting procedure presented here has some limitations. At present, our estimation of
parameters vg1 and �, which control the influence of the penalty term and hence the positioning of phase change points,
is performed in an ad hoc manner (Section 2.3). Nevertheless, this method appears to produce consistent estimation of
phase change points and slopes in simulation studies (Section 3). Further analysis may help elucidate general conditions
under which this occurs. The fitting procedure also assumes that observations within a subject are independent. This
may be an unreasonable assumption: residual analysis in the control group (Section 4.2) indicates the presence of mild
autocorrelation, which could be due to either (a) correlated measurement errors due to repeat measurements by the
same person or (b) the presence of a higher order (than quadratic) trend component. Assuming (a), we can formulate a
weighted generalization of the least-squares criterion L using a parsimonious representation of the correlation structure.
In simulation studies, we have used an AR(1) process to approximate the observed correlation structure of residual
errors.

Estimation of the correlation structure, or parameters thereof, is an important aspect of the analysis of longitudinal data.
In smooth models, it is possible to estimate parameters in the correlation structure using criteria such as pseudolikelihood
or restricted maximum likelihood (REML) [11]. The optimization of such criteria typically requires iterative algorithms
such as iteratively reweighted least squares (IRLS) or Newton–Raphson, which are based on Taylor series expansions
of the criterion around the true solution [15]. A critical requirement for the convergence of these algorithms is that
the criterion be differentiable in the parameters at the true solution; we note that the piecewise linear model (2) is
not differentiable at the phase change points with respect to any of the parameters in the model. We also note that
differentiability of the model is a requirement even in non-likelihood-based approaches such as generalized estimating
equations [11]. A key advantage of the independence assumption is that it allows the criterion L to be split into
sub-criteria Lk which can be minimized separately. This separability is lost in the correlated case, which can lead to
non-convergence of the REML-based objective function that we have encountered many times in simulations involving
the piecewise model under AR(1) correlation. In this context, it is reassuring to note that when moderate autocorrelation
is present, simulation experiments in Section 3 indicate little loss in efficiency for the OLS estimates in the low noise
setting relative to a GLS-based approach which incorporates correlation in the fitting criterion. The low noise criterion
is satisfied for the data at hand because the quality of fits is extremely good (median R2 of 0.98). Whether this level of
efficiency of estimation for the piecewise parametric model also obtains under correlation structures other than AR(1)
remains to be investigated.

A disadvantage of the derived variables analysis approach adopted in this paper is that it does not account for unequal
precision of estimated derived variables during the between-subject analysis [11]. For the problem at hand, unequal
precision can arise due to the random number of observations per subject caused by volume endpoint censoring, as well
as due to adaptive selection of phase change points. We considered using standard errors (SEs) for weighting in the
subject wise analysis. However, since SEs are strongly correlated with the number of time points observed, this will tend
to bias the average slope downwards, as tumors with lower growth rates will typically have more observed time points.
A more sophisticated alternative to this approach is the use of non-linear mixed effect models; however, this approach
again involves the use of REML-type criteria which suffer from the same convergence problems for piecewise models
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as described in the previous paragraph [16]. An alternative to the piecewise modeling approach is the use of smooth
non-parametric ANOVA; this approach uses entire growth curves as units of observation and allows flexibility in shape
of the growth curve [17]. However, in situations where the form of the growth curve is well known, as is the case for the
control arm, this approach may not yield much extra insight. On the flip side, the variance of non-parametric estimators
is typically much higher than those of parametric ones, leading to much less power in testing effects of interest. The
piecewise model attempts to incorporate some of the flexibility of the non-parametric approach while still maintaining
estimation efficiency by keeping the number of pieces small.
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