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By Zhen-Qing Chen, Richard Durrett1 and Gang Ma
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We study a family of differential operators �Lα� α ≥ 0� in the unit ball
D of Cn with n ≥ 2 that generalize the classical Laplacian, α = 0, and the
conformal Laplacian, α = 1/2 (that is, the Laplace–Beltrami operator for
Bergman metric in D). Using the diffusion processes associated with these
(degenerate) differential operators, the boundary behavior of Lα-harmonic
functions is studied in a unified way for 0 ≤ α ≤ 1/2. More specifically,
we show that a bounded Lα-harmonic function in D has boundary limits
in approaching regions at almost every boundary point and the boundary
approaching region increases from the Stolz cone to the Korányi admissible
region as α runs from 0 to 1/2. A local version for this Fatou-type result is
also established.

1. Introduction. Let D be the unit ball in Rm. It is well known that
every bounded harmonic function u in D has a nontangential limit at almost
every boundary point. To state this precisely, define for ξ ∈ ∂D and β > 0 the
Stolz cone with opening β and vertex ξ:

β�ξ� = �z ∈ D	 
z− ξ
 < β�1 − 
z
���
The classical result asserts that for every bounded harmonic function u in the
unit ball D, limβ�ξ��z→ξu�z� exists for a.e. ξ ∈ ∂D. This can also be proved
probabilistically by running a Brownian motion in R2n (see, e.g., [3] for the
case of D being the upper half space of Rm). This nontangential convergence
result in fact holds for any domain in Rm with Lipschitz smooth boundary (see
[1] for a probabilistic proof of this result).

When D is the unit ball in Cn with n ≥ 2 and f is a bounded holomorphic
function in D, more is true. Let w · z = ∑n

i=1wiz̄i denote the inner product in
Cn between two vectors w�z ∈ Cn, and define for ξ ∈ ∂D and β ∈ �0�1� the
admissible region with opening β and vertex ξ:

�β�ξ� = {
z ∈ D	 
ξ · �z− ξ�
 < β�1 − 
z
� and 
z− ξ
 < β�1 − 
z
�1/2}�

which is the intersection of a wedge 
ξ · �z− ξ�
 < β�1 − 
z
� with a paraboloid

z − ξ
 < β�1 − 
z
�1/2. Korányi [9] showed that for any bounded holomorphic
function f in D, lim�β�ξ��z→ξ f�z� exists for a.e. ξ ∈ ∂D.
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The key to Korányi’s analysis is that f is harmonic for the invariant Lapla-
cian,

�̄ = 4�1 − 
z
2�
n∑

j� k=1

�δjk − zjz̄k�∂j∂̄k�(1.1)

where δjk is Kronecker’s delta with δkk = 1 and δjk = 0 if j �= k, and

∂j = 1
2

(
∂

∂x2j−1
− i ∂

∂x2j

)
� ∂̄k = 1

2

(
∂

∂x2k−1
+ i ∂

∂x2k

)
(1.2)

when z = �z1� � � � � zn� = �x1 + ix2� � � � � x2n−1 + ix2n�. The name invariant
comes from the fact that �̄ is invariant under the automorphisms of the unit
ball (see [7] or Section 2.2 of [11]). Another special property of �̄ is that it
is the Laplace–Beltrami operator corresponding to the Bergman metric in D,
under which D has constant negative curvature.

Holomorphic functions are harmonic for the ordinary Laplacian � as well,
but identifying Cn with R2n and using the results quoted in the first paragraph
of this section lead only to nontangential convergence, a weaker result than
Koranyi’s admissible limits. Given this, it is natural, if somewhat optimistic, to
ask if we can find another operator which will allow us to get better results.
To explain what we have in mind, note that a holomorphic function f has
Lf = 0 whenever

L =
n∑

i� j=1

aij�z�∂j∂̄k�(1.3)

since by definition we have ∂̄kf = 0 for 1 ≤ k ≤ n. A diffusion process Zt with
a generator of this form is called a holomorphic diffusion, since if τ is the exit
time from D and f is a holomorphic function f, then f�Zt�� t < τ, is a local
martingale and, furthermore, a time change of a complex Brownian motion. In
this connection, we would like to mention that Fukushima and Okada [4] used
suitably chosen holomorphic diffusions (and the associated Dirichlet forms) to
prove five properties of plurisubharmonic functions.

To motivate the class of operators we will consider, note that if Z is the
diffusion process corresponding to �1−
z
2�−2�̄/2, which we will call the (time-
changed) invariant Brownian motion in D, then up to the exit time τ from the
ball (which turns out to be τ < ∞) we have dZt = σ�Zt�dBt where B is a
2n-dimensional Brownian motion in R2n = Cn and σ is a 2n× 2n real matrix
given by

σ�z� = 
z
−1�P�Q�
(
I2 0

0 �1 − 
z
2�−1/2I2n−2

)

z
−1

(
P′

Q′

)
�(1.4)

where Ik denotes the k × k real identity matrix. Here the superscript prime
denotes the matrix transpose and we make the identification

z = �x1� x2� � � � � x2n−1� x2n�′ and iz = �−x2� x1� � � � �−x2n� x2n−1�′�(1.5)
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P is the 2n×2 real matrix �z� iz� andQ is a 2n×�2n−2� real matrix such that

z
−1�P�Q� is a 2n × 2n orthonormal matrix. We set σ�0� = I2n, the 2n × 2n
real identity matrix. At a point z in D \ �0�, the process Z oscillates with
magnitude 1 along the complex direction Cz and along the space of complex
dimension n − 1 which is perpendicular to Cz; it oscillates with magnitude
�1 − 
z
2�−1/2. Note that if we multiply the oscillations by 1 − 
z
2, then we
get the dimensions of the admissible region �β�ξ� (with 1 − 
z
 replaced by
1 − 
z
2).

Consider now the family of diffusion processes Zα in D for α ≥ 0, given by
dZαt = σα�Zαt �dBt, where

σα�z� = 
z
−1�P�Q�
(
I2 0

0 �1 − 
z
2�−αI2n−2

)

z
−1

(
P′

Q′

)
�(1.6)

Since each entry of σα�z� is a C∞ function inD, the diffusion process Zα exists
up to the exit time τ fromD. It is easy to see that Zατ = limt↑τ Zαt exists almost
surely and takes value in ∂D. The infinitesimal generator of Zα is

Lα = 2
�1 − 
z
2�2α

n∑
j� k=1

(
δjk − 1 − �1 − 
z
2�2α


z
2 zjz̄k

)
∂j∂̄k(1.7)

and therefore every pluriharmonic function in D (that is, the real part of
some holomorphic function in D) is an Lα-harmonic function. However, the
space of Lα-harmonic functions is larger than that of pluriharmonic functions.
Forelli’s theorem (see page 63 of [11]) asserts that if u defined inD satisfies u ∈
C∞��0�� as well as the differential equation

∑n
j�k=1 zjz̄k∂j∂̄ku�z� = 0 for z ∈ D,

then u is pluriharmonic in D. So by (1.7), if u is �-harmonic and Lα-harmonic
for some α > 0, then u is pluriharmonic. Generalizing the classical results for
the Laplacian � and the invariant Laplacian �̄, we have the following theorem.

Theorem 1.1. For every bounded real-valued Lα-harmonic function u in
the unit ball D in Cn �n ≥ 2� with 0 ≤ α ≤ 1/2 and for every β > 0,
lim� α

β �ξ��z→ξ u�z� = ψ�ξ� exists for a.e. ξ ∈ ∂D, where

� α
β �ξ� = {

z ∈ D	 
ξ · �z− ξ�
 < β�1 − 
z
� and 
z− ξ
 < β�1 − 
z
�1−α}�
Furthermore, u can be recovered from its boundary value ψ by u�z� =
Ez�ψ�Zατ ��.

Note that for each fixed opening β > 0, the approaching region � α
β �ξ�

increases from the Stolz cone β�ξ� to the admissible region �β�ξ� as α runs
from 0 to 1/2. We believe that when α > 1/2, Theorem 1 holds with 1 − α
replaced by 1/2. It is clear that 1 − α cannot be correct in that case since for
α > 1/2 the region � α

β �ξ� no longer fits inside the ball. To explain why we
think the answer is 1/2 for α > 1/2 and why we have difficulty proving this,
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consider the two-dimensional analogue

σα�z� = 
z
−1
(
x1 −x2

x2 x1

)(
1 0

0 �1 − 
z
2�−α
)

z
−1

(
x1 x2

−x2 x1

)
�(1.8)

Using Itô’s formula it is easy to see that the radial and angular parts are given
by

dRt = dB1
t + �1 −R2

t �−2αR−1
t dt�

dθt = �1 −R2
t �−α dB2

t �

where the B1 and B2 are two independent Brownian motions. If we let R0 =
1 − rε, θ0 = θε1−α and we consider

Xε
t = �1 −Rtε2�/ε and Yεt = θtε2/ε1−α�

then using 1−Rtε2 = 1−�1−εXε
t�2 ≈ 2εXε

t and Brownian scaling ε−1 dBitε2 =
dB̄it we have

dXε
t ≈ ε−1 dB1

tε2 + ε−1�2εXε
t �−2α�1 + εXε

t �−1ε2 dt

≈ dB1
t + ε1−2α�2Xε

t �−2α dt�

dYεt ≈ ε−�1−α��2εXε
t �−α dB2

tε2 ≈ �2Xε
t �−α dB̄2

t �

where ≈ denotes “approximate equality.” When α < 1/2 the drift in dXε
t con-

verges to 0, but when α > 1/2 it explodes. In the latter case, to get a sensible
limit we let R0 = 1 − rε, θ0 = θε1/2 and we consider

Xε
t = �1 −Rtε1+2α�/ε and Yεt = θtε1+2α/ε1/2�

This time ε−1 dB1
tε2α ⇒ 0, so

dXε
t ≈ ε−1dB1

tε2α + ε−1�2εXε
t �−2α�1 + εXε

t �−1ε1+2α dt ≈ �2Xε
t �−2α dt�

dYεt ≈ ε−1/2�2εXε
t �−α dB2

tε1+2α ≈ �2Xε
t �−α dB̄2

t

and in the limit the first component becomes deterministic. This degeneration
kills our proof of the Harnack inequality in Section 4.

In spite of our failure to prove results for α > 1/2, Theorem 1 gives one
more indication why the invariant Laplacian is well suited for the study of
holomorphic functions in the ball. It would be interesting to investigate other
regions in Cn as well. Stein [12] showed that bounded holomorphic functions
in a bounded C2-smooth domain in Cn (n ≥ 2) have admissible limits at almost
every boundary point. However, this is only optimal for strongly pseudocon-
vex domains (see [6]). A simple example is provided by the “flat” upper half
space H = �z	 Re z1 > 0�, where bounded holomorphic functions have unre-
stricted limits at almost every boundary point. This indicates that the nature
of boundary limits depends on the geometry of the boundary near the point in
question. For a list of known results in this direction, see page 72 of [10]. It
would be interesting to have a probabilistic approach to those results. How-
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ever, we have not been able to overcome the problem of proving the existence
of exit densities for the very singular diffusion processes involved.

In the discussion above we have restricted our discussion to bounded func-
tions to keep attention focussed on the shape of the approach region. Korányi
[9] proved his results for �̄-harmonic functions that are in the Hardy space
Hp with 1 ≤ p < ∞. By working harder we could prove the convergence in
Theorem 1 in this generality or by using ideas from Section 5.3 of [3] we could
extend the result to the Nevanlinna class (defined in Section 5.6 of [11]). See
[2] for related work on the comparison of Hp space and martingale Hp space
on the Hermitian hyperbolic space. To show that we can treat unbounded u,
we will prove the following theorem.

Theorem 1.2 (Local Fatou-type theorem). Let 0 ≤ α ≤ 1/2. For an Lα-
harmonic function u in D, ξ ∈ ∂D and β > 0, define ˜� α

β �ξ� = �
α

β
�ξ� ∩ �z ∈

D	 Re�z · ξ� > 0� and let Nα
β�ξ� = sup ˜� α

β �ξ� 
u�z�
. Let F = �ξ ∈ ∂D	 Nα
β�ξ� <

∞ for some β > 0�. Then lim� α
β �ξ��z→ξ u�z� exists for every β > 0 and a.e.

ξ ∈ F.

As we will see from Theorem 4.1(i) and Corollary 4.2 below, if Nβ�ξ� < ∞
for some β > 0, then Nβ�ξ� <∞ for all β > 0. Thus the set F in Theorem 1.2
can also be expressed as �ξ ∈ ∂D	 Nα

β�ξ� <∞ for all β > 0�.
The rest of the paper is organized as follows. Holomorphic diffusion Zα

and some of its key estimates are studied in Section 2 for α ≥ 0. Unitary
invariance ofLα andZα are discussed in Section 3 for α ≥ 0. Section 4 contains
the Harnack inequality and uniform continuity for nonnegative Lα-harmonic
functions near the boundary of D, where α is restricted to the closed interval
�0� 1/2�. Estimates of the exit density functions and hitting probabilities of Zα

are given in Section 5, with the proof of the existence and minimality of the
exit density function hidden away in an Appendix. Finally, Section 6 presents
the proofs for Theorems 1.1 and 1.2.

Throughout the remainder of this paper, D denotes the unit ball in Cn with
n ≥ 2 and 1 = �1�0� � � � �0�0�′ ∈ R2n. In the sequel, when no confusion may be
caused, we will suppress the super- and subscript α from Lα, Zα, � α

β , σα, and
so forth. The notation “≡” stands for “be defined as.”

2. Holomorphic diffusions. In this section, α ∈ �0�∞� and we will de-
rive some key estimates for the holomorphic diffusions, which are important
for our later development.

For α ≥ 0, let σα be the matrix defined by (1.6). Since each entry of σα
is C∞-smooth in D, for any given 2n-dimensional real Brownian motion in
Cn = R2n, the stochastic differential equation

dZαt = σ�Zαt �dBt
has a unique strong solution. This process Zα has continuous sample paths
and its lifetime is denoted by τα. As we mentioned at the end of the last
section, we will suppress α from Zα, σα and τα in the sequel.
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For r > 0, let Dr denote the ball in Cn = R2n of radius r centered at
the origin. When r = 1, we simply denote D1 by D. For 0 < r < 1, define
τr = inf�t > 0	 
Zt
 = r�. Clearly the lifetime τ for process Zα is given by
limr↑1 τr. Since each component of �Zτr � 0 < r < 1� is a bounded martingale,
limr↑1Zτr exists almost surely and takes values in ∂D. The limit limr↑1Zτr
will be denoted as Zτ in the sequel.

The generator of Z is

L = 1
2

2n∑
i� j=1

�σσ ′�ij�z�
∂2

∂xi ∂xj
�

where z = �z1� � � � � zn�′ = �x1 + ix2� � � � � x2n−1 + ix2n�′. Since 
z
−1�P�Q� is a
2n× 2n orthonormal matrix,

σ�z�σ�z�′ = 
z
−1�P�Q�
(
I2 0

0 �1 − 
z
2�−2αI2n−2

)

z
−1

(
P′

Q′

)
= 
z
−2(PP′ + �1 − 
z
2�−2αQQ′)
= 
z
−2(PP′ + �1 − 
z
2�−2α(
z
2I2n −PP′))
= 
z
−2(�1 − 
z
2�−2α
z
2I2n + �1 − �1 − 
z
2�−2α�PP′)
= 1

�1 − 
z
2�2α

(
I2n − 1 − �1 − 
z
2�2α


z
2 PP′
)
�

(2.1)

If we use the notion ∂j and ∂̄k defined in (1.2), then the generator of Z is given
by

L = 2
�1 − 
z
2�2α

n∑
j� k=1

(
δjk − 1 − �1 − 
z
2�2α


z
2 zjz̄k

)
∂j∂̄k�(2.2)

We record the following observation as a lemma.

Lemma 2.1. For z = �x1� x2� � � � � x2n�′ in D,

2n∑
i� j=1

xixj�σσ ′�ij�z� = 
z
2�

Proof.
2n∑
i� j

xixj�σσ ′�ij�z� = �x1� x2� � � � � x2n�σ�z�σ�z�′�x1� x2� � � � � x2n�′

= �
z
�0� � � � �0�
(
I2 0

0 �1 − 
z
2�−2αI2n−2

)

z

0
���

0


= 
z
2� ✷
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Theorem 2.2. Let R = 
Z
 be the radial process of Z. Then for t < τ,

Rt = R0 +Wt +
∫ t

0

n− 1
Rs�1 −R2

s�2α
ds+ 1

2

∫ t
0

1
Rs
ds�(2.3)

R2
t = R2

0 + 2
∫ t

0
Rs dWs + 2

∫ t
0

n− 1
�1 −R2

s�2α
ds+ 2t�(2.4)

where W is a one-dimensional Brownian motion.

Proof. Let r�z�= 
z
 = �∑2n
i=1 x

2
i �1/2. Then ∂r/∂xi=xi/r and ∂2r/∂xi ∂xj =

δij/r−xixj/r3. Let τr = �t ≥ 0	 
Zt
 > r� and denote the coordinate processes
in R2n of Z by X�i�, 1 ≤ i ≤ 2n. By Itô’s formula, for 0 < r < 1,

Rt∧τr = R0 +
2n∑
i=1

∫ t∧τr
0

X
�i�
s

Rs

2n∑
j=1

σij�Zs�dBjs

+ 1
2

∫ t∧τr
0

( 2n∑
i=1

1
Rs

�σσ ′�ii�Zs� −
2n∑
i�j=1

X
�i�
s X

�j�
s

R3
s

�σσ ′�ij�Zs�
)
ds

≡ R0 +Wt∧τr +At∧τr �
By Lemma 2.1,

 W!t∧τr =
2n∑
j=1

∫ t∧τr
0

( 2n∑
i=1

X
�i�
s σij�Zs�
Rs

)2

ds

=
2n∑
j=1

∫ t∧τr
0

1
R2
s

2n∑
i� k=1

X
�i�
s X

�j�
s σij�Zs�σkj�Zs�ds

=
∫ t∧τr

0

1
R2
s

2n∑
i�k=1

X
�i�
s X

�j�
s �σσ ′�ik�Zs�ds

= t ∧ τr�
Thus W is a one-dimensional Brownian motion up to time τ = limr↑1 τr. For
1 ≤ k ≤ n, let Z�k� = �X�2k−1��X�2k��. Then

At∧τr = 1
2

∫ t∧τr
0

2n∑
i=1

1
Rs

�σσ ′�ii�Zs�ds−
1
2

∫ t∧τr
0

2n∑
i� j=1

X
�i�
s X

�j�
s

R3
s

�σσ ′�ij�Zs�ds

=
∫ t∧τr

0

1
Rs�1 −R2

s�2α

n∑
k=1

(
1 − 1 − �1 −R2

s�2α

R2
s


Z�k�
s 
2

)
ds− 1

2

∫ t∧τr
0

1
Rs
ds

=
∫ t∧τr

0

1
Rs�1 −R2

s�2α

(
n− 1 + �1 −R2

s�2α)ds− 1
2

∫ t∧τr
0

1
Rs
ds

=
∫ t∧τr

0

n− 1
Rs�1 −R2

s�2α
ds+ 1

2

∫ t∧τr
0

1
Rs
ds�
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This proves (2.3) since τ = limr↑1 τr. Formula (2.4) follows from (2.3) and Itô’s
formula. ✷

Corollary 2.3. For z ∈ D, we have

Ez

[∫ τ
0
R−1
s �1 −R2

s�−2α ds

]
≤ 1 − 
z
2

2�n− 1� and Ez�τ� ≤
1 − 
z
2

2n
�(2.5)

Proof. The proof follows directly from (2.3), by first evaluating at τr for
r ∈ �0�1� and then letting r ↑ 1. ✷

Lemma 2.4. LetX be a one-dimensional diffusion on I = �r1� r2� satisfying
dXt = b�Xt�dt + a�Xt�dWt, where b	 I → R and a	 I → R are continuous
functions with a�x� > 0 for x ∈ I, and W is Brownian motion on R. Suppose
that g is a bounded continuous function on I. Then

Ex

[∫ ζ
0
g�Xs�ds

]
=
∫ r2

r1

g�y�G�x�y�dy� x ∈ I�

Here ζ is the exit time of X from I (that is, ζ = lims↓r1� r↑r2
inf�t > 0	 Xt /∈

�s� r��) and

G�x�y� =


2
φ�x� −φ�r1�
φ�r2� −φ�r1�

�φ�r2� −φ�y�� 1
a2�y�f�y� � if y > x�

2
φ�r2� −φ�x�
φ�r2� −φ�r1�

�φ�y� −φ�r1��
1

a2�y�f�y� � if y < x�

where

f�y� = exp
(
−
∫ y
x

2b�t�
a2�t� dt

)
and φ�t� =

∫ t
0
f�s�ds�

Proof. This is a classical result. See, for example, Exercise 5.39 on
page 352 of [8]. ✷

ForZ=�X�1��X�2�� � � � �X�2n��′, letY=X�2� andV=�X�3��X�4�� � � � �X�2n��′.

Theorem 2.5. For 0 < ε < ν < 1/2, we have

E�√1−ε�0�
[
Vτ∧τ√1−ν 
2

] ≤


2�n− 1�
(
ν1−2α − ε1−2α

1 − 2α
ε+ ε2−2α

2�1 − α�
)
�

for 0 ≤ α < 1/2�

ε� for α ≥ 1/2�

(2.6)

and

E�√1−ε�0�
[
Yτ∧τ√1−ν 
2

] ≤ νε+
(

8n
�n− 1�2

(
4
3

)4

− 1
2

)
ε2 for α ≥ 0�(2.7)
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Proof. (i) By Itô’s formula,

E�√1−ε�0�
[
Vτ∧τ√1−ν 
2

]
= E�√1−ε�0��
V0
2�

+ 2E�√1−ε�0�

[∫ τ∧τ√1−ν

0
�1 −R2

s�−2α
(
n− 1 − 1 − �1 −R2

s�2α

R2
s


Vs
2
)
ds

]
≤ 2�n− 1�E�√1−ε�0�

[∫ τ∧τ√1−ν

0
�1 −R2

s�−2α ds

]
�

(2.8)

By Theorem 2.2, R2 is the solution for the following stochastic differential
equation

dXt = 2
√
Xt dWt + 2

(
n− 1

�1 −Xt�2α
+ 1

)
dt� 0 ≤ t < τ�

Applying Lemma 2.4 to the radial process R2 on the interval �1 − ν� 1�, we
have from (2.8) that

E�√1−ε�0�
[
Vτ∧τ√1−ν 
2

] ≤ ∫ 1

1−ν
2�n− 1�
�1 − t�2α

G�1 − ε� t�dt�(2.9)

where

G�1−ε� t� =



2
φ�1 − ε� −φ�1 − ν�
φ�1� −φ�1 − ν� �φ�1� −φ�t�� 1

4tf�t� �

if 1 − ε < t < 1�

2
φ�1� −φ�1 − ε�
φ�1� −φ�1 − ν� �φ�t� −φ�1 − ν�� 1

4tf�t� �

if 1 − ν < t < 1 − ε�

with f�t� = exp�− ∫ t
1−ε��n− 1�/�1 − s�2α + 1�s−1 ds�. Note that f�t� is a de-

creasing function in t ∈ �1 − ν�1�. Thus for 1 − ε < t < 1,

G�1 − ε� t� ≤ 2
∫ 1

t

f�s�
f�t� ds

1
4t

≤ 1 − t
2�1 − ε� �

When 1 − ν < t < 1 − ε,

G�1 − ε� t� ≤ 2
∫ 1

1−ε
f�s�
f�t� ds

1
4t

≤ ε

2t
≤ ε

2�1 − ν� �

In summary, when 0 < ε < ν < 1/2,

G�1 − ε� t� ≤
{

1 − t� if 1 − ε < t < 1�

ε� if 1 − ν < t < 1 − ε�
(2.10)
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For 0 < α < 1/2, it follows from (2.9) that

E�√1−ε�0�
[
Vτ∧τ√1−ν 
2

]
≤
∫ 1−ε

1−ν
2�n− 1�
�1 − t�2α

εdt+
∫ 1

1−ε
2�n− 1�
�1 − t�2α

�1 − t�dt

= 2�n− 1� ε
1 − 2α

(
ν1−2α − ε1−2α)+ 2�n− 1�

2 − 2α
ε2−2α

= 2�n− 1�
(
ν1−2α − ε1−2α

1 − 2α
ε+ ε2−2α

2�1 − α�
)
�

When α ≥ 1/2, by (2.8) and Corollary 2.3, we have

E�√1−ε�0�
[
Vτ∧τ√1−ν 
2

] ≤ 2�n− 1� ε

2�n− 1� = ε�

(ii) The proof of (2.7) is more demanding. By Itô’s formula and (2.1),

E�√1−ε�0�
[
Yτ∧τ√1−ν 
2

]
= E�√1−ε�0�

[∫ τ∧τ√1−ν

0
�σσ ′�22�Zs�ds

]
= E�√1−ε�0�

[∫ τ∧τ√1−ν

0
�1 −R2

s�−2α

×
(

1 − 1 − �1 −R2
s�2α

R2
s

(�X�1�
s �2 + �X�2�

s �2))ds]

= E�√1−ε�0�

[∫ τ∧τ√1−ν

0

(
1 + 1 − �1 −R2

s�2α

R2
s�1 −R2

s�2α

Vs
2

)
ds

]

≤ E�√1−ε�0�
[
τ ∧ τ√1−ν

]+ 1
1 − νE�√1−ε�0�

[∫ τ∧τ√1−ν

0


Vs
2
�1 −R2

s�2α
ds

]
�

(2.11)

By Lemma 2.4 and (2.10),

E�√1−ε�0�
[
τ ∧ τ√1−ν

] = ∫ 1

1−ν
G�1 − ε� t�dt

≤
∫ 1−ε

1−ν
ε dt+

∫ 1

1−ε
�1 − t�dt

= �ν − ε�ε+ ε2

2

= ν ε− ε2

2
�

(2.12)

Let

A = E�√1−ε�0�

[∫ τ∧τ√1−ν

0


Vs
2
�1 −R2

s�2α
ds

]
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and

V∗ = sup
0≤s≤τ∧τ√1−ν


Vs
�

Then

A ≤ E�√1−ε�0�

[
�V∗�2

∫ τ∧τ√1−ν

0
�1 −R2

s�−2α ds

]

≤
√
E�√1−ε�0���V∗�4�

√
E�√1−ε�0�

[(∫ τ∧τ√1−ν

0
�1 −R2

s�−2α ds

)2]
�

(2.13)

By Doob’s inequality,

E�√1−ε�0���V∗�4� ≤ ( 4
3

)4
E�√1−ε�0�

[
Vτ∧τ√1−ν 
4
]
�

while by Itô’s formula,

E�√1−ε�0�
[
Vτ∧τ√1−ν 
4

]
= E�√1−ε�0�

[∫ τ∧τ√1−ν

0

(

Vs
2

2n∑
i=3

�σσ ′�ii�Zs�

+ 2
2n∑
i�j=3

X
�i�
s X

�j�
t �σσ ′�ij�Zs�

)
ds

]

≤ E�√1−ε�0�

[∫ τ∧τ√1−ν

0

2 
Vs
2
�1 −R2

s�2α

(
n− 1 − �1 −R2

s�2α

R2
s


Vs
2
)
ds

]
≤ E�√1−ε�0�

[∫ τ∧τ√1−ν

0

2n 
Vs
2
�1 −R2

s�2α
ds

]
�

(2.14)

In the first inequality above, we used the fact that by (2.1), for z =
�x1� x2� � � � � x2n�′ ∈ D,

2n∑
i� j=3

xixj�σσ ′��z� = 1
1 − 
z
2α

(

w
2 − 1 − �1 − 
z
2�2α


z
2 
w
4
)

≤ 
v
2
1 − 
z
2α �

where v = �x3� x4� � � � � x2n�′. Thus

E�√1−ε�0���V∗�4� ≤
(

4
3

)4

E�√1−ε�0�

[∫ τ∧τ√1−ν

0

2n 
Vs
2
�1 −R2

s�2α
ds

]
=2n

(
4
3

)4

A�(2.15)

Let ρs = R2
s and T = τ ∧ τ√1−ν. By Theorem 2.2, ρ is a strong Markov process

and T is a stopping time of ρ. By Corollary 2.3, for 0 ≤ r < 1,

Er

[∫ T
0

�1 − ρs�−2α ds

]
≤ 1 − r

2�n− 1� �
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Hence

E�√1−ε�0�

[∫ τ∧τ√1−ν

0

1
�1 −R2

s�2α
ds

]

= E1−ε

[(∫ T
0

�1 − ρs�−2α ds

)2]
= 2E1−ε

[∫ T
0

�1 − ρs�−2α
(∫ T
s

�1 − ρt�−2α dt

)
ds

]
= 2E1−ε

[∫ T
0

�1 − ρs�−2αEρs

[∫ T
0

�1 − ρu�−2α du

]
ds

]
≤ 2E1−ε

[∫ T
0

�1 − ρs�−2α 1 − ρs
2�n− 1� ds

]
≤ 2E1−ε

[∫ T
0

�1 − ρs�−2α ε

�n− 1� ds
]

≤ 2
�n− 1�2

ε2�

(2.16)

Now by (2.13), (2.15) and (2.16), we have

A ≤
(

4
3

)2 √
2nA

√
2 ε

n− 1

and, therefore,

A ≤
(

4
3

)4 4n
�n− 1�2

ε2�(2.17)

By (2.11), (2.12) and (2.17), for 0 < ε < ν < 1/2,

E�√1−ε�0�
[
Yτ∧τ√1−ν 
2

] ≤ ν ε− ε2

2
+ 2A = ν ε+

(
8n

�n− 1�2

(
4
3

)4

− 1
2

)
ε2�

This completes the proof of Theorem 2.5. ✷

Letting ν = 2ε in Theorem 2.5, we get the following corollary.

Corollary 2.6. For α ≥ 0 and 0 < ε < 1/4,

E�√1−ε�0�
[
Vτ∧τ√1−2ε


2] ≤ Cα ε2φ�α�(2.18)

and

E�√1−ε�0�
[
Yτ∧τ√1−2ε


2] ≤ Cε2 for α ≥ 0�(2.19)
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where φ�α� = max �1 − α� 1/2�,

Cα =

2�n− 1�
(

21−2α − 1
1 − 2α

+ 1
2�1 − α�

)
� for 0 ≤ α < 1/2�

1� for α ≥ 1/2�

and

C = 3
2

+ 8n
�n− 1�2

(
4
3

)4

�

Lemma 2.7. (i) For 0 < ε < ν < 1, P�√1−ε�0��τ > τ√1−ν� ≤ ε/ν. In particu-
lar, P�√1−ε�0��τ > τ√1−2ε� ≤ 1/2.

(ii) For 0 < ε < 1, P�√1−ε�0��X�1�
τ ≤ 0� ≤ ε/�2�n− 1��1 − ε���

Proof. (i) By Theorem 2.2,

1 − ε = E�√1−ε�0��R2
0�

≤ E�√1−ε�0�
[
R2
τ∧τ√1−ν

]
= P�√1−ε�0�

(
τ < τ√1−ν

)+ �1 − ν�P�√1−ε�0�
(
τ > τ√1−ν

)
= 1 −P�√1−ε�0�

(
τ > τ√1−ν

)+ �1 − ν�P�√1−ε�0�
(
τ > τ√1−ν

)
�

Thus P�√1−ε�0��τ > τ√1−ν� ≤ ε/ν�
(ii) For 0 < ε < 1,

P�√1−ε�0�
(
X�1�
τ ≤ 0

)
= P�√1−ε�0�

( 2n∑
j=1

∫ τ
0
σij�Zs�dBjs ≤ −

√
1 − ε

)

≤ 1
1 − εE�√1−ε�0�

[( 2n∑
j=1

∫ τ
0
σij�Zs�dBjs

)2]

= 1
1 − εE�√1−ε�0�

[ 2n∑
j=1

∫ τ
0
�σσ ′�11�Zs�ds

]

= 1
1 − εE�√1−ε�0�

[∫ τ
0

1
�1 −R2

s�2α

×
(

1 − 1 − �1 −R2
s�2α

R2
s

(�X�1��2 + �X�2��2))ds]
≤ 1

1 − εE�√1−ε�0�

[∫ τ
0

1
�1 −R2

s�2α
ds

]
≤ ε

2�n− 1��1 − ε� �

The last inequality comes from Corollary 2.3. ✷
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Theorem 2.8. For α ≥ 0, there is a constant B = B�α� > 1 such that

P�√1−ε�0�
(
X�1�
τ > 0� 
Yτ
 < Bε and 
Vτ
 < Bεφ�α�) > 1

6

for any 0 < ε < 1/4, where φ�α� = max�1 − α� 1/2�.

Proof. Note that

P�√1−ε�0�
(
X�1�
τ > 0� 
Yτ
 < Bε and 
Vτ
 < Bεφ�α�)

≥ P�√1−ε�0�
(
Yτ
 < Bε and 
Vτ
 < Bεφ�α�)−P�√1−ε�0�

(
X�1�
τ ≤ 0

)
≥ P�√1−ε�0�

(
Yτ∧τ√1−2ε
 < Bε and 
Vτ∧τ√1−2ε
 < Bεφ�α�)
−P�√1−ε�0�

(
τ > τ√1−2ε

)−P�√1−ε�0�
(
X�1�
τ ≤ 0

)
≥ 1 −P�√1−ε�0�

(
Yτ∧τ√1−2ε
 ≥ Bε
)−P�√1−ε�0�

(
Vτ∧τ√1−2ε
 ≥ Bεφ�α�)
−P�√1−ε�0�

(
τ > τ√1−2ε

)−P�√1−ε�0�
(
X�1�
τ ≤ 0

)
≥ 1 − E�√1−ε�0��
Yτ∧τ√1−2ε
2�

B2 ε2
− E�√1−ε�0��
Vτ∧τ√1−2ε
2�

B2 ε2φ�α�

−P�√1−ε�0�
(
τ > τ√1−2ε

)−P�√1−ε�0�
(
X�1�
τ ≤ 0

)
�

which by Corollary 2.6, Lemma 2.7 and the assumption of 0 < ε < 1/4,

≥ 1 − C+Cα
B2

− ε

2�n− 1��1 − ε� − 1
2

≥ 1
2

− Cα +C
B2

− 1
6�n− 1� �

Therefore if we choose B = B�α� = √
6�Cα +C�, where constants Cα and C

are as in Corollary 2.6, then

P�√1−ε�0�
(
X�1�
τ > 0� 
Yτ
 < Bε and 
Vτ
 < Bεφ�α�) ≥ 1

2 − 1
6 − 1

6 = 1
6 �

More specifically, B�α� can be taken as

B�α�=



√
8

√
2�n− 1�

(
22−2α − 1

1 − 2α
+ 1

2�1 − α�
)

+ 3
2

+ 8n
�n− 1�2

(
4
3

)4

�

for 0 ≤ α < 1
2
�

√
8

√
5
2

+ 8n
�n− 1�2

(
4
3

)4

� for α ≥ 1
2
� ✷

Theorem 2.9. Suppose that α ≥ 0. For 0 < γ < 1 and 0 < δ < φ�α�, where
φ�α� = max�1 − α�1/2�, we have

lim
ε↓0
P�√1−ε�0�

(
X�1�
τ > 0� 
Yτ
 < εγ and 
Vτ
 < εδ

) = 1�
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Proof. Let 0 < ε < ν < 1/2. Then

P�√1−ε�0�
(
X�1�
τ > 0� 
Yτ
 < εγ and 
Vτ
 < εδ

)
≥ P�√1−ε�0�

(
Yτ
 < εγ and 
Vτ
 < εδ
)−P�√1−ε�0�

(
X�1�
τ ≤ 0

)
≥ P�√1−ε�0�

(
Yτ∧τ√1−ν
 < εγ and 
Vτ∧τ√1−ν
 < εδ
)

−P�√1−ε�0�
(
τ > τ√1−ν

)−P�√1−ε�0�
(
X�1�
τ ≤ 0

)
≥ 1 −P�√1−ε�0�

(
Yτ∧τ√1−ν
 ≥ εγ
)−P�√1−ε�0�

(
Vτ∧τ√1−ν
 ≥ εδ
)

−P�√1−ε�0�
(
τ > τ√1−ν

)−P�√1−ε�0�
(
X�1�
τ ≤ 0

)
≥ 1 − E�√1−ε�0��
Yτ∧τ√1−ν
2�

ε2γ
− E�√1−ε�0��
Vτ∧τ√1−ν
2�

ε2δ

−P�√1−ε�0�
(
τ > τ√1−ν

)−P�√1−ε�0�
(
X�1�
τ ≤ 0

)
�

(2.20)

Now let ν = εβ with 0 < 1 − β < min�1 − γ� φ�α� − δ�. When 0 ≤ α < 1/2, by
Theorem 2.5 and Lemma 2.7, (2.20) is bounded below by

1 −
(
ε1+β−2γ +

(
8n

�n− 1�2

(
4
3

)4

− 1
2

)
ε2−2γ

)
− 2�n− 1�

(
ε1+β�1−2α�−2δ − ε2−2α−2δ

1 − 2α
+ ε2−2α−2δ

2�1 − α�
)

− ε1−β − ε

2�n− 1��1 − ε� �

(2.21)

When α ≥ 1/2, by Theorem 2.5 and Lemma 2.7 again, (2.20) is bounded below
by

1 −
(
ε1+β−2γ +

(
8n

�n− 1�2

(
4
3

)4

− 1
2

)
ε2−2γ

)
− ε1−2δ − ε1−β − ε

2�n− 1��1 − ε� �
(2.22)

Theorem 2.9 now follows from (2.20)–(2.22) by passing ε ↓ 0. ✷

3. Unitary invariance. In this section, α ∈ �0� ∞�. Let C = �ckj�n×n
be an unitary complex matrix in Cn whose entries are ckj = αkj + iβkj, 1 ≤
k� j ≤ n, where αkj and βkj are real numbers. Then with zj = x2j−1 + ix2j,
j = 1�2� � � � � n,

n∑
j=1

ckjzj =
n∑
j=1

�αkj + iβkj� �x2j−1 + ix2j�

=
n∑
j=1

�αkjx2j−1 − βkjx2j� + i
n∑
j=1

�βkjx2j−1 + αkjx2j��
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Thus, under the identification of Cn with R2n through (1.5), the unitary matrix
C in Cn is identified with an orthogonal matrix

@ =



α11 −β11 α12 −β12 · · · α1n −β1n

β11 α11 β12 α12 · · · β1n α1n

α21 −β21 α22 −β22 · · · α2n −β2n

β21 α21 β22 α22 · · · β2n α2n

���
���

���
���

� � �
���

���

αn1 −βn1 αn2 −βn2 · · · αnn −βnn
βn1 αn1 βn2 αn2 · · · βnn αnn


(3.1)

in R2n. That is, under the identification (1.5),

C


z1

���

zn

 = @



x1

x2

���

x2n−1

x2n


�

Clearly, if

@



x1

x2

���

x2n−1

x2n


=



y1

y2

���

y2n−1

y2n


�(3.2)

then

@



−x2

x1

���

−x2n

x2n−1


=



−y2

y1

���

−y2n

y2n−1


�(3.3)

Hence the operatorL is invariant under the mapping@; that is, for any smooth
function f in D,

L�f ◦@� = �Lf� ◦@�
In fact, if let Z̃ = @�Z�, then

dZ̃t = σ�Z̃t�dB̃t� t < τ�(3.4)
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where B̃ = @ ◦B, which is a Brownian motion in R2n. Therefore, for 0 < r ≤ 1
and A ⊂ ∂Dr,

Pz�Zτr ∈ A� = P@�z��Zτr ∈ @�A��� z ∈ D�(3.5)

In particular, this implies the following proposition.

Proposition 3.1. Under P0, the distribution of Zτr is a uniform distribu-
tion on ∂Dr for 0 < r ≤ 1; the distribution of Zτr is �σr�dx��/�σr�∂Dr��, where
σr is the Lebesgue surface measure on ∂Dr.

4. Harnack inequality and uniform continuity. In this section, we
assume that 0 ≤ α ≤ 1/2. For γ > 0 and ε > 0, define

Iγ�ε� = {
z = �x1� x2� � � � � x2n�′ ∈ ∂D	 x1 > 0�


x2
 < γε� 
�x3� � � � � x2n�
 < γε1−α}�(4.1)

and for 0 < r < 1, define

rIγ�ε� =
{
z ∈ D	 
z
 = r� z

r
∈ Iγ�ε�

}
�

Theorem 4.1. (i) For any given constant γ > 0, there are constants λ =
λ�α� γ� > 0 and ε0 = ε0�α� γ� ∈ �0� min�1/4�1/�4γ2��� such that for 0 < ε < ε0

sup
z∈√1−εIγ�ε�

u�z� ≤ λ inf
z∈√1−εIγ�ε�

u�z��

for any L-harmonic function u ≥ 0 in D.
(ii) For any given δ > 0, there is γ0 = γ0�α� δ� > 0 such that for 0 < ε <

ε0�α� γ� and 0 < γ < γ0,

osc√
1−εIγ�ε� u ≤ δ'u'∞�

where osc√
1−εIγ�ε� u = supz�w∈√1−εIγ�ε� 
u�z� − u�w�
 and 'u'∞ = supz∈D 
u�z�
.

Proof. For γ > 0, let

U = Uγ�ε� =
{
z = �x1� x2� � � � � x2n�′ ∈ D	 x1 > 0� 1 − 3ε

2
< 
z
2 < 1 − ε

2
�


x2
 < 2γε� and 
�x3� � � � � x2n�
 < 2γε1−α
}

and

K =Kγ�ε� =
{
z = �x1� x2� � � � � x2n�′ ∈ D	 x1 > 0� 1 − 5ε

4
≤ 
z
2 ≤ 1 − 3ε

4
�


x2
 ≤ γε� and 
�x3� � � � � x2n�
 ≤ γε1−α
}
�
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We observe that
√

1 − εIγ�ε� ⊂ K ⊂ U and Uγ�ε� ⊂ D when ε <

min�1/4� �2γ�−2�. On U = Uγ�ε�, we introduce the following transforma-
tion T = Tε:

�u1� u2� u3� � � � � u2n�′ = Tε �x1� x2� x3� � � � � x2n�′

=
(

1 − 
z
2
ε

�
x2

ε
�
x3

ε1−α � � � � �
x2n

ε1−α

)′
�

Then

∂�u1� u2� u3� � � � � u2n�
∂�x1� x2� x3� � � � � x2n�

=



−2x1

ε
−2x2

ε
−2x3

ε
· · · −2x2n

ε

0
1
ε

0 · · · 0

0 0
1
ε1−α · · · 0

���
���

���
� � �

���

0 0 0 · · · 1
ε1−α


�

Notice that Tε�U� = ��u1� u2� u3� � � � � u2n�	 
u1
 < 1/2, 
u2
 < 2γ and

�u3� � � � � u2n�
 < 2γ� and Tε�K� = ��u1� u2� u3� � � � � u2n�	 
u1
 ≤ 1/4, 
u2
 ≤ γ
and 
�u3� � � � � u2n�
 ≤ γ�. Let

a�z� = �aij�z��2n×2n = ��σσ ′�ij�z��2n×2n�

Under the new coordinates �u1� u2� u3� � � � � u2n�,

L�z� =
2n∑

i� j=1

aij�z�
∂2

∂xi ∂xj

=
2n∑

k� l=1

( 2n∑
i� j=1

aij�z�
∂uk
∂xi

∂ul
∂xj

)
∂2

∂uk∂ul
+ 1
ε

2n∑
k=1

( 2n∑
i� j=1

∂2uk
∂xi ∂xj

)
∂

∂uk

=
2n∑

k� l=1

( 2n∑
i� j=1

aij�z�
∂uk
∂xi

∂ul
∂xj

)
∂2

∂uk ∂ul
− 1
ε

( 2n∑
i� j=1

∂2
z
2
∂xi ∂xj

)
∂

∂u1

=
2n∑

k� l=1

( 2n∑
i� j=1

aij�z�
∂uk
∂xi

∂ul
∂xj

)
∂2

∂uk ∂ul
− 2
ε

( 2n∑
i=1

aii�z�
)
∂

∂u1
�

(4.2)

Thus

ε2L�z� =
2n∑

k� l=1

(
ε2

2n∑
i� j=1

aij�z�
∂uk
∂xi

∂ul
∂xj

)
∂2

∂uk ∂ul
− 2ε

( 2n∑
i=1

aii�z�
)
∂

∂u1

≡
2n∑

k� l=1

αkl�Tεz�
∂2

∂uk ∂ul
− β1�Tεz�

∂

∂u1

(4.3)
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Note that on U,

β1�Tεz� = 2ε
( 2n∑
i=1

aii�z�
)

= 2ε
(

2�n− 1�
�1 − 
z
2�2α

+ 2
)

≤ 22+2α�n− 1�ε1−2α + 4ε�

(4.4)

which is uniformly bounded for ε ∈ �0� 1/4�. We now show that �αkj�2n×2n
is uniformly bounded and elliptic on U. For any unit vector � = �ξ1� ξ2� ξ3�
� � � � ξ2n�′ in R2n and z ∈ U, let

� = ∂�u1� u2� u3� � � � � u2n�
∂�x1� x2� x3� � � � � x2n�

��

that is, η1 = −2x1ξ1/ε, η2 = −2x2ξ1/ε + ξ2/ε, η3 = −2x3ξ1/ε + ξ3/ε
1−α, � � �

and η2n = −2x2nξ1/ε+ ξ2n/ε
1−α. Let Pz� = �η · z�z/
z
2 be the projection of �

to the complex line Cz:


Pz�
2 = 1

z
2

[(
−2
z
2ξ1

ε
+ x2ξ2

ε
+

2n∑
j=3

xjξj

ε1−α

)2

+
(
x1ξ2

ε
+

n∑
k=2

�x2k−1ξ2k − x2kξ2k−1�
ε1−α

)2]

= 4
z
2ξ2
1

ε2
+ x2

1ξ
2
2


z
2ε2
+A�ε� z� ���

(4.5)

where

A�ε� z� �� = 1

z
2

(
x2ξ2

ε
+

2n∑
j=3

xjξj

ε1−α

)2

+ 1

z
2

( n∑
k=2

�x2k−1ξ2k − x2kξ2k−1�
ε1−α

)2

− 4ξ1

ε

(
x2ξ2

ε
+

2n∑
j=3

xjξj

ε1−α

)
+ 2x2ξ2

ε

n∑
k=2

x2k−1ξ2k − x2kξ2k−1

ε1−α �

(4.6)

It follows from the definition of U,


A�ε� z� ��
 ≤ 5γ2 + 10γ
ε

(4.7)

for ε > 0, z ∈ U and unit vector � ∈ R2n. On the other hand,


�
2 =
2n∑
j=1

η2
j

= 4
z
2ξ2
1

ε2
+ ξ2

2

ε2
+

2n∑
j=3

ξ2
j

ε2�1−α� −
(

4x2ξ2

ε2
+

2n∑
k=3

4xkξk
ε2−α

)
ξ1�
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Thus


� −Pz�
2 = 
�
2 − 
Pz�
2

=
2n∑
j=3

ξ2
j

ε2�1−α� + ξ2
2

ε2


z
2 − x2
1


z
2

−
(

4x2ξ2

ε2
+

2n∑
k=3

4xkξk
ε2−α

)
ξ1 −A�ε� z� ��

=
2n∑
j=3

ξ2
j

ε2�1−α� + ξ2
2

ε2


z
2 − x2
1


z
2 +B�ε� z� ���

(4.8)

where

B�ε� z� �� = − 1

z
2

((
x2ξ2

ε
+

2n∑
j=3

xjξj

ε1−α

)2

+
( n∑
k=2

�x2k−1ξ2k − x2kξ2k−1�
ε1−α

)2)

− 2x2ξ2

ε

n∑
k=2

x2k−1ξ2k − x2kξ2k−1

ε1−α �

(4.9)

Thus for 0 < ε < 1
4 , z ∈ U and unit vector � ∈ R2n,


B�ε� z� ��
 ≤ 22γ2�(4.10)

Since
2n∑

k� l=1

αkl�Tεz� ξkξl = ε2
2n∑
i�j=1

aij�z�ηiηj = ε2
Pz�
2 + ε2 
z−Pz�
2
�1 − 
z
2�2α

and for z ∈ U, ε/2 < 1 − 
z
2 < 3ε/2, it follows from (4.5)–(4.10) that for
0 < ε < 1/4,

1 − 33γ2

3
ε2 −

(
10γ + 102γ2

5

)
ε <

2n∑
k� l=1

αkl�Tεz� ξkξk

< 4 + 5γ2 ε2 + �10γ + 44γ2� ε�
(4.11)

Thus there is a constant ε0 = ε0�α� γ� ∈ �0� min�1/4�1/�4γ2���, depending on
γ only, such that for ε ∈ �0� ε0�,

1
2 <

2n∑
k� l=1

αkl�Tεz� ξkξk < 5 ∀� ∈ R2n with 
�
 = 1

for any z ∈ U = Uγ�ε�. That is, �αkl�2n×2n is uniformly elliptic and bounded on
Tε�U�. Thus by (4.3) and (4.4), �ε2L�0 < ε < ε0�α� γ��, under the coordinates
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�u1� u2� � � � � u2n� in Tε�U�, is a family of uniformly elliptic and bounded dif-
ferential operators. It follows from Corollary 9.25 of [5] that any nonnegative
L-harmonic function on D has Harnack inequality

sup
z∈Kγ�ε�

u�z� ≤ λ inf
z∈Kγ�ε�

u�z�

with constant λ = λ�α� γ� > 0 independent of u and ε ∈ �0� ε0�. For 0 < γ <
1/2, let

Fγ�ε� = T−1
ε

({�u1� u2� u3� � � � � u2n�	 
u
1 < γ� 
u2
 < γ�
and 
�u3� � � � � u2n�
 < γ

})�
that is,

Fγ�ε� = {
z = �x1� x2� � � � � x2n�′ ∈ D	 x1 > 0�

1 − ε− γε ≤ 
z
2 ≤ 1 − ε+ γε� 
x2
 ≤ γε�
and 
�x3� � � � � x2n�
 ≤ γε1−α}�

Then by Corollary 9.24 of [5], the following Hölder estimate holds for any
nonnegative L-harmonic function u on D:

oscFγ�ε� u ≤ λ1�2γ�r oscF1/2�ε� u� 0 < γ < 1
2 �

where λ1 and r > 0 are constants independent of ε, γ and u. The theorem is
thus proved by noting that

√
1 − εIγ�ε� ⊂Kγ�ε�

⋂
Fγ�ε�. ✷

Remark 1. When α > 1/2, the above argument in the proof of Theorem
4.1 breaks down, since Iγ�ε� is no longer a relatively compact subset of D and
ε2L is not uniformly elliptic and bounded in U�ε�. However, we conjecture
that Theorem 4.1 still holds for α > 1/2 with 1 − α in the definition (4.1) of
Iγ�ε� be replaced by 1/2.

Corollary 4.2. By the unitary invariance of L, Theorem 4.1 holds on
@�√1 − ε Iγ�ε�� for any orthogonal transformation of the form (3.1). ✷

5. Exit density and hitting probabilities. In this section, α ∈ �0�∞�
unless otherwise specified, as in Theorems 5.5–5.7 and Corollaries 5.6–5.8,
where α ∈ �0� 1/2�. Let h�z� ξ�� z ∈ D� ξ ∈ ∂D, denote the exit density
function of the holomorphic diffusion Zt with respect to the Lebesgue surface
measure σ on ∂D (or equivalently, the Poisson kernel for L in D); that is, h
is such a function that for any continuous function φ on ∂D,

Ez�φ�Zτ�� =
∫
∂D
φ�ξ�h�z� ξ�dσ�ξ��

For each fixed ξ ∈ ∂D, hξ�z� = h�z� ξ� is a minimal C∞-smooth L-harmonic
function in z ∈ D and h ∈ C�D × ∂D�. The existence of h�z� ξ� as well as its
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aforementioned properties are shown in the Appendix. By the unitary invari-
ance (3.5), we have

h�z� ξ� = h�@�z�� @�ξ��(5.1)

for any orthogonal transformation @ of (3.1). From Proposition 3.1, we see
that

h�0� ξ� = 1
σ�∂D� � ξ ∈ ∂D�(5.2)

Lemma 5.1. Let τr be the first exit time of Z from Dr. For z ∈ D, 0 < r < 1
and A ∈ �τr , let

Pξz�A� = Ez�h�Zτr� ξ�� A�/h�z� ξ��(5.3)

Then (5.3) uniquely defines a probability measure P
ξ
z on �τ ≡ σ�⋃0<r<1 �τr�,

the σ-algebra generated by
⋃

0<r<1 �τr .

Proof. For 0 < s < r < 1, since h�z� ξ� is a bounded L-harmonic for
z ∈ Dr+ε, where 0 < ε < 1−r, then by the optional stopping theorem, we have

Ez�h�Zτr� ξ�� A�/h�z� ξ� = Ez�h�Zτs� ξ�� A�/h�z� ξ�� A ∈ �τs �

That is, the definitions ofPξz in (5.3) on �τr , 0 < r < 1, are consistent and there-
fore Pξz is σ-additive on

⋃
0<r<1 �τr . Then by the Carathéodory extension the-

orem, Pξz in (5.3) uniquely defines a probability measure on σ�⋃0<r<1 �τr�. ✷

Remark 2. We will show in Corollary 5.8 below that under Pξz, �Zt� 0 ≤
t < τ� is the process conditioned to exit D at ξ.

Lemma 5.2. Let A ∈ �τ and z ∈ D. Let g�ξ� = P
ξ
z�A�. Then g�Zτ� =

Pz�A
Zτ�.

Proof. The proof is the same as that for (4) in Section 3.2 of [3]. ✷

Lemma 5.3. If u is a bounded L-harmonic function in D, then

P
ξ
z�limr↑1 u�Zτr� exists� = 1 for each z ∈ D and for a.e. ξ ∈ ∂D.

Proof. Let A = �limr↑1 u�Zτr� exists� and g�ξ� = Pξz�A�. Since A ∈ �τ, it
follows from Lemma 5.2 that g�Zτ� = Pz�A
Zτ�. Hence

Ez�g�Zτ�� = Ez�Pz�A
Zτ�� = Pz�A� = 1�

where the last equality holds since �Zτr��τr�0≤r<1 is a boundedPz-martingale.
Combining ∫

∂D
g�ξ�h�z� ξ�σ�dξ� = Ezg�Zτ� = 1
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with the fact that g�ξ� ≤ 1 and
∫
∂D h�z� ξ�σ�dξ� = 1 yields g�ξ� = 1 a.e. on

∂D. ✷

Definition 5.1. An event A ∈ �τ is said to be shift invariant if for any
stopping time T < τ, θ−1

T �A� = A Pz-a.s for all z ∈ D, where θ is the shifting
operator on the sample space such that Zs ◦ θt = Zs+t for 0 ≤ t < τ�ω� − s.

Lemma 5.4 (0-1 law). Let A ∈ �τ be a shift invariant event. Then z →
P
ξ
z�A� is a constant function which is either 0 or 1.

Proof. With the fact that the exit density functions �h�z� ξ�� ξ ∈ ∂D�
are minimal L-harmonic functions in z ∈ D and with the establishment of
representation of a nonnegative L-harmonic u ≤ h�·� ξ� in terms of h�·� ξ� in
Theorems A.4 and A.5 in the Appendix, the rest of the proof is the same as
that in Section 3.5 of [3]. ✷

Theorem 5.5. For 0 ≤ α ≤ 1/2 and β > 0, the exit density function h�z� ξ�
of Z = Zα from D has the estimate

h�z�1� ≥ λ1�1 − 
z
2�−1−2�n−1��1−α�� z ∈ �β�1� with 
z
2 > 1 − ε0�α�β��

where ε0�α�β� is the constant in Theorem 4.1(1) and λ1 = λ1�α�β� > 0 is a
constant independent of z.

Proof. Without loss of generality, we may assume that β > B, where B
is the constant in Theorem 2.8. For z ∈ �β�1� with 
z
2 > 1 − ε0�α�β�, let
ε = 1 − 
z
2. Note that 0 < ε < 1/4 and β2ε < 1/4. By Theorem 2.8 and the
mean value theorem,

1
6 < p ≡

∫
IB�ε�

h
(√

1 − ε1� ξ
)
σ�dξ� = h(√1 − ε1� η

)
σ�IB�ε��(5.4)

for some η ∈ IB�ε�. Let H be the reflection transformation with respect to the
complex line Cw with w = �η+ 1�/
η+ 1
; that is,

H�z� = �z ·w�w− �z− �z ·w�w� = 2�z ·w�w− z� z ∈ Cn�(5.5)

The transformation H is a unitary transformation of Cn such that H�η� = 1
and H�1� = η. Observe that

σ�Iγ�ε�� = cnγ2n−1ε1+2�n−1��1−α� for γε1−α < 1�(5.6)

where cn is a constant independent of γ. Note that �β�1� ∩ �w ∈ D	 
w
2 =
1−ε� ⊂ √

1 − ε Iβ�ε�. Thus by Theorem 4.1(1), the unitary invariance property
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(5.1) and (5.4), we have that for z ∈ �β�1� with 
z
2 > 1 − ε0�α�β�,

h�z�1� ≥ λ−1h
(√

1 − εη� 1
)

= λ−1 h
(√

1 − εH�η�� H�1�)
= λ−1 h

(√
1 − ε1� η

)
>

1
6λ
σ�IB�ε��−1

= �6cnλ�−1B−�2n−1�ε−1−2�n−1��1−α�

= λ1�1 − 
z
2�−1−2�n−1��1−α��

where λ=λ�α�β� is the constant in Theorem 4.1(1) and λ1 =�6cnλ�−1B−�2n−1�>
0 which is independent of z. ✷

For ξ ∈ ∂D, let @ be an orthogonal transformation of (3.1) such that @�1� =
ξ. Then �β�ξ� = @�β�1� for β > 0. By the unitary invariance (5.1), we have

Corollary 5.6. For 0 ≤ α ≤ 1/2 and ξ ∈ ∂D, the exit density function
h�z� ξ� of Z = Zα has the estimate

h�z� ξ� ≥ λ1�1 − 
z
2�−1−2�n−1��1−α�� z ∈ �β�ξ� with 
z
2 > 1 − ε0�α�β��
where λ1 is the constant in Theorem 5.5. ✷

Recall that Iγ�ε� is an open subset of ∂D defined by (4.1).

Theorem 5.7. Suppose that 0 ≤ α ≤ 1/2. For a sequence of points �zk� k ≥
1� in �β�ξ� with zk → ξ ∈ ∂D as k → ∞, let @k be an orthogonal trans-
formation of (3.1) such that @k�1� = zk/
zk
. For γ > 0, let Rk ≡ Rk�γ� =

zk
@k�Iγ�1 − 
zk
2��, for k ≥ 1. Then

Pξz�Zt� 0 ≤ t < τ� hits infinitely many Rk� = 1� z ∈ D�

Proof. Let τk be the first hitting time of �z	 
z
 = 
zk
� by Z. Then by the
definition (5.3) of Pξ0, Proposition 3.1 and (5.2),

pk ≡ Pξ0�Zt hits Rk for t < τ�
= E0�h�Zτk� ξ�� Zτk ∈ Rk�/h�0�0�

= 1
σk�∂D
zk
�σ�∂D�

∫
Rk

h�z� ξ�σk�dz��

where σk is the Lebesgue surface measure on ∂D
zk
. A simple calculation
shows that Rk ⊂ �β1

�ξ�, where β1 = max�β + 2γ�
√

2γ�β + 1 +
√

4γ2 + 1��.
Applying Corollaries 4.2 and 5.6 to the L-harmonic function h�·� ξ� on Rk, we
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obtain that for some constants λ = λ�α� γ� > 0 and λ1 = λ1�α�β1� > 0,

pk ≥ 1
σk�∂D
zk
�σ�∂D�

1
λ
h�zk� ξ�σk�Rk�

≥ 1
λσk�∂D
zk
�σ�∂D�λ1�1 − 
zk
2�−1−2�n−1��1−α� cnγ

2n−1�1 − 
zk
2�1+2�n−1��1−α�

≥ cnλ1γ
2n−1

λ 
zk
2n−1 σ�∂D�2
�

where constant cn in the second inequality is the one in (5.6). It follows from
Fatou’s lemma and the 0-1 law of Lemma 5.4 that

Pξz

( ⋂
m≥1

⋃
k≥m

�Zt hits Rk�
)

= 1� ✷

Corollary 5.8. Suppose that 0 ≤ α ≤ 1/2. For each ξ ∈ ∂D, we have

Pξz

(
lim
t↑τ
Zt = ξ

)
= 1� z ∈ D�

Proof. Let A = �limt↑τ Zt exists and limt↑τ Zt ∈ ∂D�, which is a measur-
able event in �τ. Applying Lemma 5.3 to the holomorphic function u�z� = z,
we have that for a.e. ξ ∈ ∂D, Pξz�A� = 1 for all z ∈ D. It follows from the
unitary invariance of Z [see, in particular, (3.4)] that Pξz�A� = P

@�ξ�
@�z��A� for

any orthogonal transformation @ in R2n of the form (3.1). Therefore for each
ξ ∈ ∂D, Pξz�A� = 1 for all z ∈ D and Corollary 5.8 is proved in view of Theo-
rem 5.7. ✷

6. Proof of Theorems 1.1 and 1.2. Now we are in the position to prove
the main results of this paper. In this section, α ∈ �0�1/2�. Keep in mind that
throughout this section the super- and subscript α are suppressed from the
ones that appeared in the statement of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. From Lemma 5.3, limr↑1 u�Zτr� exists Pξz almost
surely for every z ∈ D and a.e. ξ ∈ ∂D. Let ψ�ξ� = limr↑1 u�Zτr� under Pξ0. We
show that lim�β�ξ��z→ξu�z� = ψ�ξ�.

Let b = lim sup�β�ξ��z→ξ u�z�. By the uniform continuity property of Corol-
lary 4.2, for any δ > 0, there exists 0 < γ < 1/2 and ε0 = ε0�α� γ� so that
for all 0 < ε < ε0 and every orthogonal transformation @ of form (3.1),
osc√

1−ε@�Iγ�ε�� u < δ. Let zk ∈ �β�ξ� so that zk → ξ as k→ ∞ and u�zk� > b−δ
for all k. Let @k be an orthogonal transformation of the form (3.1) such that
@k�1� = zk/
zk
. Then u ≥ b − 2δ on

√
1 − εk@k�Iγ�ε�� for all k such that

εk ≡ 1 − 
zk
 < ε0. Since Zt hits infinitely many
√

1 − εk@k�Iγ�ε�� under Pξz
by Theorem 5.7, ψ�ξ� = limr↑1 u�Zτr� ≥ b − 2δ Pξz-a.s. After letting δ ↓ 0, we
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get

ψ�ξ� ≥ b = lim sup
�β�ξ��z→ξ

u�z�� Pξz- a.s.

Applying this to −u, we see that

ψ�ξ� ≤ lim inf
�β�ξ��z→ξ

u�z�� Pξz-a.s.

Consequently, ψ�ξ� is not random and equals lim�β�ξ��z→ξu�z� for a.e. ξ ∈ ∂D.
To show the probabilistic representation of u in terms of its boundary data

ψ, let τk = τ
zk
. Since u is a bounded L-harmonic function inD, by the optional
stopping theorem we see that �Zτk��τk�k≥1 is a bounded martingale under
Pz and therefore u�z� = Ez�u�Zτk�� for z ∈ D. Let A = �limk↑∞ u�Zτk� =
ψ�Zτ��. Note that Pξz�A� = 1 for a.e. ξ ∈ ∂D and every z ∈ D, because
P
ξ
z�Zτ = ξ� = 1 by Corollary 5.8. Thus it follows from Lemma 5.2 thatPz�A� =∫
∂D P

ξ
z�A�h�z� ξ�σ�dξ� = 1. That is, limk→∞ u�Zτk� = ψ�Zτ�, Pz-a.s. for all z ∈

D. Now passing k→ ∞ in u�z� = Ez�u�Zτk�� yields that u�z� = Ez�ψ�Zτ��. ✷

We are now going to prove a local version of Theorem 1.1. We begin with
two lemmas. For ξ ∈ ∂D, define Iξγ�ε� = @Iγ�ε�, where @ is any orthogonal
transformation in R2n of the form (3.1) such that @�1� = ξ. This definition
is well defined since, as can be seen from (3.2) and (3.3), HIγ�ε� = Iγ�ε� for
any orthogonal transformation H of (3.1) with H�1� = 1. In fact, Iξγ�ε� can be
explicitly written down:

Iξγ�ε� = {
η ∈ ∂D	 Re�η · ξ� > 0� 
Im�η · ξ�
 < γε�

and 
η− �η · ξ�ξ
 < γε1−α}�(6.1)

Lemma 6.1. For k > sup�
z
<1/2�
u�z�
, let Fkβ = �ξ ∈ ∂D	 Nβ�ξ� ≤ k�. Set

D0 =D1/2 ∪ ⋃
ξ∈Fkβ

˜�β�ξ�. Then for β > B
√

4B2 + 1 + 1 and z ∈ D \ D0, we

have ∂D \Fkβ ⊃ IξB�ε�, where B is the constant in Theorem 2.8, ξ = z/
z
 and
ε = 1 − 
z
2.

Proof. Note that η ∈ ∂D, 
η − ξ
 ≥ 
z − η
 − 
z − ξ
 ≥ 
z − η
 − ε and

�ξ−η�ξ
 = 
�η−ξ�η
 ≥ 
�z−η�η
−
�z−ξ�η
 ≥ 
�z−η�η
−ε. Thus for η ∈ Fkβ,
since z �∈ ˜�β�η�, either Re�ηξ� = 
z
−1 Re�zξ� ≤ 0 or 
η − ξ
 > �β − 1�ε1−α or

�ξ − η�ξ
 > �β− 1�ε. However, an easy calculation shows that

I
ξ
B�ε� ⊂ {

η ∈ ∂D	 Re�ηξ� > 0� 
�ξ − η�ξ
 < B
√

4B2 + 1 ε

and 
η− ξ
 < 2Bε1−α}
⊂ {
η ∈ ∂D	 Re�ηξ� > 0� 
�ξ − η�ξ
 < B

√
4B2 + 1 ε

and 
η− ξ
 < B
√

4B2 + 1 ε1−a}�
(6.2)

since B > 1. Thus for β > B
√

4B2 + 1 + 1, we have Fkβ ∩ IξB�ξ� = �; that is,
∂D \Fkβ ⊃ IξB�ε�. ✷



HOLOMORPHIC DIFFUSIONS AND FATOU-TYPE THEOREM 1129

Lemma 6.2. Let k,Fkβ andD0 be as in Lemma 6.1 with β > B
√

4B2 + 1+1.

Let τ0 = inf�t > 0	 Zt ∈ D \ D0�. Then for z ∈ D \ D0, Pz�Zτ �∈ Fkβ� ≥
1
6Pz�τ0 < τ�.

Proof. Note that D0 is an open set since each ˜�β�ξ� is open. By the
continuity of Z inside D, Zτ0

∈ ∂D0 ∩ D on �τ0 < τ�. Thus by the strong
Markov property of Z, Theorem 2.8 and unitary invariance property (3.5),

Pz�Zτ �∈ Fkβ� = Pz�Zτ �∈ Fkβ� τ0 < τ�
= Ez

[
PZτ0

�Zτ �∈ Fkβ� τ0 < τ�
]

≥ 1
6Pz�τ0 < τ�� ✷

Proof of Theorem 1.2. Let k, Fkβ and D0 be as in Lemma 6.1 with β >
B
√

4B2 + 1 + 1 and τ0 = inf�t > 0	 Zt ∈ D \ D0�. Note that by Theorem
4.1(1) and Corollary 4.2, F = �ξ ∈ ∂D	Nα

γ�ξ� <∞ for all γ > 0� and therefore
F = ⋃∞

k=1F
k
β. Let A = �limr↑1 u�Zτr� exists�, which is a shift invariant event

in �τ. On A, denote the limit of u�Zτr� as r ↑ 1 by η. It follows from Theorem
5.7 that 
η
 ≤ k Pξz-a.e. on A for ξ ∈ Fkβ. Since the L-harmonic function u is
bounded on D0 by k, �u�Zτ0∧τr�� �τ0∧τr� 0 ≤ r < 1� is a bounded martingale
and therefore limr↑1 u�Zτ0∧τr� exists almost surely. Thus �τ0 = τ� ⊂ A Pz-a.e
and limr↑1 u�Zτ0∧τr� = η Pz-a.s. on �τ0 = τ� for z ∈ D, while on �τ0 < τ�,
limr↑1 u�Zτ0∧τr� = u�Zτ0

�. Therefore for z ∈ D0,

u�z� = lim
r↑1
u�Zτ0∧τr�

= Ez�u�Zτ0
�� τ0 < τ� +Ez�η� τ0 = τ�

= Ez�u�Zτ0
�� τ0 < τ� +Ez�η� Zτ ∈ Fkβ� −Ez�η� Zτ ∈ Fkβ� τ0 < τ�

≡ u1�z� + u2�z� + u3�z��

(6.3)

Since η and Zτ ∈ Fkβ are both �τ-measurable and shift invariant, u2
is a bounded L-harmonic function on D and therefore by Theorem 1.1,
lim�β�ξ��z→ξ u2�z� exists for a.e. ξ ∈ ∂D. On the other hand, for i = 1�3,

ui�z�
 ≤ kPz�τ0 < τ�. From Lemma 6.2, we have


ui�z�
 ≤ 6kEz
[
1∂D\Fkβ�Zτ�

]
�

For z ∈ D, let v�z� = 6kEz�u�1∂D\Fkβ�Zτ���, which is a bounded L-harmonic
function inD. Therefore by Theorem 1.1 there is a bounded function ψ defined
on ∂D such that

lim
�β�ξ��z→ξ

v�z� = ψ�ξ�� a.e. ξ ∈ ∂D�

whereas ψ�ξ� is also the limit of v�Zτr� under Pξz as r ↑ 1 as is seen
in the proof of Theorem 1.1. By the martingale convergence theorem,
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limr↑1 v�Zτr� = 6k1∂D\Fkβ�Zτ� Pz-a.s. and therefore it follows from Lemma
5.3 that limr↑1 v�Zτr� = 6k1∂D\Fkβ�ξ� P

ξ
z-a.s. for a.e. ξ ∈ ∂D. This says that

ψ�ξ� = 6k1∂D\Fkβ�ξ� for a.e. ξ. Hence we have for i = 1�3,

lim
�β�ξ��z→ξ

ui�z� = 0 for σ-a.e. ξ ∈ Fkβ�(6.4)

Therefore (6.3) implies that lim�β�ξ��z→ξu�z� exists for σ-a.e. ξ ∈ Fkβ and hence
for a.e. ξ ∈ F = ⋃∞

k=1F
k
β. ✷

APPENDIX

In this Appendix, α ∈ �0� ∞�, and Lα and Zα are simply denoted as L and
Z. We will show the existence of an exit density function hξ�z� ≡ h�z� ξ� for
the diffusion Z (or equivalently, the Poisson kernel for L) in D as well as its
minimal and continuity properties.

Let us denote ∂D by S. For 0 < r < 1, we identify ∂Dr with rS. The diffusion
matrix σσ ′, as can be seen from (2.1), has C∞-smooth entries on Dr and its
smallest eigenvalue is 1 and the largest eigenvalue on Dr is �1 − r2�−2α. This
warrants the existence of an exit density function hrξ�z� (with respect to the
Lebesgue surface measure σr on ∂Dr) of Z starting at z ∈ Dr and exit ∂Dr
at rξ. Function hrξ�z� is a nonnegative C∞-smooth L-harmonic function in
z ∈ Dr for each ξ ∈ S and is continuous on S as a function of ξ for each fixed
z. Thus hrξ�z� is a continuous function in �z� ξ� ∈ D×S. We show below that
the sequence of continuous functions �hrξ�z�� r ∈ �r1� 1�� is equicontinuous
in Dr0

×S for any r1 > r0.

Lemma A.1. The function hrξ�z� is equicontinuous in �z� ξ� on Dr0
×S for

r ∈ �r1�1� where r1 > r0.

Proof. Let z�w ∈ Dr0
and ξ�η ∈ S. By the unitary invariance of

hrξ�z� [see (3.5)], we may assume that ξ and η are in the complex plane
spanned by z1 and z2 axes in Cn; that is, the coordinates of ξ and η
in R2n are �ξ1� ξ2� ξ3� ξ4�0� � � � �0�′ and �η1� η2� η3� η4�0� � � � �0�′. For such
ξ = �ξ1� ξ2� ξ3� ξ4�0� � � � �0�′ ∈ S, let

@ξ =



ξ1 ξ2 ξ3 ξ4 0 0 · · · 0 0

−ξ2 ξ1 −ξ4 ξ3 0 0 · · · 0 0

−ξ3 ξ4 ξ1 −ξ2 0 0 · · · 0 0

−ξ4 −ξ3 ξ2 ξ1 0 0 · · · 0 0

0 0 0 0 1 0 · · · 0 0

0 0 0 0 0 1 · · · 0 0
���

���
���

���
���
���
� � �

���
���

0 0 0 0 0 0 · · · 1 0

0 0 0 0 0 0 · · · 0 1



�(A.1)
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which is an orthogonal transformation in R2n of the form (3.1) and maps ξ to
1. By the unitary invariance (3.5) and the mean value theorem, we have


hrξ�z� − hrη�w�
 = 
hr1�@ξ�z�� − hr1�@η�w��

≤
(

sup
z∈Dr0


 + hr1�z�

)

@ξ�z� −@η�w�
�(A.2)

Since @ξ and @η are of the form (A.1),


@ξ�z� −@η�w�
 ≤ 
@ξ�z� −@ξ�w�
 + 
@ξ�w� −@η�w�

≤ 
z−w
 + 2
ξ − η
�

(A.3)

For 0 < r ≤ 1 and a differentiable function u on Dr, define

�u�∗1�Dr = sup
1≤k≤2n

sup
z∈Dr

∣∣∣∣�r− 
z
�∂u�z�
∂xk

∣∣∣∣�
�u�∗2�Dr = sup

1≤k� l≤2n
sup
z∈Dr

∣∣∣∣�r− 
z
�2 ∂
2u�z�
∂xk ∂xl

∣∣∣∣�
Then by �4�17�′′, (6.82) and (6.14) of [5], there are constants λ2 > 0 and λ3 > 0
depending on r1 but independent of r ∈ �r1� 1� such that

�r1 − r0� sup
z∈D̄r0


 + hr1�z�
 ≤ �hr1�∗1�Dr1

≤ λ2 sup
x∈Dr1

hr1�z� + �hr1�∗2�Dr1
≤ λ2 sup

z∈Dr1
hr1�z� + λ3 sup

z∈Dr1
hr1�z��

(A.4)

Note that by Proposition 3.1, hr1�0� = r−�2n−1�σ�S�−1. Thus applying the Har-
nack inequality (cf. Corollary 9.25 of [5]) for the uniformly elliptic and bounded
operator L onDr1

, we have supr1<r<1 supz∈Dr1 hr1�z� <∞. This, combined with
(A.2)–(A.4), completes the proof for this lemma. ✷

By the Arzela–Ascoli theorem and a diagonal selecting procedure,
�hr1�z�	 0 < r < 1� has a subsequence �hrk1�z�	 k ≥ 1� with rk ↑ 1 con-
verging uniformly on each Dr0

× S, 0 < r0 < 1, as k → ∞. Denote the
limiting function as hξ�z�, which is nonnegative. Clearly hξ�z� is continuous
in Dr0

×S, hence in D×S. It follows from the following lemma that hξ�z� is
a C∞-smooth L-harmonic function in z ∈ D for each fixed ξ ∈ S.

Lemma A.2. If �uk�k ≥ 1� is a sequence of L-harmonic functions in Dr,
0 < r < 1, and is uniformly convergent to a function u on Dr, then u is C∞-
smooth and L-harmonic in Dr.
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Proof. For any r1 ∈ �0� r� and z ∈ Dr1
,

u�z� = lim
k→∞

uk�z� = lim
k→∞

Ez�uk�Zτr1 �� = Ez�u�Zτr1 �� =
∫
r1S
u�η�hη�z�σr1

�dη��

Thus u is C∞-smooth and L-harmonic in Dr1
and hence in Dr. ✷

Theorem A.3. The function hξ�z� obtained above is the exit density func-
tion of Z from D starting at z ∈ D.

Proof. By Dynkin’s π-λ theorem, it suffices to show that for any open set
U in S with σ�∂U� = 0, Pz�Zτ ∈ U� = ∫

U hξ�z�σ�dξ� holds for any z ∈ D,
where ∂U is the boundary of U in S. Using the unitary invariance (3.5) for
r = 1 and Theorem 2.9, we have limr↑1Prξ�Zτ ∈ U� = 1U�ξ� for all ξ ∈ S\∂U.
Thus by the strong Markov property ofZ inD and the dominated convergence
theorem,

Pz�Zτ ∈ U� = lim
r↑1
Ez

[
PZτr

�Zτ ∈ U�]
= lim

r↑1

∫
S
Prξ�Zτ ∈ U�hrξ�z� r2n−1 σ�dξ�

=
∫
S

1U�ξ�hξ�z�σ�dξ��

This proves the theorem. ✷

We now proceed to show the minimal L-harmonicity of hξ�z� in D for each
ξ ∈ S. The first step is to establish a representation theorem for nonnegative
L-harmonic functions in terms of �hξ� ξ ∈ S�.

Theorem A.4. If u ≥ 0 is L-harmonic inD, then there exists a nonnegative
measure µ on S such that u�z� = ∫

S hξ�z�dµ�ξ� for all z ∈ D.

Proof. The proof essentially imitates (2) in Section 3.5 of [3] for the clas-
sical harmonic functions and the Poisson kernel. For 0 < r < 1, let µr be the
measure on S that has the density function u�rξ� with respect to the Lebesgue
surface measure σ on S. By Proposition 3.1, we have for 0 < r < 1,

µr�S� =
∫
S
u�rξ�σ�dξ� = r−�2n−1�

∫
rS
u�η�σr�dη�

= σ�S�E0�u�Zτr�� = u�0�σ�S��
Therefore we can use the Helly selection theorem to get a subsequence
�µrk � k ≥ 1� that converges weakly on the unit sphere S to a measure µ
as rk ↑ 1. According to Lemma A.1, we may and do assume that hrkξ�z�
converges uniformly in �z� ξ� ∈ Dr ×S to hξ�z� for each 0 < r < 1.

For z ∈ D, let rk be such that z ∈ Drk . Then

u�z� = Ez�u�Zτrk �� =
∫
S
u�rkξ�hrkξ�z�σ�dξ� =

∫
S
hrkξ�z�dµrk�
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Since

lim
k→∞

∣∣∣∣∫
S
hrkξ�z�dµrk −

∫
S
hξ�z�dµ

∣∣∣∣
≤ lim
k→∞

∫
S

hrkξ�z� − hξ�z�
dµrk + lim

k→∞

∣∣∣∣∫
S
hξ�z�dµrk −

∫
S
hξ�z�dµ

∣∣∣∣
≤ sup

ξ∈S

hrkξ�z� − hξ�z�
 lim

k→∞
µrk�S� + 0

= 0�

we have u�z� = ∫
S hξ�z�dµ. ✷

Theorem A.5. The exit density functions �hξ� ξ ∈ S� constructed above are
minimal L-harmonic functions in D in the sense that if u is L-harmonic in
D and 0 ≤ u�z� ≤ hξ0

�z� for some ξ0 ∈ S and all z ∈ D, then there exists a
constant c such that u�z� = chξ0

�z� for all z ∈ D.

Proof. Without loss of generality, we may assume that ξ0 =1. By Theorem
A.4, there is a nonnegative measure µ on S such that u�z�= ∫

S h0�z�dµ�z�
for z ∈ D. We show that µ concentrates at point 1. For this, let µrk�dξ� =
u�rkξ�σ�dξ� be the sequence of measures on S in the proof of Theorem A.4
that converges weakly to µ. For 0 < ε < 1, let Jε = �η ∈ S	 
η−1
 ≤ ε�. Since
S \Jε is an open subset of S,

µ�S \Jε� ≤ lim inf
k→∞

µrk�S \Jε�

= lim inf
k→∞

∫
S\Jε

u�rkξ�σ�dξ�

≤ lim inf
k→∞

∫
S\Jε

h1�rkξ�σ�dξ��

(A.5)

For ξ ∈ S\�−1�, let Hξ be the reflection map of Cn with respect to the complex
line Cw as defined by (5.5), where w = �ξ + 1�/
ξ + 1
. That is, Hξ�z� =
2�z ·w�w−z for z ∈ Cn. If ξ = −1, define H−1�z� = −z. In summary, for ξ ∈ S,
Hξ is a unitary transformation of Cn such that Hξ�ξ� = 1 and Hξ�1� = ξ. Thus
by the unitary invariance (5.1), the last term in (A.5) equals

lim inf
k→∞

∫
S\Jε

hHξ�1��Hξ�rkξ��σ�dξ� = lim inf
k→∞

∫
S\Jε

hξ�rk1�σ�dξ�

= lim inf
k→∞

Prk1�Zτ ∈ S \Jε�

= 0�

The last equality comes from Theorem 2.9. This shows that µ�S \Jε� = 0 for
any ε ∈ �0�1� and therefore µ is a measure on S with mass concentrated at
point 1. Hence u�z� = ∫

S hξ�z�µ�dξ� = µ��1��h1�z�. This proves the minimal-
ity of h1 and therefore of hξ for any ξ ∈ S. ✷
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