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COEXISTENCE RESULTS FOR SOME
COMPETITION MODELS

BY RICK DURRETT 1 AND CLAUDIA NEUHAUSER2 , 3

Cornell University and University of Minnesota

Barley yellow dwarf is a widespread disease that affects small grains
and many grass species, as well as wheat, barley and oat. The disease is
caused by an aphid transmitted virus. Rochow conducted a study near
Ithaca, New York, which showed that a shift in the dominant strain
occurred between 1957 and 1976. Motivated by this phenomenon, we
develop a model for the competition between different strains of the barley
yellow dwarf virus. Our main goal is to understand the phase diagram of
the model, that is, to identify parameter values where one strain competi-
tively excludes the other strain and where both strains coexist. Our
analysis applies to a number of other systems as well, for example to a
model of competition of water flea species studied by Hanski and Ranta
and Bengtsson.

1. Introduction. This paper began as an attempt to understand the
competition of different strains of the barley yellow dwarf virus. Barley

Ž .yellow dwarf BYD is a serious widespread disease of small grains and
grasses caused by a group of aphid transmitted viruses. Its symptoms are

Ž .chlorosis i.e., yellowing of plant tissue and stunting of the affected plant.
BYD is an important agricultural disease since its affects large numbers of
different grains throughout the world. The total yield loss in the United
States is around 1 to 3 percent each year, but under favorable conditions,
losses of 40% are not uncommon. The disease was first reported in the United

Ž .States by Galloway and Southwood 1890 but only much later recognized by
Ž .Oswald and Houston 1951 as being caused by a virus.

Ž .The barley yellow dwarf virus BYDV is a member of the luteoviruses.
This group includes bean leaf roll, beet western yellows, carrot red leaf and

Žpotato leaf roll. These viruses are transmitted by aphids the ‘‘vector’’ for the
. wdisease and they are typically very host-specific see, e.g., Duffus, Falk, and

Ž .xJohnstone 1987 .
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Five distinct BYDV strains have been identified. They can be classified
Ž .using enzyme linked immunoabsorbent assay ELISA . The virus strains are

highly vector specific; that is, different strains of the virus can only be
Žtransmitted by specific aphids although one aphid may be able to transmit

more than one virus and one virus may be transmitted by more than one
. Ž .aphid . Table 1, which appeared in Gildow 1987 , indicates by q’s the

strains that each aphid can transmit. To make the table easier to read, we
have indicated the genus names Macrosiphum, Rhopalosiphum, and Sito-
bion by their first letters.

To motivate the definition of our model, we will now briefly describe some
Ž .aspects of the transmission of BYD. See, for instance, Gildow 1987 . Starting

with infected plant tissue, aphids may ingest virus particles suspended in
Žphloem sap during feeding. Phloem is the part of the vascular tissue which is

.responsible for transporting substances produced in the plant’s metabolism.
Before the aphid can transmit the virus to other plants, the virus particles
need to be transported through the body of the aphid to the salivary glands.
This part of the acquisition process is responsible for the fact that each aphid
species can transmit only a few virus strains. Once they have acquired the
virus, aphids can infect the plant during feeding.

wMixed infections with luteoviruses are common in the field see, e.g.,
Ž . Ž .Waterhouse, Gildow and Johnstone 1988 , Rochow 1965 , Falk and Duffus

Ž .x1981 but there seems to be some evidence that cross-protection among
w Ž .xdifferent strains of BYDV is possible see Wen, Lister and Fatou 1991 . In

this paper we will, for simplicity, concentrate on the interaction of MAV and
PAV, the two most prevalent strains in New York State. Figure 1 is a graph

Ž .of data collected by Rochow 1979 near Ithaca. It shows that between 1957
and 1976 the dominant strain shifted from MAV to PAV. This graph moti-
vates our main question: can the two strains coexist in equilibrium or will one
always competitively exclude the other?

Ž .As for the shift in the dominant strain, Rochow 1979 concluded that it
was not caused by a change of the predominant aphid species. He cited
various factors, such as changes in cultivars and acreages of small grains, but
no definite conclusion was reached. The results below will show that in our
model a region in parameter space exists where the two strains coexist but

TABLE 1
Vector transmission patterns

Aphid species MAV PAV RMV RPV SGV

M. dirhodum q q } } }

R. maidis } } q } }

R. padi } q } q }

R. rufiabdominalis } q q q }

S. graminum } q } q q
S. avenae q q } } }
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Ž .FIG. 1. Shift of dominance from MAV to PAV according to data collected by Rochow 1979 .

give no quantitative information about the size of the region. If the region is
narrow, then a shift in the cultivated species could shift the system from one
exclusion region to the other.

To formulate the dynamics we let NN ; Z2 define the neighbors of 0, let
x q NN be the neighbors of x and let f the the fraction of neighbors in state i.i

Ž .Since most of the infection is spread by apterous i.e., wingless aphids, it is
natural to choose NN to be the four nearest neighbors or some other small
neighborhood. However, for our last two results we will have to consider long
range interactions. To accommodate all the choices that appear in our paper

Ž .and to rule out trivialities such as absence of irreducibility we will assume
� 5 5 4 5 5 2throughout that NN s x: x F r where x is some norm on R , for example,

5 5 < < < < 5 5 Ž 2 2 .1r2 5 5 � < < < <4x s x q x , x s x q x or x s max x , x . The model is1 2 `1 2 1 2 1 2
a continuous time Markov process whose state at time t is a function j :t

2 � 4 Ž .Z ª 0, 1, 2, 3 . We interpret this as follows: if j x s 0, we say x is vacant;t
Ž . Ž .if j x s 1, x is infected with strain 1; if j x s 2, x is infected with straint t

Ž .2; if j x s 3, x is infected with both strains.t
The notation we have just introduced allows us to write down all the

transition rates of the model:

Ž .0 ª 1 b f q r f 1 ª 0 d1 1 11 3 1

Ž .0 ª 2 b f q r f 2 ª 0 d2 2 21 3 2

Ž .2 ª 3 r b f q r f 3 ª 2 d rr12 1 1 11 3 1 13

Ž .1 ª 3 r b f q r f 3 ª 1 d rr .22 2 2 21 3 2 23

The overall structure of this model is like the contact process: infection rates
are proportional to the number of infected neighbors, while recovery rates are
constant. The parameter r describes the degree of interspecific competition.i j

w xHere, we will choose r g 0, 1 and interpret them as reduction coefficients.i j
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Ž .In the first rate, that is, b f q r f , r reflects the fact that the amount1 1 11 3 11
of virus 1 in a doubly infected plant is less than in a singly infected plant, so
the transmission rate is less. The second pair of rates is the first pair
multiplied by r to account for the fact that a singly infected plant’s immunei2
system is working and hence has a reduced rate of acquiring a second
infection. The third pair of rates says that plants recover at a constant rate,
while in the fourth we divided the third rates by r F 1 to account for thei3
fact that the two infections compete within the host.

Our model can also be applied to a number of other competitive situations.
One situation that has been extensively studied is the competition of water

Ž .flea species Daphnia in rock pools in Scandinavia. See Hanksi and Ranta
Ž . Ž .1983 , Bengtsson 1991 and references therein. When considering the com-
petition of two species, these authors assign each rock pool a state: 0 s vacant,
1, 2 s occupied by one species, 3 s occupied by both species, much as we
have above. However, they ignore the spatial arrangements of the pools and
postulate that migration between any two patches occurs at a constant rate.
Taking a limit in which the number of pools tends to infinity, they arrive at a
system of ordinary differential equations for the fraction of pools in various

Ž .states, which was first studied by Slatkin 1974 .
Ž .Figure 2 shows the study site of Hanski and Ranta 1983 . Vacant pools

are white. The species inhabiting the black occupied pools are indicated by
M s D. magma, P s D. pulex, and L s D. longspina. The arrangement of
pools does not seem to be consistent with the assumption that all migration
rates are equal but instead seems to suggest the use of a one-dimensional

wFIG. 2. Spatial arrangements of rock pools in the study of competition of Daphnia. From
Ž . xHanski and Ranta 1983 .
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chain of sites. In their situation, however, this oversight does not have
serious consequences since the use of a spatially explicit model does not
change the qualitative predictions. Our analysis will show that when the
range of interaction in the particle system is large, then the densities in the
particle system behave like those in the corresponding ordinary differential
equation; in particular, coexistence is possible. When the range is small there
are correlations between the states of adjacent sites that shift the equilibrium
densities in the particle system away from those predicted by the ODE. This
changes the parameter values at which coexistence occurs but should not
eliminate the possibility of coexistence. In making the last conclusion, we are
relying on the physicists’ notion that the qualitative properties of the model
do not depend on the neighborhood chosen.

Turning to the analysis of the model, our first step is to get rid of some of
its 10 parameters. Our first simplification is to equate all the reduction
coefficients for a given species; that is, we set r s c for j s 1, 2, 3. Thisi j i
eliminates the Daphnia model as a special case but, as we will explain later,

Ž .the coexistence result Theorem 4 extends in a straightforward way to the
general model. Our second simplification is to set d s d and, without1 2
further loss of generality, to set the common value equal to 1. The qualitative
behavior of the system should not be different when d / d , but the equality1 2

Ž .of d ’s is needed in the proof of Theorem 2 and only there .
Our final modification is simply a change of perspective. In what follows,

we will consider b , b and d s d s 1 fixed and vary the competition1 2 1 2
coefficients c and c . When c s c s 1, neither disease feels the presence of1 2 1 2
the other. So if each disease has a sufficiently high transmission rate to
survive on its own, then there will be coexistence. To explain the qualifying
phrase in the previous sentence, note that if only one disease is present, the
system reduces to the contact process with neighborhood set NN. In this case
there is a critical value b ) 1, which depends on NN, so that if b F b , thec c
infection dies out, but if b ) b there is a unique nontrivial stationaryc
distribution that is translation invariant. For more on the contact process, see

Ž . Ž . Ž .Liggett 1985 , Durrett 1988 or Durrett and Levin 1994a and references
therein.

To state our first result we need one more definition: we say there is
coexistence if there is a stationary distribution which concentrates on con-
figurations with infinitely many sites in each state. In all cases below when
we prove coexistence, we construct a translation invariant stationary distri-
bution.

THEOREM 1. If b c3, b c3 ) b , then there is coexistence.1 1 2 2 c

To explain the c3, note that if we pretend that all sites are always occupiedi
by 2’s, then we have a system with only two states 2 and 3, which makes
transitions 2 ª 3 at rate b c2 f and 3 ª 2 at rate 1rc . This is a time1 1 3 1
change of the basic contact process which survives if b c3 ) b . To get from1 1 c
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the last observation to the conclusion of Theorem 1 we need a comparison
result.

ŽPROPOSITION 1.1. Let j denote the process with parameters b , b , d ,t 1 2 1
. X Ž X X X X X X .d , c , c and j denote the process with b , b , d , d , c , c . Suppose b F2 1 2 t 1 2 1 2 1 2 1

X X X X X X � Ž .b , d G d , c F c , b G b , d F d , and c G c . Let h s x: j x s 1 or1 1 1 1 1 2 2 2 2 2 2 t t
4 � Ž . 4 X X X3 , z s x: j x s 2 or 3 and define h and z accordingly in terms of j . Ift t t t t

X X Ž . Ž X X.h ; h and z > z , then we can construct processes h , z and h , z on0 0 0 0 t t t t
the same probability space with the two parameter sets so that h : hX andt t
z > z X for all t G 0.t t

If we let z s Z2 and d s 0 while leaving the other aspects of the process0 2
unchanged, we get the comparison for Theorem 1.

Proposition 1.1 also allows us to deduce properties of the phase diagram of
the model, but first we need a definition. Given an initial distribution j we0

Ž Ž . .say that type i dies out if P j x s i ª 0 as t ª ` for all x. If we taket
X X Ž .b s b and d s d , then we see that if the 1’s die out for some c , c , theni i i i 1 2

they die out when cX F c and cX G c .1 1 2 2
From the corner c s c s 1, we jump now to the corner c s c s 0. In1 2 1 2

this case transitions into state 3 have rate 0 and transitions out of state 3
� 4have rate `, so the set of possible states reduces to 0, 1, 2 and the model

Ž .reduces to the multitype contact process of Neuhauser 1992 which makes
transitions as follows:

0 ª 1 b f 1 ª 0 11 1

0 ª 2 b f 2 ª 0 1.2 2

In this case her results show that if b ) b , then the 2’s die out for any1 2
translation invariant initial distribution that concentrates on configurations
with infinitely many 1’s. Our next result extends this conclusion to our new
system and strengthens the conclusion.

THEOREM 2. Suppose b ) b . There is an « ) 0 so that if 0 F c F « and1 2 2
0 F c F 1, then the 2’s die out starting from any initial distribution that1
concentrates on configurations with infinitely many 1’s.

Theorem 2 also covers the corner c s 1, c s 0 so we turn now to the1 2
remaining one: c s 1, c s 0. When c s 0, 2 ª 3 transitions are impossible2 1 1
and 3 ª 2 transitions occur at rate ` so again state 3 disappears but this
time the rates are

0 ª 1 b f 1 ª 0 11 1

0 ª 2 b f 2 ª 0 12 2

1 ª 2 c b f .2 2 2
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When c s 1, this further reduces to the grass]bushes]trees system studied2
Ž .by Durrett and Swindle 1991 . In this case, the 2’s do not feel the presence of

the 1’s and are a contact process, so they will survive if b ) b . Durrett and2 c
Ž . 2Swindle 1991 showed that if b ) b ) 1 and the range of interaction is1 2

large, then there is coexistence. Our next result generalizes the more difficult
Ž .converse first proved by Durrett and Schinazi 1993 . For concreteness we

5 5 � < < < <4suppose that the norm x s max x , x is used to define the neighbor-` 1 2
hood. However, the choice of norm is not important and the conclusion can be

Ž < < .generalized to dispersal distributions of the form c f y y x rr with r larger
Ž .provided f ? has exponential tails.

THEOREM 3. Suppose b - b 2. If the range of the interaction r G r and1 2 0
Ž .« F « r , then for c F « and c G 1 y « the 1’s die out.0 1 2

PROOF. This result is a corollary of the block argument in Durrett and
Ž .Schinazi 1993 . That paper constructs a block event for the case c s 0 and1

c s 1. Once we have an event in a specified box which guarantees survival2
when its probability is large, it is immediate that the same conclusion holds
when c F « and c G 1 y « . I1 2

The result is almost certainly true with an « independent of r, but this0
version of the result is enough to show that the third possibility, 1’s die out,
occurs in the phase diagram. See Figure 3 for a sketch of what we have
proved. The monotonicity of the boundary curves follows from the remark
after Proposition 1.1.

When one relies on large range limits to prove the existence of a phe-
nomenon in a particle system, it is natural to try to find the exact limiting
behavior of the phase diagram. The first step in doing this is to look at the
system through the eyes of mean field theory, that is, to pretend that all sites
are independent and see how the densities evolve. Letting u be the fractioni
of sites in state i, this leads to the following system of ordinary differential
equations:

du1 s b u u q c b u u y c b u u1 0 1 1 1 0 3 2 2 1 2dt

y c2 b u u y u d q u d rc ,2 2 1 3 1 1 3 2 2

du2 s b u u q c b u u2 0 2 2 2 0 3dt1.1Ž .
y c b u u y c2 b u u y u d q u d rc ,1 1 1 2 1 1 2 3 2 2 3 1 1

du3 2s c b q c b u u q c b u uŽ .1 1 2 2 1 2 1 1 2 3dt

q c2 b u u y u d rc q d rc .Ž .2 2 1 3 3 1 1 2 2

�Ž . 4Let G s u , u , u : u G 0, u q u q u F 1 be the collection of values1 2 3 i 1 2 3
we are interested in. Intuitively, if the ODE has a fixed point in G o, the
interior of G, and that fixed point is the limit from any initial condition in G o,
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FIG. 3. Summary of theorems and phase diagram.

we expect coexistence to occur in the particle system when the range is large;
Ž . Ž .see Durrett and Levin 1994b . Durrett 1992b used this idea in the study of

a predator]prey system with rapid stirring. In that case it was possible to
calculate explicitly the location of the equilibrium for the mean field ODE and
prove that it was globally attracting, but neither problem seems tractable for
Ž .1.1 .

To circumvent this difficulty, we will use an approach that is commonly
used in the biology literature to determine if two species can coexist; namely,
two species coexist if either species can invade the other in its equilibrium
state. First, consider the case in which strain 1 is absent. In this case
u s 1 y u and0 2

du2 s b u 1 y u y d u .Ž .2 2 2 2 2dt

Ž .So if b ) d , the density of 2’s equilibrates at b y d rb . Suppose now2 2 2 2 2
w Ž . Ž . xthat the first strain is present at a small density i.e., u t q u t is small .1 3

Using the previous conclusion now and continuity of the solution as a
function of the starting point, which is true whenever the right-hand side is a

Ž .Lipschitz continuous function of u , u , u , we see that after a fixed amount1 2 3
Ž .of time we will come to u f b y d rb , u f d rb .2 2 2 2 0 2 2

This motivates the following definition: we say that ‘‘1’s can invade 2’s
when they are in equilibrium’’ if the boundary equilibrium u s 0, u s1 2
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Ž .b y d rb , u s 0 is unstable. To be precise, the linearization of the2 2 2 3
ordinary differential equation at this point has an unstable direction that
points into G o. The next result says this condition prevents the 1’s from dying
out in the particle system.

THEOREM 4. Suppose that c ) 0 and that 1’s can invade 2’s when they1
are in equilibrium. Consider the particle system starting from a product
measure in which state 1 is present with positive probability. If the range
r G r , then any subsequential limit concentrates on configurations in which0

Ž .1’s have density « r ) 0.

When c s 0, the rate for 3 ª 2 transitions becomes infinite and the state1
space of the model changes. A number of modifications are needed in the
argument but the general approach does not change and the conclusion
remains the same.

One can interchange the roles of 1’s and 2’s in Theorem 4 to get a result for
the persistence of 2’s and then combine the two results to get conditions for
coexistence. We believe that the resulting conditions are asymptotically sharp
as r ª `. That is we

Ž .CONJECTURE. In 1.1 if 1’s cannot invade 2’s when they are in equilib-
rium, then 1’s die out when the range is large.

Proving the conjecture in general seems to be a difficult problem. The first
difficulty here is to show that if 1’s cannot invade 2’s when they are in

Žequilibrium which means that all eigenvalues of the linearization around the
. ofixed point are nonpositive , then all trajectories that start in G converge to
Ž .the fixed point u s 0, u s b y d rb , u s 0. Even if this is established,1 2 2 2 2 3

there is the second problem of showing that this behavior of the ordinary
differential equation implies that the 1’s die out for large range.

For the rest of the section we will concentrate on what happens on the
sides of the square. This will give insight into the structure of the phase
diagram.

The left side, c s 0. As noted after the statement of Theorem 2, state 31
disappears in this case. Eliminating the terms that include u or c , and3 1
adding a new term to the u equation to account for the transitions from2
1 ª 3 and then instantaneously from 3 ª 2, the mean field equation simpli-
fies to

du1 s b u u y d u y c b u u ,1 0 1 1 1 2 2 1 2dt
1.2Ž .

du2 s b u u y d u q c b u u .2 0 2 2 2 2 2 1 2dt
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In this case we can factor u out of the ith equation and substitute u s 1 yi 0
u y u to get1 2

du1 s u b y d y b u y c b q b u ,� 4Ž . Ž .1 1 1 1 1 2 2 1 2dt
1.3Ž .

du2 s u b y d y b 1 y c u y b u .� 4Ž . Ž .2 2 2 2 2 1 2 2dt

In this case the equilibria satisfy two linear equations in two unknowns, so
one can solve. Taking d s d s 1 to simplify the answer we have1 2

b y b y c b b y 1Ž . Ž .1 2 2 2 2
u s ,1 b c b y b q b cŽ .2 2 1 2 2 2

c b b y 1 y b y bŽ . Ž .2 2 1 1 2
u s .2 b c b y b q b cŽ .2 2 1 2 2 2

1.4Ž .

To see what these equations say, we will suppose b - b - b 2 so that there2 1 2
are two phase transitions on the left edge. In this case by examining the signs

Ž . Ž .of the numerators we see that if r s b rb , a s r y 1 r b y 1 and b s1 2 1
Ž . Ž .r y 1 r b y 1 then2

for c in equilibrium density of 1 equilibrium density of 22

w x Ž .0, a b y 1 rb 01 1

w xa, b u u1 2

w x Ž .b, 1 0 b y 1 rb .2 2

We do not know how to prove that the densities in the table are the limiting
equilibrium densities as the range r ª `. However simulation results sug-
gest that this is true and that r does not have to be very large for mean field
theory to provide a good approximation. Figure 4 gives the results of simula-

` Ž . Ž .tions for the L neighborhoods with radius 2 >’s and radius 4 e’s when
b s 3 and b s 2 and compares them with the predictions of mean field1 2

Ž .theory given above solid line . When r s 4, the equilibrium densities for the
particle system are quite close to those predicted. Of course, range 4 does
mean that there are 80 sites in the neighborhood.

The top edge, c s 1, should be easy since c s 1 means that the 2’s do not2 2
notice that the 1’s are present, and thus the ODE equilibrium satisfies

u q u s b y d rb and u q u s d rb .Ž .2 3 2 2 2 0 1 2 2

However, this does not seem to be enough information to solve for the
equilibrium densities, so we simplify further by linearizing around the fixed

Ž .point u s 0, u s b y d rb , u s 0. If we suppose u and u are small,1 2 2 2 2 3 1 3
Ž .then u f d rb , u f b y d rb , and terms involving u u can be ig-0 2 2 2 2 2 2 1 3
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` Ž . Ž .FIG. 4. Simulation results for the L neighborhood with radius 2 >’s and radius 4 e’s when
Ž .b s 3 and b s 2 and the prediction from mean field theory solid line .2

nored. When these simplifications are made, we get the following ODE, which
we have written for a general value of c :2

du d b y d1 2 2 2s u b y c b y d1 1 2 2 1ž /dt b b2 2

d d2 2q u c b q ,3 1 1ž /b c2 2
1.5Ž .

du b y d3 2 2s u c b q c bŽ .1 1 1 2 2ž /dt b2

b y d d d2 2 1 22q u c b y y .3 1 1ž /b c c2 1 2
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By recalling that for a 2 = 2 matrix A with eigenvalues l and l , we1 2
Ž . Ž .have det A s l l and trace A s l q l , it is easy to compute numeri-1 2 1 2

cally, for a given example when the maximum eigenvalue is positive, the
condition for the 1’s to invade 2’s. In the case c s d s d s 1, we are able to2 1 2
obtain a condition for the 1’s to invade 2’s in terms of the coefficients, namely,

b c q bŽ .2 1 2
1.6 b ) .Ž . 1 21 q c q c b y 1 2 q c bŽ . Ž .1 1 2 1 2

Ž .We leave it up to the reader to decide if 1.6 is intuitive or not. Plotting the
Ž . Ž .right-hand side of 1.6 in the c , b plane for fixed b yields a monotoni-1 1 2

Ž . Ž 2 . Ž .cally decreasing graph as a function of c through 0, b and 1, 1 . See1 2
Ž .Figure 5. For points c , b above this curve, 1’s and 2’s coexist; below this1 1

curve, 2’s competitively exclude 1’s. In particular, if we fix b and vary c ,1 1
there is a critical value of cU so that for c ) cU, 1’s and 2’s coexist, whereas1 1 1
for c - cU, 2’s competitively exclude 1’s.1 1

Though it is difficult to compute the values of b and c that allow1 1
coexistence, one thing is very simple on the top edge. Thus when c s 1 and2

Ž .the range is large, the 2’s will be present with density close to b y 1 rb .2 2
Since the 2’s do not feel the presence of the 1’s, it should not be too hard to

Ž .prove, using techniques of Durrett and Schinazi 1993 , that the condition
given in Theorem 4 is asymptotically the correct one for coexistence.

Ž .FIG. 5. The right-hand side of 1.6 in the c y b plane when b s 2.1 1 2
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The rest of the paper is devoted to proofs. Proofs of Proposition 1.1 and
Theorem 1 are given in Section 2, Theorem 2 in Section 3 and Theorem 4 in
Section 4. The authors would like to express their appreciation to Susi
Remold, a graduate student in Ecology and Systematics at Cornell, for
introducing us to this system. The observation that the range of the interac-
tion does not have to be very large for mean field values to be accurate was
suggested by simulations of Peter Calabrese, a participant in a Research
Experience for Undergraduates held at Cornell in the summer of 1994.

2. Proofs of Proposition 1.1 and Theorem 1. As noted in the intro-
duction, it suffices to prove Proposition 1.1. To do this, we need to construct
the two processes on the same space. For x g Z2 and y g x q NN, we introduce
independent Poisson processes with the indicated rates:

process T 1, x, y T 2, x, y S1, x S2, x
n n n n

X X< < < <rate b r NN b r NN d rc d rc1 2 1 1 2 2

Ž . 1, x, y 2, x, y 1, x 2, xand independent Uniform 0, 1 random variables U , U , V , V .n n n n
The T i, x, y are times of a potential i infection from y to x, while the S j, x aren n
times when we potentially lose infection by j at x.

The uniform random variables are used to determine if the event should
actually occur and hence thin the Poisson processes so that events are
happening at the right rates. For example, if at time t s T 1, x, y we haven

XŽ . XŽ . 1, x, y Xj x s 2 and j y s 1, then the infection will occur if U - c , while ift t n 1
Ž . Ž . 1, x, y 2 Xj x s 2 and j y s 3, then the infection will occur if U - c b rb .t t n 1 1 1

There are too many possible combinations for us to list formulas for every
situation, but the rules should be clear from the example.

To prove Proposition 1.1 we have to argue that every flip preserves h ; hX
t t

and z > z X. To do this we have to consider the four possible transitions.t t
Ž .However, it is easy to see that when the inclusions hold, i the birth rate of

X Ž . Ž .1’s is higher in j , ii the birth rate of 2’s is higher in j , iii the death rate oft t
Ž . X1’s is higher in j , iv the death rate of 2’s is higher in j . This implies thatt t

every flip preserves the inclusions and the proof is complete.

3. Proof of Theorem 2. This section is devoted to proving Theorem 2,
w xwhich describes the behavior of the process for c close to 0 and c g 0, 1 . As2 1

already explained in the introduction, the process with c s c s 0 is known1 2
as the multitype contact process, which was investigated in Neuhauser
Ž . Ž Ž . .1992 . Her results show that if c s c s 0 and b ) b , then P j 0 s 21 2 1 2 t
ª 0 and t ª ` for any translation invariant initial distribution that concen-
trates on configurations with infinitely many 1’s. To prove Theorem 2, we
need to strengthen and extend this result to a region near c s c s 0; the1 2

Ž .comparison result Proposition 1.1 then implies that the result holds for all
w xc g 0, 1 . Our goal is to show that if b ) b , then there exists an in time1 1 2
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expanding ‘‘cone’’ which is void of 2’s and in which 1’s are in the correspond-
ing contact process equilibrium for c and c close to 0.1 2

The proof is based on a rescaling argument supplemented by a result in
Ž .Durrett 1992a . The rescaling argument is by now a standard technique and

w Ž .has been applied frequently. See, e.g., Bramson 1989 , Bramson and Durrett
Ž . Ž . Ž .1988 , Bramson and Neuhauser 1993 , Durrett 1992a, b and Durrett and

Ž . Ž . xNeuhauser 1994 ; the argument is reviewed in Durrett 1991, 1995 . The
basic idea is to show that for given d ) 0, members of the family of processes
under consideration, when viewed on suitable length and time scales, domi-
nate an oriented site percolation process in which sites are open with

Ž .probability 1 y d . The sites may be j-dependent. It is a well-known fact that
oriented site percolation percolates for d close enough to 0. This almost
produces our result. Our problem remains, namely, oriented site percolation
has a positive density of unoccupied sites. To show that there exists an
in-all-directions expanding region on which the processes have the desired
properties, we therefore need to show that unoccupied sites within this region

Ž .do not behave badly they could, for instance, contain 2’s . To deal with this
Ž .problem, we apply a result from Durrett 1992a which shows that unoccu-

pied sites do not percolate for d close enough to 0. Since particles of either
type cannot appear spontaneously, once a region is void of one type, this type
can only reappear in the region through invasion from the outside. This then
implies that our processes have the desired properties. We refer the reader to

Ž .Durrett 1992a, 1995 for details on the procedure.
To apply the rescaling argument, we need to strengthen Neuhauser’s

results in two ways. First, we need to remove the condition of translation
invariance of the initial configuration. Second, we need estimates on the rate

Ž Ž . .of convergence of P j 0 s 2 as t ª `. These estimates need to be goodt
enough so that a perturbation argument can be applied to extend the results
away from the corner.

To compare our process with oriented site percolation, to begin by introduc-
ing a grid and boxes in space:

Ž . Ž . Ž x2 Ž . Ž .f z s Lz , Lz , A s y2 L, 2 L , A z s f z q A,1 2

2w x Ž . Ž .B s yL, L , B z s f z q B

and similar definitions in space]time:

2w xc z , k s Lz , Lz , kT , C s yL y r , L q r = Tyr , 2T ,Ž . Ž . .1 2

C z , k s c z , k q CŽ . Ž .

Ž . 2 q Ž . Ž .for z s z , z g Z and L g Z . The squares A z are centered at f z and1 2
are the bases for boxes of height 2T with T s L2 ; that is, the boxes are of the

Ž . w Ž . . Ž .form A z = kT, k q 2 T for integer k, which contain C z, k ; here, we
choose z and z both even for even k, and we choose z and z both odd for1 2 1 2
odd k. See Figure 6 for a slice through the rescaling boxes.
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Ž . wFIG. 6. A slice through the rescaling boxes for Theorem 2. The two big boxes are A 0, 0 = kT,
Ž . . Ž . wŽ . Ž . . Ž .k q 2 T and A y1, 0 = k q 1 T, k q 3 T . The shaded box is C 0, 0, k .

w Ž .x 0.1 0.1We partition B and likewise, B z further. We tile B with L = L
squares, that is, we set

p w s L0 .1w , L0 .1w for w s w , w g Z2Ž . Ž .Ž .1 2 1 2

20 .1 0 .1D s yL r2, L r2Ž
D w s p w q DŽ . Ž .

I s w : D w : B z .� 4Ž . Ž .z

Ž . w Ž . .We are now ready to define certain ‘‘good events’’ in A z = kT, k q 2 T .
Ž . Ž .We say B z is G at time t if B z is void of 2’s at time t and has at least1

Ž .one particle of type 1 in each of the squares D w with w g I . We say thatz
Ž . Ž .C z, k is G if the space]time box C z, k does not contain any 2’s. For2

Ž . 2z s z , z g Z with z and z both even for even k, and z and z both1 2 1 2 1 2
Ž . Ž . Ž .odd for odd k, we say that z, k is occupied if B z is G at time k q 1 T1

Ž .and C z, k is G . The main goal of this section is to show the following two2
propositions. For each we suppose that:

Ž . Ž .A c s c s 0, b ) b , b ) b and B z is G at time 0 for some1 2 1 2 1 c 1
2 5 5z g Z with z s 1.`

Ž .PROPOSITION 3.1. Assume A . If d ) 0, then when L is large

3.1 P B 0 is not G at time T F dr3.Ž . Ž .Ž .1

Ž .PROPOSITION 3.2. Assume A . If d ) 0, then when L is large

3.2 P C 0, 0 is not G F dr3.Ž . Ž .Ž .2
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The main ingredient in the proof of Proposition 3.1 is the following lemma
Ž Ž . .which provides an estimate on the rate of convergence of P j x s 2 to 0 ast

t ª `.

Ž . 2LEMMA 3.1. Assume A and set T s L . There is a constant C ) 0 so that

3.3 max P j x s 2 F CTy4 .Ž . Ž .Ž .T
Ž .xgB 0

Ž Ž . .To compute P j x s 2 when c s c s 0, we need to understand thet 1 2
Ž .ancestry of x, t . This is provided by the dual process of the multitype

Ž .contact process, which was described in Neuhauser 1992 . To define the dual
we begin by constructing the process from a graphical representation. For

2 � x, y 4 � x 4x, y g Z with y y x g NN, let T : n G 1 and V : n G 1 be the arrivaln n
< <times of Poisson processes with rates b r NN and 1, respectively. At times1

x ŽV , we put a d at x. The effect of a d is to kill the particle at x if there isn
. x, yone . At times T , we draw an arrow from y to x to indicate that if x isn

vacant and y is occupied, a birth may occur. When y is occupied by a 1, a
birth will always occur. However, since 2’s are supposed to give birth at rate

Ž .b - b , we toss a coin with success probability b y b rb at each arrow.2 1 1 2 1
If a success occurs, we label the arrow with a ‘‘1’’ and only allow 1’s to give
birth through these arrows. Since our birth rates have finite range, an idea of

Ž .Harris 1972 then allows one to construct the process for all times starting
from any initial configuration.

Ž . Ž .We say that there is a path from x, s to y, t , 0 F s F t, if there is a
sequence of times s s s - s - s ??? - s - s s t and spatial locations0 1 2 n nq1
x s x, x , . . . , x s y so that the following hold:0 1 n

1. For i s 1, 2, . . . , n, there is an arrow from x to x at time s .iy1 i i
� 4 Ž .2. The vertical segments x = s , s , i s 0, 1, . . . , n do not contain anyi i iq1

d ’s.

Note that a path may contain both labelled and unlabelled arrows. Below
we will need the notion of a dual path. We say that there is a dual path from
Ž . Ž . Ž . Ž .x, t to y, t y s , 0 F s F t, if there is a path from y, t y s to x, t . That is,
dual paths move against the direction of time.

We are now ready to define the dual process. For 0 F s F t, we set

ˆŽ x , t .3.4 j s y : there is a dual path from x , t to y , t y s .� 4Ž . Ž . Ž .s

ˆŽ x, t .We call the elements of j ancestors. If the initial configuration containss
Ž .only 1’s, then x, t is occupied by a 1 if and only if

ˆŽ x , t .j l y : j y s 1 / B.� 4Ž .0 0

If the initial configuration contains only 2’s, the situation is similar, except
that now the dual process may not use any 1-arrows in its paths. It is more
complicated to determine the state of a site x at time t when the initial
configuration contains both types.
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Ž .It was shown in Neuhauser 1992 that the ancestors can be arranged
Ž .according to the order they determine the state at x, t . To describe this

hierarchy, assume for the moment that initially all sites are occupied by 1’s.
Ž .If x, t is occupied, we can identify exactly one site at time 0 which is the

Ž .ancestor of the particle at x, t . We call the site of this particle the first
ˆŽ x, t .Ž .ancestor in the hierarchy and denote it by j 1 . We refer to the path itt

takes as the path of the first ancestor. Since the hierarchy of ancestors does
not depend on the initial configuration, we will provide an algorithm for

Ž .locating the first ancestor and of all subsequent ancestors without referring
to a particular initial configuration. We refer to Figure 7 to explain the

Ž .algorithm. Start at x, t . Go down the graphical representation until the first
time a death mark is encountered. Go back up until the first time the tip of

wan arrow is encountered. In Figure 7, this is the first 1-arrow in the graph
Ž . xwhen starting at x, t . Follow this arrow against its direction to the branch

the arrow is attached to. Take this branch until the first time a death mark is
encountered. Repeat the above procedure until you reach time 0. The site you

Ž .reached is the location of the first ancestor. In Figure 7, this is x y 3. To
Ž . Žfind the second ancestor, start at x y 3, 0 and trace back your steps only

.going upwards and across arrows until the first time you encounter the tip of
an arrow. Follow this arrow against its direction to the branch this arrow is
attached to and repeat the algorithm for the first ancestor starting at this
location until you reach time 0. The site you land on is the second ancestor.
Ž .In Figure 7, this is x y 1. Continuing in this way, one obtains the dual
process as an ordered set of ancestors

ˆŽ x , t . ˆŽ x , t . ˆŽ x , t .3.5 j s j 1 , j 2 , . . .Ž . Ž . Ž .Ž .s s s

for 0 F s F t. This set is, of course, finite for t - `. We wish to point out,
however, that the same site will typically appear repeatedly in the set of
ancestors since different paths may lead to the same site. In Figure 7, the

Ž .ancestor set is x y 3, x y 1, x, x q 1, x y 1, x, x q 3, x q 4, x q 2, x q 3 .
ˆŽ x, t .Note that the ancestor set j depends solely on the graphical representa-t

tion for the one-type contact process with parameter b and is independent of1
the initial configuration and of the labelling of the 1-arrows.

Ž .Using Figure 7, we will now explain how to determine the state of x, t
when starting with an arbitrary initial configuration that contains both
types. In Figure 7, the first ancestor is x y 3. If x y 3 is occupied by a 1,
Ž .x, t will be occupied by a 1 with the particle at x y 3 being its ancestor. If

Ž .x y 3 is vacant, x y 1 is the next candidate to determine the state of x, t ,
and so on. If x y 3 is occupied by a 2, then the 2 can move up until the first
time it encounters a 1-arrow. In this case, not only x y 3 fails to determine

Ž .the state of x, t , but also x y 1 and x are blocked. That is, all ancestors of
the site where the 1-arrow is attached are excluded. The next candidate now

Žis x q 1. If x q 1 fails either because it is empty or occupied by a 2 which
.would be blocked by the following 1-arrow , x y 1 would be the next candi-

date. For instance, if x y 1 was occupied by a 2, this 2 would now be able to
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FIG. 7. A realization of the dual process for the multitype contact process.

Ž .paint x, t its color if no other ancestor has done so earlier, even though the
first time it appeared in the ancestor set it would have been blocked by the
upmost 1-arrow. Proceeding in this manner, one can determine the state of
Ž .x, t and its ancestor.

The dual process is a complicated object. Fortunately, the path of the first
ancestor, which is crucial to our analysis, is manageable. Its path can be
broken up at certain points, which we call renewal points. These points are
defined as follows. Whenever the first ancestor jumps to a site where the
process starting at this site does not die out, the site is called a renewal point.
We will also say that this site lives forever. We call a renewal point associ-
ated with a 1-arrow if the first arrow a particle crosses on its way up the
designated path of the first ancestor starting at the renewal point is a
1-arrow.

We denote the spatial displacement between consecutive renewal points by
X , and the corresponding temporal displacement by t . It was shown ini i

Ž . Ž .Neuhauser 1992 , using an idea of Kuczek 1989 , that conditioned on
�Ž .4 d q Žsurvival, X , t for an i.i.d. family of random vectors on Z = R here,i i iG1

.d s 2 . Furthermore,

5 5 yg 1t yg 1t3.6 P X ) t F C e and P t ) t F C eŽ . Ž .Ž .i 1 i 1
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Ž5 5for appropriate constants C - ` and g ) 0. ? may stand for any L1 1 p
.norm. That is, the renewal points perform a random walk. This property

enables us to control the location of the first ancestor. For example it gives
the following large deviations estimate.

LEMMA 3.2. Let XX s 0 and XX s Ýn ZZ , n G 1, be a renewal process0 n is1 i
Ž . yg 2 zwhose interarrival times ZZ are i.i.d. with mean L and P ZZ ) z F C e .i i 2

Then for any a ) 0, there are appropriate C - ` and g ) 0 so that3 3

P XX G 1 q a nL F C eyg 3 nL ,Ž .Ž .n 3
3.7Ž .

P XX F 1 y a nL F C eyg 3 nL .Ž .Ž .n 3

ŽWe are now ready to embark on the proof of Lemma 3.1. To simplify
Ž .notation, we translate in space to assume B 0 is G . The key to the proof is a1

procedure we call the repositioning algorithm. As in Bramson and Griffeath’s
Ž . Ž .1980 , 1981 studies of the biased voter model, the idea is to select a dual
path, denoted by A , that will, with probability close to one, land in the targett

w x2 Ž .region y2 Lr5, 2 Lr5 after T units of time when starting at some x, T
Ž . 2 5 5 Ž .with x g B z , z g Z , z s 1. That is, A s x, T . This path will block` 0

Ž .2’s from determining the type of x, T . In particular, a 1 can move up this
Ž .path to x, T if no other 1 has done so earlier. Into the path A we embed at

jump process S which stays put except at times when A jumps to a renewalt t
� 4point that is associated with a 1-arrow. At such times, denoted by s , wei iG1

apply the ‘‘repositioning algorithm.’’ Between times s , A follows the pathi t
determined by the algorithm of a first ancestor. We set s s 0.0

We define the repositioning algorithm inductively. Assume that at time s ,i
some i G 1, A is at the location of a renewal point associated with as i

1-arrow. If we pretend that a 2 was able to come up all the way to this
1-arrow, then this 2 would now be blocked by this 1-arrow and consequently
some other site at time s , if it exists, would be the next candidate for a pathi

Ž .determining the type of the particle at x, T . This site does not necessarily
Ž .live forever, but there is a positive probability independent of L that within

one unit of time, this new path jumps to a site for which the dual will live
w x2forever. We call this site B . If we denote by J s yLr10, Lr10 and bys i

Ž .dist z, J the Euclidean distance between a point z and the set J, then we
use the following rule:

Ž . Ž .If dist B , J - dist A , J , proceed with the new path,s si i3.8Ž . otherwise continue with the old path.

If there is no new path or if the path does not jump to a site which will live
forever within one unit of time, continue with the old path. If we select the
new path, we set S s B , otherwise S s A . In either case, A continuess s s s ti i i i

starting at S and uses the path determined by the algorithm of the firsts i

ancestor until time s where the repositioning algorithm is applied again.iq1
If both B and A are contained in J, toss a fair coin to determine whichs si i

path to continue with.
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Ž .In Neuhauser 1992 it was shown that the spatial displacement of the
embedded random walk in the path of the first ancestor has mean 0. From
Ž .3.8 and the fact that there is positive probability that the repositioning

5 5 5 5algorithm selects B instead of A , it follows that S y S hass s s si i iq1 i

negative mean as long as S is outside of the set J. Intuitively, this shouldt
cause S to drift towards the set J. We make this precise in the following.t

We begin by introducing the following quantity. Assume that the dual
Ž .process starting at x, t survives and set

ˆŽ x , t .t s inf s : j 1 jumps to a renewal pointŽ .� s
3.9Ž .

associated with a 1-arrow .4
The following result shows that the distribution of t has exponential tails.

LEMMA 3.3. Assume c s c s 0 and b ) b . There exist C - ` and1 2 1 2 4
g ) 0 so that4

3.10 P t ) t F C eyg 4 t .Ž . Ž . 4

Ž .PROOF. This follows immediately from 3.6 and b ) b since every time1 2
Žthe first ancestor goes through a renewal point, there is probability b y1

.b rb that the associated arrow is a 1-arrow. Since the 1-arrows are2 1
independent of each other, a geometric number of trials suffices which,

Ž . Ž .together with 3.6 , implies 3.10 . I

We say that the repositioning algorithm was applied successfully if the
Ž .new path was chosen. We denote by N t the number of times the reposition-

ing algorithm has been applied successfully by time t.

LEMMA 3.4. Assume c s c s 0 and b ) b . There exists b ) 0 so that1 2 1 2

P N t F bt F C exp yg tŽ . Ž .Ž . 5 5

for appropriate C - ` and g ) 0.5 5

PROOF. This follows from Lemma 3.3 and the second large deviations
Ž .estimate in 3.7 since each time the repositioning algorithm is applied, there

is a positive probability that it is applied successfully. I

We still need an estimate on the maximum size of the spatial displacement
of the embedded jump process S . We denote the spatial displacement S yt s i

Ž .S by Y , for i G 1. Let M t denote the number of times the reposition-s iiy 1
Žing algorithm has been applied by time t regardless of whether it was

.successful .
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LEMMA 3.5. Set T s L2. Assume c s c s 0 and b ) b . For any g - `1 2 1 2 6
there exist C - ` and g ) 0 so that for L sufficiently large6 7

g7 yg 65 53.11 P max Y ) log L F C L .Ž . i 6ž /gŽ .1FiFM T 4

PROOF. This is, with some minor modifications, the proof of Lemma 9 in
Ž . Ž .Neuhauser 1992 . Set m s EM t rt. We decompose the event on the left-
Ž . � Ž . 4 � Ž . 4hand side of 3.11 according to M T ) 2mT and M T F 2mT . Then for

any g ) 0,7

g7
5 5P max Y ) log Liž /gŽ .1FiFM T 4

g7
5 5F P M T ) 2mT q 2mTP Y ) log LŽ .Ž . iž /g4

3.12Ž .

Ž .The first large deviations estimate in 3.7 takes care of the first term on the
Ž . Ž .right-hand side of 3.12 . For the second term on the right-hand side of 3.12 ,

Ž .we use Lemma 3.3 combined with an argument in Neuhauser 1992 which
Ž .shows that an estimate similar to 3.10 holds for the spatial displacement.

ŽThis argument essentially uses the fact that the contact process spreads out
at most linearly in time and hence the spatial displacement is of the same

. Ž .order as the temporal displacement. Hence we can bound 3.12 by
F C exp yg mT q 2mTC exp yg log L .Ž . Ž .3 3 4 7

Ž .For given g ) 0, we can choose g ) 0 so that 3.11 holds for appropriate6 7
C - ` and L sufficiently large. I6

The next lemma shows that, with probability close to 1, the selected path
will land in the target region by time s whereK

K s min k : s G T y 2 L0 .5� 4k

It follows from Lemma 3.3 that except for an exponentially small probability
Ž Ž 0.5.. 0.5F C exp yg L , s F T y L . Here the subscripts on P indicate the4 4 K
starting site for the process S .t

Ž . 5 5LEMMA 3.6. Assume x g B z for some z g Z with z s 1, c s c s 0`2 1 2
and b ) b . For any g ) 0,1 2 8

2 yg 8w x3.13 P S f y2 Lr5, 2 Lr5 F C LŽ . ž /x s 8K

for appropriate C - ` and L sufficiently large.8

PROOF. We observe that
2w xP S f y2 Lr5, 2 Lr5ž /x sK

F P S f J for all k F KŽ .x sk3.14Ž .
2w xq sup P S f y2 Lr5, 2 Lr5 for some k F M T .Ž .ž /y sk

ygJ
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Ž .To estimate the first term on the right-hand side of 3.14 , note that

P S f J for all k F KŽ .x sk

F P S f J for all k F mTr2 q P K F mTr2Ž .Ž .x sk

g7
5 5F P S f J for all k F mTr2; max Y F log Lx s kkž /g1FkFmTr2 4

3.15Ž .

g7
5 5q P max Y ) log L q P K F mTr2 .Ž .kž /g1FkFmTr2 4

5 5We restrict the jump size Y to ensure that S will not miss the set J.k sk

Ž5 5 5 5 . �Since there exists m ) 0 so that E S y S ¬ FF F ym on S f1 s s s 1 sk ky1 ky1 ky1

4J , it follows that there exists m with 0 - m F m , so that2 2 1

5 5 5 5E S y S 1 ¬ FF F ym on S f J� 4Ž .ž /s s �5Y 5 F Žg rg .log L4 s 2 sk ky1 k 7 4 ky1 ky1

Ž .for g and L sufficiently large, where FF s s S , . . . , S . Furthermore,7 s s sky 1 0 ky1

< 5 5 5 5 < 5 5we have S y S F Y so it follows thats s kk ky1

g7
5 5P S f J for all k F mTr2; max Y F log Lx s kkž /g1FkFmTr23.16Ž . 4

F C exp yl LŽ .9 9

for appropriate C - ` and g ) 0. The second term on the right-hand side of9 9
Ž . Ž .3.15 can be bounded using 3.11 and the third term on the right-hand side

Ž . Ž .of 3.15 can be bounded using the second inequality in 3.7 . Combining the
estimates, it follows that for any g ) 0 there exists C - ` so that10 10

P S f J for all k F K F C Lyg 10Ž .x s 10k

for g and L sufficiently large.7
w x2Once the path is in J, we need to keep it inside of y2 Lr5, 2 Lr5 for the

remainder of the time. Assume now that at time 0, the path starts at some
site in J. We define the following stopping times. Let s s 0 and define for0
l G 1,

2w xt s inf t ) s : S f yLr5, Lr5� 4l ly1 t

� 4s s inf t ) t : S g Jl l t

and set
2w x � 4R s inf t : S f y2 Lr5, 2 Lr5 and l s inf l : t ) T .� 4t 0 l

Then for any y g J
2w xP S f y2 Lr5, 2 Lr5 for some k F M TŽ .ž /y sk

2mT g7
5 5� 4F P s ) R q P max Y ) log L q P l ) 2mTŽ .D l k 0ž /ž / g1FkF2 mT 4ls1

g7
5 5F 2mTP s ) R q P max Y ) log L q P M T ) 2mT .Ž . Ž .Ž .1 kž /g1FkF2 mT 4
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Ž .To estimate P s ) R , we only need to estimate the probability that S will1 t
w x2 Ž .leave y2 Lr5, 2 Lr5 before returning to J. As in the estimate for 3.16 , we

5 5 5 5use that S y S has negative drift and bounded increments on thes sk ky1

5 5 Ž .set where max Y F g rg log L. Hence,1F k F 2 mT k 7 4

P s ) R F C exp yg LŽ . Ž .1 11 11

for appropriate C - ` and g ) 0. The other two terms are estimated11 11
Ž . Ž .using 3.11 and 3.7 as above and the lemma follows. I

So far we have demonstrated that there exists, with probability close to 1,
w x2a path that lands in the target region y2 Lr5, 2 Lr5 at time s and blocksK

Ž .2’s from determining the type of x, T . Since this path does not necessarily
Ž .land at an occupied site, we still need to show that if x, T is occupied, one of

Ž . Ž . Ž .the sites in B 0 which is only occupied by 1’s determines the type of x, T
provided no other 1 succeeded earlier. The idea is the following. We run the

Ž . 0.5 0.2 Ždual process starting at S , s for another L y L units of time. RecallK K
0.5 .that except for an exponentially small probability, s F T y L . It followsK

from the properties of the dual of the contact process that except for exponen-
Ž Ž 0.1.. 0.1tially small probability F C exp yg L , we can select L sites at12 12

0.2 Ž .about time L which are contained in the dual process starting at S , sK K
Ž . w x2 Ž .such that i all these sites are contained in y3Lr5, 3Lr5 , ii they are at

0.3 Ž .least L units apart from each other, and iii none of the duals starting at
these sites interferes with any of the other duals for the remaining L0.2 units

Ž .of time. Recall that the configuration in B 0 is G at time 0. In particular,1
0.1 0.1 Ž .this means that every L = L square D w , w g I , contains at least one0

site occupied by a 1. This, together with the fact that each of the duals has
positive probability of surviving, implies that each of these L0.1 sites has
probability h ) 0 of being occupied. On the set where the duals starting at
these L0.1 sites do not interfere, these trials are independent. Therefore,

P S , s is not occupied by a 1Ž .Ž .K K

L0 .10 .5 0 .1F C exp yg L q C exp yg L q 1 y hŽ .Ž . Ž .4 4 12 123.17Ž .
F C exp yg L0 .1Ž .13 13

for appropriate C - ` and g ) 0. We can now finish the proof of Lemma13 13
3.1.

Ž . Ž .PROOF OF LEMMA 3.1. Combining 3.13 and 3.17 it follows that for any
Ž .x g B 0 ,

3.18 P j x s 2 F C Lyg 8 q C exp yg L0 .1 .Ž . Ž .Ž . Ž .T 8 13 13

Ž .Since g was arbitrary, 3.3 follows. I8

It is now straightforward to prove Propositions 3.1 and 3.2.
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Ž .2 w x2PROOF OF PROPOSITION 3.1. There are at most 2 L q 1 sites in yL, L .
This together with Lemma 3.1 implies

2 y4 y63.19 P j x s 2 for some x g B 0 F 2 L q 1 CT F C L .Ž . Ž . Ž . Ž .Ž .T 14

for appropriate C - `. Furthermore, since the process dominates a one-color14
contact process with parameter b ) b , the probability that there exists an2 c

0.1 0.1 Ž .L = L square D w , w g I , that is empty, can be bounded by0

3.20 F C L1 .8 exp yg L0 .2Ž . Ž .15 15

Ž . Ž .Combining 3.19 and 3.20 yields Proposition 3.1. I

w x2 w xPROOF OF PROPOSITION 3.2. To show that yL y r, L q r = T y r, 2T
Ž . 2remains void of 2’s provided B z is G at time 0 for some z g Z with1

5 5z s 1, we apply Lemma 3.1 to all sites in the region`

2 2w x w x w x w xE s yL y r , L q r = T , 2T y yL, L = T , 2TŽ . Ž .ž /
2w x w xj yL y r , L q r = T y r , T .Ž .

Ž .2Ž . 3There are at most 2 L q r q 1 T q r q 1 F 8 L sites in E. Hence,

P j x s 2 for some x , t g E F 8 L3CTy4 F C Ly5 .Ž . Ž .Ž .t 16

� Ž . Ž . 4Since the range is r, this implies that on the set j x / 2 for all x, t g E ,t
Ž .the whole region C 0, 0 is void of 2’s. This completes the proof of Proposition

3.2. I

To make the comparison with M-dependent oriented site percolation, we
still need to show that boxes that are sufficiently far apart are independent of
each other with high probability. This is contained in the following lemma.

LEMMA 3.7. Assume c s c s 0 and b ) b . Set T s L2. For any « ) 01 2 1 2 1
we can find M ) 0 so that for L sufficiently large,

ŽP any of the selected paths is not contained in
3.21Ž . 2w x .yMLr3, MLr3 for some t F 2T F « .1

PROOF. This follows from the fact that the selected paths have a drift
Ž .toward the target region. A large deviations estimate then shows 3.21 . I

To make the comparison we assume that all the sites outside of
w x2 w xyML, ML are occupied by 2’s throughout 0, 2T . By stacking the boxes as

Ž . Ž .in Durrett and Schinazi 1993 and using Durrett 1992a , it follows that
there is a cone void of 2’s linearly growing in time. Inside the cone, the
distribution of 1’s is close to the equilibrium distribution for the correspond-
ing one-color contact process. This follows from a coupling argument.

To remove the condition of translation invariance of the initial configura-
tion, we note that if initially there are infinitely many 1’s, then, with

Ž .probability 1, there will be infinitely many occupied squares B z , z s
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Ž . 2z , z g Z with z and z both odd, at time T. This is a simple conse-1 2 1 2
quence of the Borel]Cantelli lemma since each square that contains 1’s at
time 0 has a positive probability of being occupied at time T and sufficiently

Ž .far apart squares B z do not influence each other with high probability for
all t F T. The random set

A s z s z , z g Z2 : z and z are both odd andŽ .� 1 2 1 2

B z is occupied at time TŽ . 4
can thus serve as the ‘‘source’’ for the rescaling argument and we can start
the iteration at time T.

The proof of Theorem 2 is now a straightforward perturbation argument
whose main ingredient is contained in the following lemma. We say a site is

Ž .doubly occupied if it is occupied by both strains i.e., it is in state 3 . We set

w xF s some site in B 0 becomes doubly occupied during 0, T .� 4Ž .

LEMMA 3.8. Given b and L. for any d ) 0 we can choose c and c1 1 2
Ž .sufficiently small so that P F F dr3.

Ž .2 Ž .PROOF. There are at most 2 L q 1 sites in B 0 . The total rate at which
Ž . 2sites can become doubly occupied is thus bounded by c k c b 5L . Hence,1 2 1

P F F 1 y exp y c k c b 5L2L2 F 5 c k c b L4 F dr3Ž . Ž . Ž .� 41 2 1 1 2 1

for c and c sufficiently small. I1 2

Combining Propositions 3.1 and 3.2 with Lemma 3.8, Theorem 2 follows for
c and c close to 0. Using the monotonicity in Proposition 1.1, then implies1 2
that we can extend our result to all c F 1. This concludes the proof of1
Theorem 2. I

4. Proof of Theorem 4. Our general approach in this section is to
consider the process on the scaled lattice Z2rr and let r ª `. To get a lower
bound on the growth of the set of 1 infections h r we will start with all sitest
occupied by 2’s. To set the stage, we begin by considering the behavior of the
set of sites occupied by 2’s, z r, when there are no 1 infections. In this case, z r

t t
r r , xis a long-range contact process. If we let z and z denote the long-ranget t

r 2 r , x 2� 4contact process with z s Z rr and z s x where x g Z rr, then the0 0
duality equation for the contact process implies

r r , x4.1 P x g z s P z / B ,Ž . Ž .Ž .t t

Ž .a quantity which is independent of x and that we will call r t .r
Let Z x be a branching random walk that starts with one particle at x andt

in which a particle at y dies at rate d and at rate b gives birth to an2 2
w x2offspring that is sent to y q U where U is uniform on y1, 1 . In the proof of
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Ž . � r , x 4Theorem 3 of Durrett 1991 it is shown that as r ª ` z , t G 0 convergest
� x 4weakly to Z , t G 0 and hencet

4.2 r t ª r t s P Z x / B .Ž . Ž . Ž . Ž .r t

The reasoning just applied to the density of occupied sites also applies to a
pair of sites. Duality implies

r r , x r , y4.3 P x , y g z s P z / B, z / B .Ž . Ž .Ž .t t t

The limiting processes Z x and Z y are independent so it should not bet t
surprising that the events on the right-hand side are asymptotically indepen-

Ž .dent. Using the methods of the proof of Theorem 3 in Durrett 1991 , one can
easily show that as r ª `

r r 24.4 v t s sup P 0 g z , x g z y r t ª 0.Ž . Ž . Ž .Ž .r t t r
x/0

Ž .If we imagine sites occupied by 2 as white and the others black, then 4.2
Ž . Ž .and 4.4 imply with a little help from Chebyshev’s inequality that in the

limit as r ª `, z r will be a featureless plane with the shade of grayt
Ž .determined by r t .

rŽ . rŽ .Let h t and h t denote the set of sites occupied by 1’s and 3’s at time t.1 3
Ž rŽ . rŽ ..In the following lemma we will establish the fact that h t , h t converges1 3

Ž . Ž Ž .to a temporarily inhomogeneous two type branching random walk h t ,1
Ž .. i < Ž . <h t . The number of 1’s and 3’s at time t in the limit process, N s h t ,3 t i

are a two-type branching process with the following transactions:

transition rate at time t
1 3Ž . Ž Ž ..0 ª 1 N q c N b 1 y r tt 1 t 1

1 3Ž . Ž .2 ª 3 N q c N c b r tt 1 t 1 1

1 Ž .1 ª 3 N c b r tt 2 2

33 ª 1 N d rc1 2 2

11 ª 0 N dt 1

33 ª 2 N d rc .t 1 1

Here we have written the transitions as they occur in the particle system.
Ž .The first two 0 ª 1 and 2 ª 3 transitions result in new individuals dis-

w x2placed from their parents by an amount uniformly distributed over y1, 1 .
Ž . Ž .Type changes 1 ª 3, 3 ª 1 and deaths 1 ª 0, 3 ª 2 occur at the particle’s

location.

LEMMA 4.1. Start with 2 infections at all sites. Add a fixed number of 1
infections to sites x r, . . . , x r and suppose x s lim x r exists for each i. Let1 K i i

rŽ . rŽ .h t and h t denote the set of sites occupied by 1’s and 3’s at time t. Then1 3
Ž rŽ . rŽ .. Ž .h t , h t converges to the temporally inhomogeneous two-type branch-1 3
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Ž Ž . Ž .. Ž . Ž .ing random walk h t , h t defined above with h 0 s B and h 0 s1 3 1 3
� 4x , x , . . . , x .1 2 K

PROOF. The transition rates defined above are obtained by assuming that
Ž .if r is large, then in the neighborhood of any point i the fractions of 1’s and

Ž .3’s are small and ii the fractions of 0’s and 2’s are equal to their equilibrium
values. To prove Lemma 4.1 we simply have to justify these assumptions. For
Ž .i we note that even if we ignore the deaths of 1’s and 3’s and assume that
each individual gives birth at rate b to a new 1 to get an upper bound on the1
total number of births in the real process, we have for any T - `

E sup N 1 q N 3 F exp b T N 1 q N 3 .Ž .Ž . Ž .t t 1 0 0
tFT

From this and Chebyshev’s inequality, it follows that, for any fixed T, if
M ª ` thenr

P sup N 1 q N 3 ) M F My1 exp b T N 1 q N 3 ª 0Ž .Ž . Ž .t t r r 1 0 0ž /
tFT

as r ª `.
The process of 1’s only interferes with the 2’s at the sites that it occupies

by reducing the birth rate of 2’s and increasing the death rate of 2’s at those
sites. Thus the last estimate implies that the 2 process will with high
probability lose at most M particles from this interference. In view of this, ifr

Ž .we let M ª ` slowly, we can ignore the 1 infections in checking ii andr
suppose that the set of 2’s is a long-range contact process.

w x2 ŽSuppose that all the initial 1 infections lie in yA, A on the scaled
2 . Ž .lattice Z rr . To prove ii now we will let h ª 0 slowly and look at ther

r Ž . w .2 Ž . Ž .number of 2’s in the boxes B s ih , jh q 0, h where yl r F i, j F l ri j r r r
Ž . Ž .and l r s A q 2 q M rh . To explain the range of indices, note that whenr r

the number of births is less than or equal to M , all sites occupied by 1’s orr
w x2 w3’s lie in yA y M , A q M and all of their neighbors lie in yA y 1 y M ,r r r

x2A q 1 q M . Replacing 1 by 2 takes care of the boxes that intersect the edger
of the square.

r Ž . < r r < Ž .Let S t s z l B . To prove ii we will show that for « ) 0:i j t i j

rS tŽ .i j
4.5 P sup y r t ) 3« ª 0.Ž . Ž .rr< <B� 00FtFT i j

Ž . Ž .yl r Fi , j , Fl r

We begin by estimating the probability for one square at a fixed time. By
Chebyshev’s inequality

r rS t var S tŽ . Ž .Ž .i j i jy2P y r t ) « F « .Ž .rr 2r< <ž /B < <Bi j i j

Ž . r Ž .Equation 4.4 gives a bound on the covariance of the terms in S t whichi j
implies that

r < r < < r < 2var S t F B q v B .Ž .Ž .i j i j r i j
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Combining this with the Chebyshev bound we have

rS tŽ .i j y1y2 r< <P y r t ) « F « B q v .Ž . ž /r i j rr< <ž /Bi j

Our next goal is to estimate the probability of

rS tŽ .i j
G s sup y r t F « .Ž .t rr½ 5< <BŽ . Ž . i jyl r Fi , jFl r

Adding up the error probabilities, we have for fixed t that

2 y1c y2 r< <P G F 2 l r q 1 « B q v .Ž .Ž .Ž . ž /t i j r

< r < w x2 w x Ž .Now B G rh , where x denotes the integer part of x and l r ; M rhi j r r r
as r ª `, so

2Mr y2c4.6 P G F C rh q v .Ž . Ž .Ž . Ž .t r rž /hr

If we let h ª 0 and M ª ` slowly enough, the right-hand side tends to 0 asr r
r ª `.

Ž .The estimate in 4.6 is for one fixed time but trivially implies that if t and
L are fixed

c � 44.7 P G for some t g 0, t , . . . , Lt ª 0.Ž . Ž .t

To handle intermediate times let D r be the number of sites in B r hit byi j, k i j

w Ž . x Ž .‘‘2-deaths’’ in the time interval kt , k q 1 t . Pick t so that 1 y exp ytd2
< < < Ž . Ž . <F «r2 and if s y t F t then r s y r t F « . The latter is possible sincer r

Ž .t ª r t is decreasing and continuous. Since the events that a 2-death hits ar
site are independent for different sites, Chebyshev’s inequality implies

var D rŽ .i j , k y2 y1r r r< < < <P D ) « B F F C «r2 B .Ž .Ž .i j , k i j i j2 2r< <«r2 BŽ . i j

� r < r < Ž . Ž . 4So if we let H s D F « B for all yl r F i, j F l r and 0 F k - L ,i j, k i j
< r < Ž .then using the previous estimate and the asymptotics for B and l r wei j

have

2 y1c y2 r< <P H F L 2 l r q 1 ? 4« BŽ . Ž .Ž . i j

2Mr y2F CL rh ª 0Ž .rž /hr

4.8Ž .

Ž .by the choices of 4.6 .
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Ž . Ž . Ž .To combine 4.7 and 4.8 to get 4.5 and complete the proof of Lemma 4.1
we will show:

Ž L .On H l F G , we haveks0 kt

rS tŽ .i j
4.9 sup y r t F 3« .Ž . Ž .rr< <B0FtFT i j

Ž . Ž .yl r Fi , j , Fl r

r Ž . Ž Ž . . < r < rFor one direction we observe that if S kt G r kt y « B and D Fi j r i j i j, k
< r < r Ž . Ž Ž . . < r < w Ž . x w« B then S t G r t y 2« B for all t g kt , k q 1 t . Here we usei j i j r i j

Ž . x r Ž . Ž Ž .the fact that t ª r t is decreasing. On the other hand, if S t ) r t qr i j r

. < r < w Ž . x r < r < r ŽŽ . .3« B for some t g kt , k q 1 t and D F « B , then S k q 1 t )i j i j, k i j i j
Ž ŽŽ . . . w ŽŽ . .r k q 1 t q « , a contradiction. Recall our choice of t implies r k q 1 tr

Ž . xG r t y « . I

The next result should explain the reason for the assumption in Theo-
rem 4.

LEMMA 4.2. The instability assumption in Theorem 4 implies that the
branching process is supercritical for large t.

Ž .PROOF. As t ª `, r t converges to the probability the branching process
x wZ survives for all time t. It is well known see, e.g., Bramson, Durrett, andt

Ž . Ž .xSwindle 1989 or Durrett 1991 and easy to compute that this probability is
Ž . Ž .b y d rb . If we replace r t in the transition rates of the two-type2 2 2
branching process by its limiting value, then we get a two-type branching

Ž .process in which the mean number of particles of type i, v t , satisfiesi

dv d b y d1 2 2 2s v b ? y c b ? y d1 1 2 2 1ž /dt b b2 2

d d2 2q v c b ? q ,3 1 1ž /b c2 2
4.10Ž .

dv b y d3 2 2s v c b q c b ?Ž .1 1 1 2 2ž /dt b2

b y d d d2 2 1 22q v c b ? y y .3 1 1ž /b c c2 1 2

Ž .It is easy to see that this coincides with the linearization of 1.1 about the
Ž .fixed point given in 1.5 . Indeed, given that the linearization is based on

Ž .assuming u f b y d rb , u f d rb and u s « v , u s « v with «2 2 2 2 0 2 2 1 1 3 3
small, the two must coincide.
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Ž .If we write 4.10 in vector form: dvrdt s Qv, then we can write the
solution as

` n nQ t
Qt Qtv t s e v 0 where e s .Ž . Ž . Ý n!ns0

The assumption of Theorem 4 is that there is an eigenvector

v v1 1Q s lv vž / ž /3 3

with v , v , and l positive. Plugging this into the formula for the solution we1 3
have

v v1 1Qt lte s ev vž / ž /3 3

If G s eQ then G is the mean number of individuals of type j at time 1 wheni j
we start with one individual of type i. The interpretation implies G ) 0 soi j

wthe Perron]Frobenius theorem for positive matrices see, e.g., Section 1.1 of
Ž .xSeneta 1973 implies that there is a positive eigenvalue s larger than the

Žmodulus of the other eigenvalue which of course must be real in this 2 = 2
. Ž .case and an associated strictly positive eigenvector w , w . To see that1 3

Ž . Ž . lw , w s c v , v for some c ) 0 and hence s s e ) 1, we note that the1 3 1 3
Ž .other eigenvector of G is perpendicular to w , w and hence has a negative1 3

component. The fact that the largest eigenvalue of G is bigger than 1 implies
that the multitype branching process which occurs in the limit as t ª ` is
supercritical. The desired result now follows from the fact that the maximum
eigenvalue of a positive matrix is a continuous function of its entries. I

To estimate the behavior of the two-type branching process, we will bound
w xit below by a two-stage process which follows one law on 0, T and another0

w . Ž .on T , ` . Pick T and d ) 0 a fudge factor we will need later so that the0 0
multitype branching process which arises from assuming 2’s have density

Ž . w .r s r T q d is supercritical. This is the process we will use on T , ` . On0 0
w x0, T we will not allow new 1 infections to occur and subject the existing0
ones to death at rate d rc . We expect this to reduce the fraction of 1 infected1 1

Ž .sites to exp yT d rc times the original number at time T . However, we0 1 1 0
will be able to recover our losses in the second stage when the process is

Ž .supercritical. This tactic was used in Durrett and Swindle 1991 , but here
the branching process has two types of particles.

To be able to recover our losses, we need estimates on the mean number of
particles in the second stage branching random walk. For the next definition
and for the proof of Lemma 4.3, we will suppose that the second stage law is

t Ž .used for all time. Let m x, D be the mean number of individuals of type j ini j

the set D at time t when we start with one individual of type i at x. Let
t t t Ž .m s m q m and let e s 1, 0 .i ? i1 i3 1



R. T. DURRETT AND C. NEUHAUSER40

2' 'w xLEMMA 4.3. Let J s y t , t :t

t 'lim inf inf m x , 2 t e q J s `.Ž .i ? 1 t
tª` i xgJt

t Ž 2 .PROOF. Intuitively this is true since m x, R grows exponentially andi j
the central limit theorem implies that the fraction of the particles that land
in the target set is bounded below uniformly in x g J for large t. It takest
some work to write down a formula that allows us to conclude this. However,
we will give the details of the proof of this ‘‘standard result’’ here since we
will also need a generalization of the situation in which births are not

' 'Ž .allowed outside y4 t , 4 t .
Let b be the rate at which type i particles give birth to type j particlesi j

without dying themselves. Consulting the rates given in Lemma 4.1 and
recalling the definition of the second stage, we have

b s b 1 y r , b s c b 1 y r ,Ž . Ž .11 1 31 1 1

2b s c b r , b s c b r .13 1 1 33 1 1

In all the cases in the table the new offspring is displaced from the parent by
w x2an amount that is uniform on y1, 1 . Particles can also change type without

moving or die. Let c be the rate at which particles of type i change into typei j

j and let d be the death rate for particles of type i:i

c s c b r , c s d rc , d s d , d s d rc .13 2 2 31 2 2 1 1 3 1 1

To reduce things to discrete time, let

� 4r s b q b q c q d , r s b q b q c q d , r s max r , r .1 11 13 13 1 3 31 33 31 3 1 3

w x2If we let U be uniform on y1, 1 , then a particle of type 1 at x waits for an
exponential amount of time with mean 1rr and then:

becomes with probability

a 1 at x, a 1 at x q U b rr11

a 1 at x, a 3 at x q U b rr13

a 3 at x c rr13

a 1 at x 1 y r rr1

dead, i.e., B d rr.1

There is a completely analogous table for the actions of a type 3 particle. Let
1 Ž .m x, D be the mean number of j offspring in D produced in one transitioni j

by a particle of type i at x. Iterating we can define the mean result of n
transitions inductively by

mn x , D s mny1 x , dy m1 y , DŽ . Ž . Ž .ÝHi j ik k j
k
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and recover the mean for the continuous time process by
n` rtŽ .

t yr t n4.11 m x , D s e m x , D .Ž . Ž . Ž .Ýi j i jn!ns0

n n 2 nŽ . Ž .Let m s m x, R , which does not depend on x, and p x, D si j i j i j
n n n nŽ .m x, D rm . Then m is the nth power of the matrix m and p is the nthi j i j

1 Ž . Ž .power of the transition probability p x, D s g D y x .i j i j

Let Q be the matrix which results if we take the definition of Q in Lemma
QtŽ .4.2 and replace b y d rb by r and d rb by 1 y r. Let G s e . G is the2 2 2 2 2 i j

mean number of individuals of type j at time 1 when we start the second
stage process with one individual to type i. Repeating the argument for
Lemma 4.2, we see that by the Perron]Frobenius theorem m has a largesti j

Ž .eigenvalue k with a strictly positive eigenvector w , w which must be a1 3
2Ž .positive multiple of the one for G. Using 4.11 with D s R , multiplying by

lw and summing over j, we see that if e is the largest eigenvalue of G thenj
n` k rtŽ .

exp lt w , w s w , w exp yrt s exp k y 1 rt w , wŽ . Ž . Ž . Ž . Ž . Ž .Ž .Ý1 3 1 3 1 3n!ns0

Ž .and hence l s k y 1 r. Noting that
n n` `k rt k rtŽ . Ž .

exp yrt s exp k y 1 rt exp yk rtŽ . Ž . Ž .Ž .Ý Ýn! n!ns0 ns0

and applying the local central limit theorem to the Poisson distribution, we
w x y1r2see that the n s k rt term in the sum on the left is asymptotically Ct .t

Applying the Perron]Frobenius theorem to m, it follows that for all i, j
n trtŽ . n y1r2t4.12 exp yrt m ; C t exp ltŽ . Ž . Ž .i j i jn !t

The transition probability pn t is the result of n steps chosen from one of thei j t
four distributions g , all of which have positive finite variance, so the centrali j
limit theorem implies

n t '4.13 lim inf inf p x , 2 t e q J ) 0.Ž . Ž .i j 1 t
tª` i , j xgJt

Ž .Combining this with 4.12 gives the desired result. I

�Ž . 2We are now almost ready for the block argument. Let LL s m, n g Z :
4 2 w .m q n is even , and make the following definitions in R = 0, ` . The quan-

tity T was chosen above and T will be chosen in a moment. Define0 1

f m , n s 2mLe , nT where L s T and T s T q T ,Ž . Ž . '1 1 0 1

2 w xB s y4L, 4L = 0, T , B s f m , n q B ,Ž . Ž .m , n

2w xI s yL, L , I s 2mLe q I.m 1



R. T. DURRETT AND C. NEUHAUSER42

Consider a truncation of our two-stage branching random walk in which
Ž .2births are not allowed outside of y4L, 4L . The truncation does not affect

the first stage since no births occur then. Our next step is to compute what
the truncation does to the mean of the second stage process.

Ž . Ž Ž .2 . n Ž .Let p x, D s p x, D l y4L, 4L and let p x, D be the nth iter-ˆ ˆi j i j i j
w xate. Let n s k rt as in the proof of Lemma 4.3. The original transitiont

probability pn t is the result of n steps chosen from one of the four distribu-i j t
tions g , all of which have positive finite variance, so using Donsker’si j

Ž .theorem instead of the central limit theorem in the proof of 4.13 , we have
nŽ t . '4.14 lim inf inf p x , 2 t e q J ) 0.Ž . ˆ Ž .i j 1 t

tª` i , j xgJt

t Ž .Let m x, D be the mean number of individuals of type j in the set D atˆ i j
time t when we start the modified branching random walk with one individ-

t t t Ž .ual of type i at x and let m s m q m . From 4.14 it follows easily that ifˆ ˆi ? i1 i3
T is large1

t4.15 inf inf m x , 2 T e q J G 4 exp T d rc .Ž . Ž .'ž /i ? 1 1 T 0 1 11i xgJT1

To make the connection with the definitions above, notice that L s T ,' 1

I s J , and I s 2 T e q J .'T 1 1 1 T1 1

Ž AŽ . AŽ ..Let A ; I, and let h t , h t be the sets of sites occupied by 1’s andˆ ˆ1 3
AŽ .3’s in the truncated two stage branching process started from h 0 s B,ˆ1

AŽ .h 0 s A. Recall that we start with all sites occupied by 2’s so at time 0, 1’sˆ3
AŽ . AŽ . AŽ .are impossible. Let h t s h t j h t .ˆ ˆ ˆ1 3

LEMMA 4.4. For any « ) 0 we can pick K large enough so that for any
< <A ; I with A s K,0

< A <P h T l I G K G 1 y « .Ž .ˆŽ .1

PROOF. Let V be the number of 1 infections that survive the first stage.

EV s K exp yT d rcŽ .0 1 1

Ž . < AŽ . <so 4.15 implies that E h T l I G 2 K. Since the progeny sets of differentˆ 1
individuals are independent,

< A <var h T l I F KC ,Ž .ˆŽ .1 T

where C - `. Using Chebyshev’s inequality now we haveT

< A <var h T l I CŽ .ˆŽ .1 TA< <P h T l I - K F F ,Ž .ˆŽ .1 2 KK

from which the desired result follows. I

Our next step is to extend Lemma 4.4 to the particle system with large
range. Before doing this, however, we have to impose one last truncation to
get a finite range of dependence in the block events to be defined below. For
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t F T , we pretend that all sites are always occupied by 2’s. For t G T , we0 0
put a 2 at x at time t, if ‘‘the dual of the long-range contact process of 2’s,’’
starting at x at time t survives for T units of time or escapes from the box0
of radius L s T centered at x by time T . To explain what we mean by the' 1 0
process in quotes, note that if we use Poisson processes to construct the

w Ž .xprocess in the usual way see Section 2 of Durrett 1995 , then this allows us
to construct on the same space the process starting from any initial configu-
ration. In particular we can construct the process starting from no 1’s when it

wreduces to the long-range contact process and construct in the usual way see
Ž .xSection 3 of Durrett 1995 the dual of that process.

If T is chosen large enough, then the probability that the dual escapes1
from the box of radius L s T is smaller than the fudge factor d introduced' 1
in the definition of r given before Lemma 4.3. Let A ; I, and let
Ž r , AŽ . r , AŽ ..h t , h t denote the set of sites occupied by 1’s and 3’s in the particleˆ ˆ1 3

2 r , AŽ . r , AŽ .system on Z rr started from h 0 s B, h 0 s A and truncated so thatˆ ˆ1 3
Ž .2 r , AŽ . r , AŽ .1 infections are not allowed outside y4L, 4L . Let h t s h t jˆ ˆ1

r , AŽ .h t .ˆ3

LEMMA 4.5. For any « ) 0 we can pick K and then r large enough so that0
< <if r G r then for any A ; I with A s K,0 0

< r , A <P h t l I G K G 1 y 2« .Ž .ˆŽ .1

PROOF. Given « ) 0, pick K as in Lemma 4.4. Suppose now that there is
� n n 4a sequence r ª ` and sets A s x , . . . , x so that the conclusion is false.n n 1 K

By considering a subsequence n we can have x n i converging to a limit x fori j j
1 F j F K. A straighforward generalization of the proof of Lemma 4.1 implies

Ž i i . Ž ithat if we let h , h denote the processes with r s r and A s A then h ,˜ ˜ ˜1 3 n n 1i ii .h converges weakly to the truncated two stage process.˜3
Ž .2The probability of a particle landing exactly on the boundary of y4L, 4L

Ž < iŽ . iŽ . < .or on the boundary of one of the I , i s y1, 1 is 0 so P h T j h T G K˜ ˜i 1 3
� 4converges to the probability for the limit process starting from x , . . . , x .1 K

Lemma 4.4 implies that this probability is greater than or equal to 1 y « , so
we have a contradiction which proves the result. I

Lemma 4.5 shows that for large range, the particle system satisfies the
Ž .comparison assumptions on page 140 of Durrett 1995 . Invoking Theorem 4.3

on page 141 of that paper now we see that if « is chosen small enough in
� Ž .Lemma 4.5 and we let X s m: m, n g LL and the number of 1 infectionsn 0

4in I at time nT is G K , then X dominates a supercritical 2-dependentm n
oriented percolation process with initial set W s X .0 0

For the initial configuration given in Theorem 4, W is product measure0
Ž .with density p so Theorem A.3 on page 195 of Durrett 1995 implies

� 4lim inf P y2 K , . . . , 2 K l W / B G 1 y «Ž .2 n K
nª`

with « ª 0 as K ª `. The proof of Theorem 4 can now be completed byK
combining this observation with the standard techniques of taking the Cesaro
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average of the distribution of j , 0 F s F t and extracting a convergents
w Ž .subsequence to construct a stationary distribution for the process see 2.13

Ž .xon page 124 of Durrett 1995 . I
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