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SPATIAL MODELS FOR SPECIES AREA CURVES

BY MAURY BRAMSON,1 J. THEODORE COX 2 AND RICHARD DURRETT 3

University of Wisconsin]Madison, Syracuse University and
Cornell University

The relationship between species number and area is an old problem
in biology. We propose here an interacting particle system}the multitype
voter model with mutation}as a mathematical model to study this
problem. We analyze the species area curves of this model as the mutation
rate a tends to zero. We obtain two basic types of behavior depending on
the size of the spatial region under consideration. If the region is a square
with area ayr , r ) 1, then, for small a , the number of species is of order

1y rŽ .2a log a , whereas if r - 1, the number of species is bounded.

1. Introduction. The relationship between species number and area has
Ž .puzzled naturalists since the early 1800s. Watson 1835 says ‘‘On the

average, a single county appears to contain nearly one half the number of
species found in Britain; and it would, perhaps, not be a very erroneous guess
to say that a single mile may contain half the species of a county.’’ Arrhenius
Ž .1921 was the first to formalize this by saying that the logarithm of the
number of species was a linear function of the logarithm of the area or,
equivalently, species number S and area A are related by a power law
S s cAz. While some biologists have suggested other curves, the Arrhenius

Ž .relationship is the most accepted. See Connor and McCoy 1979 for a
summary and analysis of more than 100 studies. A more recent survey can be

Ž .found in Williamson 1988 .
Although there is general agreement about the form of the species area

curve, there has been much debate over the last 50 years about the causes of
Ž .this relationship. For instance, Preston 1962 argued that if species abun-

dances follow a lognormal distribution and each area is a random sample
from the larger population, then S s cAz with z f 0.26. MacArthur and

Ž .Wilson 1967 proposed in their study of ‘‘island biogeography,’’ that on each
island, the number of species represented an equilibrium between immigra-

Ž .tion and extinction. Hubbell 1992 was the first to suggest that one could
derive species area relationships from a spatially explicit model. Unaware of
the interacting particle systems literature, he constructed a fairly compli-
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cated discrete time model that allowed several species to inhabit each site,
with the probability of local extinction per species being inversely propor-
tional to the number of species at the site. He then studied the system using
simulation.

In this paper, we will introduce a more elementary interacting particle
system model and study its species area curves. We represent space by the
two-dimensional integer lattice Z2, imagining our terrain to be divided into
square cells, each of which can be occupied by at most one species. We are
interested in systems where species compete and occasionally mutate into
new types. In this context, it would be natural to formulate a contact process
type model in which individuals can die, give birth onto vacant sites and
mutate. However, to obtain a computationally tractable model, we will sim-
plify further and formulate a voter type model in which each site is always
occupied, but species can displace others in nearby sites. Results of Neuhauser
Ž .1992 suggest this change does not affect the qualitative properties of the
species area curves. However, the proofs we present here would become
considerably more complicated. We restrict ourselves in this paper to mathe-
matical aspects of the problem, leaving the biological implications to be

Ž .discussed in the companion paper by Durrett and Levin 1996 .
In the multitype voter model with mutation, the state of the system at time

2 Ž . Ž .t is given by a random function j : Z ª 0, 1 , with j x being the type oft t
the individual at x at time t. We index our species by values w in the

Ž .interval 0, 1 , so we can pick new species at random from the set of possibili-
ties without duplicating an existing species. To formulate the dynamics, we

Ž .first introduce the dispersal function p, where p y y x gives the probability
that an offspring born at x is sent to y. For simplicity, we will make the

Ž .natural assumption that p only depends upon distance. That is, p y y x s
Ž < <. Ž .r y y x . The two mechanisms in the model}birth with displacement and

mutation}are described by the following rules.

1. Each site y is invaded at rate 1, changing its value to the state of a site x,
Ž .chosen with probability p y y x .

2. Each site y mutates at rate a , changing to a new type w9, chosen
Ž .uniformly on 0, 1 .

Ž .The voter model was first studied by Clifford and Sudbury 1973 and
Ž .Holley and Liggett 1975 . It and its generalizations treated in the genetics

w Ž .xliterature see, e.g., the papers of Sawyer cited in Liggett 1985 are mathe-
matically tractable because there is a duality that allows us to reformulate
questions in terms of random walks. In Section 2, we will define the voter
model from a percolation substructure and construct its dual process, a
coalescing random walk system z A, t, 0 F s F t, defined for each A ; Zd. Suchs
a system starts from z A, t s A and consists of particles which execute rate-10

Ž .independent random walks with jump kernel p x , except that particles
coalesce when one particle jumps onto a site occupied by another particle.
Since the finite-dimensional distributions of z B, t for s F t do not depend ons
t, we can let z B denote a process defined for all s G 0 with these finite-s
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dimensional distributions. The percolation substructure also has mutation
event markers, which occur independently at each site at rate a and have
independent uniform random variables attached to them. The algorithm for

Ž .determining j x is the following. If a mutation event marker occurs any-t
Ž � x4, t . Ž .where on the path z , 0 F s F t , then the state of j x is the value of thes t

uniform random variable attached to the first marker encountered. Other-
Ž . Ž . � x4, twise, j x s j y , where y s z . The first application of this constructiont 0 t

in Section 2 proves the following proposition.

PROPOSITION 1. The multitype voter model with mutation has a unique
stationary state j . Furthermore, for any initial j , j « j as t ª `.` 0 t `

We use « to denote weak convergence, which in this setting is just
convergence of finite-dimensional distributions, and we refer to j as an`

equilibrium.
The model introduced above ignores habitat diversity, but allows us to

consider the question: what would species area curves look like in a homoge-
neous world where the only forces at work are mutation, colonization and
extinction? Since we expect the mutation rate a to be small, we will look at
the behavior of the species area curves for the equilibria j as a ª 0 and`

space is rescaled in a suitable way.
The basic result we need for coalescing random walks is the asymptotic

rate at which the density of particles goes to 0. This rate, obtained by
Ž .Bramson and Griffeath 1980 , is used in the proofs of Theorems 1 and 2. In

the proof of Theorem 3, we also make use of some results of Bramson, Cox
Ž . Ž .and Griffeath 1986 . Both papers treat only the case where the kernel p x

is nearest neighbor, although the results can presumably be extended to the
Ž .case that p x has mean zero and finite variance by repeating the existing

arguments with minor modifications. However, since we do not want to do
this here, we will restrict our attention to the nearest neighbor case.

We now state our results for the multitype voter model with mutation on
2 ' Ž .Z . Let L s 1r a , and let N be the number of different types or species inr

Ž r r x2 q � 4yL r2, L r2 in the equilibrium j . Write a for max a, 0 .`

THEOREM 1. As a ª 0,
log Nr q

1.1 ª r y 1 in probability.Ž . Ž .
2 log L

In the Arrhenius relation S s cAz, the exponent z is the slope of the line
obtained from a log-log plot of species number versus area. Theorem 1 says

Ž .that for a close to zero, plotting log N r2 log L as a function of r gives a liner
segment on 0 F r F 1 with slope zero and another line segment on r G 1 with
slope 1.

It is easy to see why the curve should have slope 1 for r G 1. First, note
Ž . Ž .that the distribution of j x , x g B B finite , can be computed by running`

the dual process z B until all particles encounter mutations. The type at x ins
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equilibrium will be determined by the first mutation event that occurs along
the path z � x4. The time of this event has an exponential distribution withs
mean 1ra . Since z � x4 is a random walk, it will have moved a distance abouts'1r a s L in that time and, with high probability, will not have moved
further than CL if C is a large constant. This leads to the conclusion that
states of sites in j which are separated by a large multiple of L are typically`

different. So, for length scales larger than L, the number of species should be
proportional to area.

ŽTo see why the limit in Theorem 1 should be 0 for r s 1 and hence for
. Ž .r - 1 , we need a result from Bramson and Griffeath 1980 . Let z , 0 F t F `,t

2be a coalescing random walk system starting from z s Z . By Theorem 19 in0
Ž .Bramson and Griffeath 1980 , for large t,

2L L log t
2E z l y , f L ,t ž 2 2 p t

where f denotes ‘‘approximate equality.’’ If trL2 is small and t is large,
then one expects that

2L L log t
BŽL. 2< <z f z l y , f L ,t t ž 2 2 p t

Ž . Ž x2where B L s yLr2, Lr2 . By duality, N is at most the number of1
BŽL. Žmutations that occur in z , 0 F t - `. The inequality arises from thet

. y2depletion of the population by mutations. Mutations occur at rate L . So,
ignoring the effect of repeated mutations, the number of mutations that occur
between some fixed large time K and time L2 should have a Poisson
distribution with mean approximately equal to

log t 22L 2dt f log L .Ž .H
p t pK

It is easy to see that the expected number of mutations by time K is bounded.
The number of mutations that occur after time L2 is bounded above by the
number of particles in the coalescing random walk at time L2, which is
Ž . ŽŽ .2 .O log L . This leads to the conclusion N s O log L and hence1

log N rlog L ª 0 as L ª `. A rigorous proof is given in Section 3, which1
shows the above computation is essentially correct.

By sharpening our argument we can considerably improve Theorem 1. Our
results for the two regimes r G 1 and r - 1 are as follows.

THEOREM 2. If r G 1, then as a ª 0,
N 2r

1.2 ª in probability.Ž . 22 ry2 pL log LŽ .
THEOREM 3. If 0 F r - 1, then N converges in distribution as a ª 0.r

Moreover, there are finite positive constants B and B such that for all1 2
0 F r - 1,

B B1 2
1.3 F lim inf EN F lim sup EN F .Ž . r r1 y r 1 y raª0 aª0
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We will give the limiting distribution of N in Section 5. One can also showr
lim EN exists, but to do this we would need to repeat several pages ofa ª 0 r

Ž .Bramson, Cox and Griffeath 1986 with minor changes.
It is, at first sight, disappointing that our limiting curve given in Theorem

1 consists of two line segments with slopes 0 and 1, rather than a single line
with an ‘‘interesting’’ slope. However, if we assume that the species area
curve is approximately linear for 0 F r F 1, then Theorem 2 can be used to

Ž .arrive at a slope that depends on a . See Durrett and Levin 1996 for details
of this and for further discussion of the biological interpretation of our
results.

In this paper we have restricted our attention to two dimensions since it is
the most appropriate setting for biological applications. In the one-dimen-
sional nearest neighbor case, the different types will occupy finite unions of

' Žintervals of length of order L s 1r a . So, Theorem 1 holds without the 2 in
.the denominator , but in Theorem 2, N stays bounded, and in Theorem 3,1

N ª 1 in probability. In three or more dimensions, random walks arer
transient, so, even when a s 0, there is a nontrivial stationary distribution.

wKnown results about the size of clusters in the voter model see, e.g.,
Ž .xBramson and Griffeath 1979 suggest that in a cube of side L, there will be

on the order of Ldy2 types. That is, on log-log paper we have a species area
Ž .curve with slope d y 2 rd.

There is a large literature in mathematical genetics concerned with models
in which the ‘‘spatial’’ locations of individuals are taken to be exchangeable
Ž . Ž .in the usual stochastic sense . The review articles of Ewens 1990 , Donnelly

Ž . Ž .and Tavare 1995 and Kreitman and Akashi 1995 are good sources for´
information on models of this type and contain many references. To relate our
work to this literature, replace Zd with the complete graph on L sites,
change the dispersal kernel to be uniform over all sites and take a s Ly1.
However, in this situation, the number of species found grows like log L as
L ª `; that is, there is no power law behavior.

A second nonspatial approach to the problem is to look at the number of
< � 4 <distinct points N s X , . . . , X in the first n members of a random samplen 1 n

Ž .from an infinite population. Fisher, Corbet and Williams 1943 used this as a
Ž .model for the number of Lepidoptera species butterflies and moths among

the first n individuals collected in a light trap. If one accepts that individuals
w Ž .xare placed randomly in space see Coleman 1982 , one can argue that the

collectors’ curve N is a species area curve. There have been a number ofn
Ž .interesting mathematical studies investigating these ideas; see Karlin 1967 ,

Ž . Ž .Rouault 1978 and Pitman 1996 . In particular, appropriate assumptions on
the population distribution can lead to power law growth of N as n ª `.n

It is interesting to compare and contrast the spatial and nonspatial
approaches to this question. However, since our understanding of that topic
depends on results on the abundance of the various species in the spatial
model, we will postpone our discussion to a future paper on that topic.

The remainder of this paper is devoted to proofs. Various duality relations
and the proof of Proposition 1 are given in Section 2. Theorems 1]3 are
proved in Sections 3]5. Theorem 1 is, of course, a consequence of Theorem 2.
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We first give the simpler result and its proof to prepare the reader for the
proof of Theorem 2, which is the most technical part of the paper. It involves

BŽL. w xanalyzing z over several disjoint time intervals T , T , with Lemmat iy1 i
4.3 being the most involved piece. The proof of Theorem 3 is shorter and
employs some of the same arguments, together with a result from Bramson,

Ž .Cox and Griffeath 1986 .

2. Duality and the proof of Proposition 1. In this section, we first
describe the construction of the voter model from a percolation substructure,
and the resulting duality with coalescing random walks. Proposition 1 then
follows easily. We also formulate some additional notation and results which
we will use in the proofs of our theorems.

Ž . Ž .Following the approach of Griffeath 1979 or Durrett 1988 , we construct
Ž .the classical voter model without mutation, only two opinions by defining,

� x 4for each site x, a rate-1 Poisson process T , n G 1 and a collection of i.i.d.n
� x 4 Ž x . Ž . xrandom variables Z , n G 1 with P Z s z s p z . At time T , the voter atn n n

y s x q Z x will adopt the state of the voter at x. All Poisson processes T x
n n

and random variables Z x are assumed to be independent. The entire collec-n
˜ ytion constitutes the ‘‘percolation substructure.’’ Let T denote the successiven

times at which the voter at y adopts the state of another voter; it follows with
˜ y� 4a little work that T , n G 1 are also independent rate-1 Poisson processes.n

Ž x .To facilitate the definition of the dual, we write a d at y, T and draw ann
Ž x . Ž x . Ž .arrow from x, T to y, T . We say that there is a path up from x, 0 ton n

Ž .y, t in the percolation substructure if there is a sequence of times 0 s s -0
s - s - ??? - s - s s t and spatial locations x s x , x , . . . , x s y, so1 2 n nq1 0 1 n
that the following statements hold:

1. For 1 F i F n, there is an arrow from x to x at time s .iy1 i i
� 4 Ž .2. For 0 F i F n, the vertical segments x = s , s do not contain anyi i iq1

d ’s.

For each set of sites A, we put h A s A and define, for t ) 0,0

h A s y : for some x g A there is a path up from x , 0 to y , t .� 4Ž . Ž .t

Here h A is the classical voter model with possible opinions 0 and 1. If At
denotes the set of sites occupied by 1’s at time 0, then h A is the set of sitest
occupied by 1’s at time t.

An important feature of this construction is that we can construct a dual
process on the same percolation substructure. We reverse the directions of
the arrows and define paths going down in the analogous way. For each set of
sites B, for fixed t and 0 F s F t, put

z B , t s x : for some y g B , there is a path down from y , t to x , t y s .� 4Ž . Ž .s

Then h A and z B, t are dual in the sense that for any 0 F s F t,t s

2.1 h A l B / B s A l z ŽB , t . / B .Ž . � 4 � 4t t

The finite-dimensional distributions of z B, t for s F t do not depend on t, sos
we can let z B denote a process defined for all s G 0 with these finite-dimen-s
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B A Ž .sional distributions, and call z the dual of h . It follows from 2.1 thats t

2.2 P h A l B / B s P A l z B / B .Ž . Ž . Ž .t t

It is easy to see that the dual process z B is a coalescing random walk. Thes
individual particles in z B perform independent rate-1 random walks withs

Ž .jump distribution p x , with the collision rule that when two particles meet,
they coalesce into a single particle.

We may also define a multitype voter model using the same percolation
Ž .substructure. Assume now that the type of an individual belongs to 0, 1 , and

Ž .write h x for the type of the individual at site x at time t. Given h , we putt 0
Ž . Ž .h y s h x , where x is the unique site such that there is a path up fromt 0

Ž . Ž .x, 0 to y, t in the percolation substructure.
We need to generalize our construction to include mutations. We enrich the

� xpercolation substructure with independent rate-a Poisson processes S ,n
4 � x 4n G 1 and i.i.d. random variables U , n G 1 that are uniform on then

Ž . xinterval 0, 1 . The times S are the times at which a mutation occurs at siten
x, and the new type is given by U x. We can now define the multitype votern

ˆB, tmodel with mutation j and an additional ‘‘dual’’ process z . Fix j , wheret s 0
Ž . Ž . Ž .j x g 0, 1 is the type of the site x at time 0. To determine j y , choose0 t

Ž . Ž .the unique site x such that there is a path up from x, 0 to y, t . If there is
Ž . Ž . Ž .no mutation event on this path, put j y s j x . Otherwise, let z, t9 bet 0

the point on this path with the property that S z s t9 for some n and theren
Ž . Ž .are no other mutation events on the path from z, t9 up to y, t . Put

z ˆB, t B, tŽ .j y s U . The process z is defined just as is the process z , except thatt n s s
ˆBparticles encountering mutation events disappear. Write z for the processs

ˆB, tdefined for all s G 0 with the same finite-dimensional distributions as z ,s
s F t.

ˆŽB, t .PROOF OF PROPOSITION 1. We first note that if z s B for some s - t,s
Ž .then the states j x of the sites x g B do not depend on the initial configu-t

ˆŽB, t . ˆB< < < <ration j . The number of particles z has the same distribution as z .0 s s
ˆB ˆB< <For finite B, z never increases and the particles in z disappear at rates s

ˆBŽ .a ) 0, so P z / B ª 0 as s ª `. This implies that j converges weakly ass t
t ª ` and the limit does not depend on the initial configuration. Since the
voter model with mutation is a Feller process, the limit j is an equilibrium.`

Since the limit is independent of the initial configuration, it is unique. I

We need some additional preparatory material for the proofs of Theorems
1]3. For the process j , definet

N A s the number of species types in set A at time t .Ž .t

Ž . AWe will sometimes write N A for N . For 0 F t F t F t, lett t 1 2

Y A , t s the number of mutations occurring on z A , t , t F s - t ,Ž .t , t s 1 21 2

ˆA , t ˆA , tY s the number of mutations occurring on z , t F s - t .Ž .t , t s 1 21 2
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ˆA, t A, tŽ . Ž .We will refer to z , 0 F s F t as the ancestral path and to z , 0 F s F ts s
as the extended ancestral path of A. We will make use of the shorthand

A , t A , t ˆA , t ˆA , tY s Y , Y s Y .t 0, t t 0, t2 2 2 2

By inspecting the percolation substructure and the definitions of j andt
ˆA, tz , it is not difficult to see thats

A ˆA , t ˆA , t2.3 N s Y q N zŽ . Ž .t t 0 t

or, more generally,
I

A A , t A , tˆ ˆ2.4 N s Y q N zŽ . Ž .Ýt t , t 0 tiy 1 i
is1

ˆA, t A, t ˆA, t A, tŽ . < <for 0 s t - t - ??? - t s t. Since Y F Y and N z F z , one0 1 I t , t t , t 0 t t1 2 1 2

has
I

A A , t A , t< <2.5 N F Y q z .Ž . Ýt t , t tiy 1 i
is1

ˆA, t A, tThere is a useful ‘‘converse’’ to z ; z , namely,s s

A , t ˆA , t ˆA , t ˆA , t A , t< < < < < <2.6 z F z q Y F z q Y .Ž . s s s s s

Now set
y A s EY A , t , 0 F t F t F t ,t , t t , t 1 21 2 1 2

A < A , t <z s E z , s F 1.s s

Ž .Taking expectations in 2.5 gives
I

A A A2.7 EN F y q z .Ž . Ýt t , t tiy 1 i
is1

Ž A, t .Since mutations occur independently of z , 0 F s F t ,s

tiA A2.8 y s a z ds.Ž . Ht , t siy 1 i
tiy1

This gives, in particular,

tA A A2.9 EN F z q a z ds.Ž . Ht t s
0

Ž . Ž .Inequalities 2.5 ] 2.9 will be used at various places in Sections 4 and 5.
ˆWe will also need to do some more careful estimation for Y in Section 4.

ˆA, t< < Ž . w xSuppose that z G f s holds for s g t , t on some event G, for a givens iy1 i
Ž .function f s . Then there is a Poisson random variable X with mean

t i Ž .aH f s ds so thatt iy 1

ˆA , t2.10 Y G X on G.Ž . t , tiy 1 i

ˆA, t ˆA, tŽ < <Note that Y is a pure birth process that increases at rate a z , and ones s
.can compare this with a Poisson process by rescaling s. There is an analo-

ˆA, t< < Ž . w xgous upper bound when z F f s holds for s g t , t on some event G.s iy1 i
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˜A, tWe define one final auxiliary process, z , 0 F s F t. We modify thes
definition of ‘‘downward paths’’ in the percolation substructure by allowing

˜A, t� 4 Ž .vertical segments x = s , s to contain a d , provided x g A. Set z si i iq1 i 0
˜A, tA and let z denote the set of sites y such that there is a modified paths

˜A, t� 4 Ž .down from A = t to y, t y s . That is, the process z is a coalescings
random walk system such that whenever a walk leaves a site of A, another

Žwalk is created instantaneously there. This creation of new walks always
˜A.occurs at rate at most 1. We will write z for a process with the sames

˜A, tfinite-dimensional distributions as z . Letting O denote the origin, its
follows easily that

�O4 ˜A , t2.11 h l A / B for some s F t s O g z for some s F t .Ž . � 4 � 4s s

3. Proof of Theorem 1.

PROOF OF THE LOWER BOUND. This part is simple. We can assume that
r ) 1 since there is otherwise nothing to prove. Start with the process j int
equilibrium and let it evolve using the percolation substructure introduced in

x ˜ xSection 2. We call a site x good if S - 1 - T , that is, if the individual at x1 1
undergoes a mutation by time 1 but adopts no other individual’s state by time

Ž r r x2 11. Denote by G the number of good sites in yL r2, L r2 and by N ther r
number of species there for the process at time 1. Since N and N 1 have ther r
same distribution and G F N 1, it suffices to get a lower bound on G .r r r

y1Ž ya .Different sites are good with probability p s e 1 y e independently
of one another. Thus G is the sum of independent Bernoulli random vari-r

Ž . w xables with mean p and variance p 1 y p . So, letting x denote the integer
part of x,

2r y1 ya y1 2Žry1.w x3.1 EG s L e 1 y e ; e L , var G F EG .Ž . Ž . Ž .r r r

Ž .The notation a ; b means that a rb ª 1 as L ª `. Chebyshev’s in-L L L L
equality implies that there is a constant C - ` so that

< < 3Ž ry1.r2 yŽry1.3.2 P G y EG ) L F CL ª 0Ž . Ž .r r

Ž . Ž .as L ª `. Substitution of the estimate for EG in 3.1 into 3.2 shows thatr
Ž 2Ž ry1. . Ž 2Ž ry1. .P G - L r3 ª 0 as L ª `. This implies that P N - L r3 ª 0 asr r

Ž . Ž .L ª ` and hence as a ª 0 and consequently the lower bound in 1.1 holds.
I

REMARK. The above argument immediately generalizes to any finite range
model with mutation.

Throughout the text, C will denote a finite positive constant whose value is
unimportant, and which will be allowed to change from line to line.

PROOF OF THE UPPER BOUND. Since the map r ª N is nondecreasing, it isr
clearly enough to prove the bound for r ) 1. It suffices to show

log ENŽ .r q
3.3 lim sup F r y 1 .Ž . Ž .

2 log LLª`
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Ž . Ž .qTo see this, we note that 3.3 implies that if d ) 0 and a s 2 r y 1 q
a Žd , then EN F L for large L. So Chebyshev’s inequality implies P N Gr r

aqd . ydL F L and it follows that

log Nr q
P ) r y 1 q d ª 0Ž .ž /2 log L

Ž .as L ª ` and hence a ª 0 .
Ž .To demonstrate 3.3 , start j in equilibrium and let it evolve using thet

percolation substructure from Section 2. Here and later on we employ the
Ž . Ž x2 Ž .notation B M s yMr2, Mr2 for M ) 0. It follows from 2.9 that

TBŽM . BŽM . BŽM .3.4 EN s EN F z q a z dsŽ . Hr T T s
0

for T G 0, where M s Lr. Most of the work in estimating EN consists ofr
obtaining the following bound on z BŽM ..t

LEMMA 3.1. If 0 - « - 1r3 and M G 1, then for e2 F t F M 2Ž1y« . and
appropriate C,

CM 2 log t
BŽM .3.5 z F .Ž . t t

We will first use Lemma 3.1 to prove Theorem 1 and then prove the
2 2Ž1y« . Ž .lemma. Let T s L s M , where « s 1 y 1rr. Recall that r ) 1. From

Ž .3.5 , it follows that

CM 2 log L2Ž .
BŽM . 2Žry1.3.6 z F s 2CL log L.Ž . T 2L

BŽM . 2 2 r 2 Ž .The trivial bound z F M s L for t F e and integration of 3.5 fromt
e2 to T also gives

log tT T 2BŽM . 2 2 2Žry1.3.7 a z ds F a CM e q dt F CL log L ,Ž . Ž .H Hs ž /2 t0 e

with the last inequality following from the fact that a s 1rL2 and T s L2.
Ž . Ž . Ž . Ž .Recall C changes from line to line. Plugging 3.6 and 3.7 into 3.4 , we get

22Žry1.3.8 EN F CL log L .Ž . Ž .r

Ž .Taking logarithms in 3.8 shows that

22Žry1.log EN log CL log LŽ .Ž .r
lim sup F lim s r y 1 .Ž .

2 log L 2 log LLª`Lª`

Ž .This gives 3.3 , assuming Lemma 3.1 holds.
We use the following random walk estimate in the proof of Lemma 3.1. Let

5 5 � < < 4 < < Ž 2 2 .1r2x s max x : i s 1, . . . , d and recall that x s x q ??? qx .i 1 d
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LEMMA 3.2. Let W be a finite range d-dimensional random walk thatt
takes jumps at rate 1 and starts at O. Suppose the jump distribution satisfies
Ž . Ž < <. 2 2 Ž .p x s r x and set s s Ý x p x , i s 1, 2, . . . , d. There is a constant u sox i 0

that if u G u and K F u1r4, then0

2 2'5 53.9 P max W ) K u F 4d exp yK r4s .Ž . Ž .tž /
tFu

PROOF. By considering the coordinates W i separately, it is enough tot
prove that

1 2 2'P max W ) K u F 2 exp yK r4s .Ž .tž /
tFu

Since W 1 is symmetric, by the reflection principle, it is enough to showt

1 2 2'3.10 P W ) K u F exp yK r4s .Ž . Ž .Ž .u

The transform of W 1 is given byu

E exp u W 1 s exp u c u y 1 ,Ž .Ž .Ž .Ž .u

Ž . Ž . Ž .dwhere c u s Ý p x exp u x . For u ) 0, it follows from Chebyshev’sx g Z 1
inequality that

1 ' 'P W ) K u F exp yuK u q u c u y 1 .Ž .Ž .Ž .Ž .u

Ž . Ž . Ž . Ž . 2 Ž .Now c 0 s 1, c 9 0 s Ý x p x s 0 and c 0 0 s s - `, so c u y 1 ;x 1
2 2 Ž . 2 2s u r2 as u ª 0. Pick u ) 0 so that c u y 1 F 3s u r4 for 0 F u F u .0 0

2 2'Ž . Ž .Taking u s Kr s u and choosing u so that Kr s u F u , we have for'0 0 0
u G u ,0

2 23s u
1 ' 'P W ) K u F exp yuK u q uŽ .t ž /4

K 2 3K 2 yK 2

s exp y q s exp .2 2 2ž / ž /s 4s 4s

Ž .This implies 3.10 , and hence the lemma. I

2ZLet us write z for z . For the proof of Lemma 3.1, we need the followingt t
Ž .asymptotics from Theorem 19 of Bramson and Griffeath 1980 .

log t
3.11 P O g z ; as t ª `.Ž . Ž .t p t

PROOF OF LEMMA 3.1. One can decompose z BŽM . intot

cBŽM . BŽM . BŽM .< <3.12 z s E z l B 2 M q E z l B 2 M .Ž . Ž . Ž .t t t

BŽM .Since z ; z , one hast t

2BŽM .< < < <3.13 E z l B 2 M F E z l B 2 M F 2 M q 1 P O g z .Ž . Ž . Ž . Ž . Ž .t t t
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Ž .On account of 3.11 , this gives

< BŽM . < 23.14 E z l B 2 M F CM log t rtŽ . Ž . Ž .t

for t G e2 and appropriate C.
Ž . 2Ž1y« .One can employ Lemma 3.2 for the other half of 3.12 . Setting u s M ,

K s M «r2, d s 2 and s 2 s 1r2, it follows from Lemma 3.2 that

5 �O4 < 2 «3.15 P max z ) Mr2 F 8 exp yM r8 .Ž . Ž .tž /
tFu

Ž 1r4 . 2Since « F 1r3 is assumed, K F u holds. There are at most M sites in
Ž . Ž .cB M , none of which is within distance Mr2 of B 2 M . So on account of

Ž . 2Ž1y« .3.15 , for t F M ,
cBŽM . 2 �O45 5E z l B 2 M F M P z ) Mr2Ž . Ž .t t3.16Ž .

F 8 M 2 exp yM 2 «r8 .Ž .
This gives the bound

cBŽM . 2< <3.17 E z l B 2 M F CM rtŽ . Ž .t

Ž . Ž . Ž .for appropriate C. Inserting 3.14 and 3.17 into 3.12 , one obtains

z BŽM . F CM 2 log t rtŽ .t

Ž .This implies 3.5 . I

BŽL.4. Proof of Theorem 2. As in Section 3, we use z and z to denotet t
BŽL. 2Ž .the coalescing random walks with z s B L and z s Z , respectively.0 0

Intuitively, it should be the case that if t is large and trL2 is small, then
log t

BŽL. 2< < < <z f z l B L f L .Ž .t t p t
Much of the work done in the proof of Theorem 2 is devoted to making this
precise in the form of the following two propositions.

PROPOSITION 2. For all « ) 0,
BŽL.< <p t zt 324.1 P g 1y« , 1q« for all tg log L, L r log L ª1Ž . Ž . Ž . Ž .2ž /L log t

as L ª `

PROPOSITION 3. For all « ) 0,
2BŽL. 2 2< <4.2 E z F 1 q « L log t rp t for t g log L, L r log log LŽ . Ž . Ž . Ž .t

and large enough L.

We will use Propositions 2 and 3 to prove Theorem 2, and then go back and
prove them.

PROOF OF THE UPPER BOUND. We employ the duality relationships in
Section 2 for j started from equilibrium. Let T s 0, T s log K, T st 0 1 2
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2 Ž .3 2 Ž .2 r Ž .L r log L and T s L r log log L , where K s L . Recall that r G 1. Let3
Y s Y BŽK . , i s 1, 2, 3, be the number of mutations along the extendedi T , Tiy 1 i

ancestral path between times T and T . Set N t equal to the number ofiy1 i r
Ž r . Ž .species in B L at time t. By 2.5 ,

T3 < BŽK . , T3 <4.3 N F Y q Y q Y q z .Ž . r 1 2 3 T3

T3 Ž .Since N s N , we can employ 4.3 for our bound.r d r
Ž .We proceed to estimate the terms on the right-hand side of 4.3 . As we

Ž 2 ry2Ž .2 .shall see, all of the terms except Y are o L log L as L ª `. It is easy2
< BŽK . < 2 y2to see this for Y . Since z F K and mutations occur at rate a s L ,1 t

we have EY F rL2 ry2 log L. So,1

22 ry24.4 Y rL log L ª 0 in probabilityŽ . Ž .1

To analyze Y , we substitute K for L in Proposition 2. One gets that with2
probability close to 1,

3BŽK . 2 2< <4.5 z F 1 q « K log t rp t for all t g log K , L r log L .Ž . Ž . Ž . Ž .t

w 2 Ž .3 xL r log L is increasing in L for L G e. Set

f t s 1 q « K 2 log t rp t .Ž . Ž . Ž .
Ž . Ž .The upper bound corresponding to 2.10 implies that on the event where 4.5

holds, Y is smaller in distribution than X , a Poisson random variable with2 1
mean

log t2 3Ž .L r log L2l s 1 q « aK dtŽ . H
p tlog K

1 q « 222 ry2s L 2 log L y 3 log log L y log r log L .Ž . Ž .Ž .� 4
2p

As L ª `,
22 ry2plr2 1 q « L log L ª 1.Ž . Ž .

ŽBy Chebyshev’s inequality, X rl ª 1 in probability since X has mean and1 1
.variance equal to l . Therefore,

2 22 ry24.6 P Y ) 1 q 2« L log L ª 0Ž . Ž . Ž .2ž /p

as L ª `.
Ž .To analyze Y , we substitute K for L in Proposition 3. Together with 2.8 ,3

this implies that
log t 1 q «T3 2 22 2 ry2EY F 1 q « aK dt s L log T y log TŽ . Ž . Ž .� 4H3 3 2p t 2pT2

1 q «
2 ry2s L log T q log T log T y log TŽ . Ž .3 2 3 22p

1 q «
2 ry2F L 4 log L 3 log log L .Ž . Ž .

2p
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Consequently,
22 ry24.7 Y rL log L ª 0 in probabilityŽ . Ž .3

as L ª `. It also follows from Proposition 3, that
2BŽK . 2 ry2< <lim sup E z rL log L log log L F 2rp .Ž .T3

Lª`

One therefore gets that
2BŽK . 2 ry2< <4.8 z rL log L ª 0 in probabilityŽ . Ž .T3

Ž . Ž . Ž . Ž .as L ª `. Combining 4.4 , 4.6 , 4.7 and 4.8 , we obtain that for any « ) 0,

2 1 q 3«Ž . 22 ry24.9 P N ) L log L ª 0 in probability. IŽ . Ž .rž /p

Ž . Ž .PROOF OF THE LOWER BOUND. The upper bounds 4.4 and 4.6 imply that
3BŽK . 2 ry24.10 Y rL log L ª 0 in probabilityŽ . Ž .T2

2 Ž .3as L ª `. Also, note that T s L r log L , so2

L2 r log T2 32 ry24.11 ) L log LŽ . Ž .
T2

Ž .for large L. Using Proposition 2 now, together with 2.6 , it follows that for
any « ) 0,

L2 r log t
BŽK .ˆ< < w x4.12 P z G 1 y 2« for all t g T , T ª 1Ž . Ž .t 1 2ž /p t

Ž .as L ª `. We denote by G the set on which the event in 4.12 holds for aL
given L.

Ž .We now mimic the reasoning leading to the upper bound 4.6 . Set

f t s 1 y 2« L2 r log t rp t .Ž . Ž . Ž .
ˆBŽK .Ž .Appealing to 2.10 of Section 2, we see that on G , Y is larger inL T , T1 2

distribution than X , a Poisson random variable with mean2

log t2 3Ž .L r log L2 ry2l s 1 y 2« L dtŽ . H
p tr log L

1 y 2« 222 ry2s L 2 log L y 3 log log L y log r log L .Ž . Ž .Ž .� 4
2p

As L ª `,
22 ry2plr2 1 y 2« L log L ª 1Ž . Ž .

and X rl ª 1 in probability. So, we have2

2 1 y 3«Ž . 2BŽK . 2 ry2ˆP Y - L log L ª 0Ž .T , T1 2ž /p



SPATIAL MODELS FOR SPECIES AREA CURVES 1741

T3 ˆBŽK .as L ª ` for any « ) 0. Since N G Y , this impliesr T , T1 2

2 1 y 3«Ž . 22 ry2P N - L log L ª 0Ž .rž /p

as L ª `. The proof of Theorem 2 is complete, except, of course, for the proofs
of Propositions 2 and 3. I

PROOFS OF PROPOSITIONS 2 AND 3. We employ several lemmas here. For
Ž .Lemma 4.1, we introduce the following terminology. For given L ) 0,  B L

2 Ž . Žwill denote the set of points in Z outside, but within distance 1 of B L in
5 5 .the ? norm . We consider the process of coalescing random walks with

̃BŽL.Ž .creation of particles at each site of  B L , z , as defined in Section 2. Wet
̃BŽL.are interested in H , the number of random walk paths in z whichL, K , u t'move a distance greater than K u from their initial points by time u.

LEMMA 4.1. There are constants u and C so that if u G u , K F u1r4 and0 0
L G 1, then

4.13 EH F CLu exp yK 2r2 .Ž . Ž .L , K , u

PROOF. By Lemma 3.2, the probability of a random walk moving distance
2' Ž . < Ž . <greater than K u by time u is at most 8 exp yK r2 . For L G 1,  B L F
Ž .CL. Since the creation of particles at each x g B L occurs at rate at most 1,
Ž .the number of births of such random walks on  B L over the time interval

w x0, u is therefore bounded by a Poisson random variable with mean CLu.
Ž .Taking expected values gives 4.13 . I

Lemma 4.1 leads easily to the following bound, which will be used in the
proof of Lemma 4.2.

1r4'COROLLARY 1. Suppose that L F L y 2 u K, where L is large, K F u
and u G u . Then there is a constant C so that0

BŽL. 2< < < <4.14 E z l B L y E z l B L F CLu exp yK r2 for all t F u.Ž . Ž . Ž . Ž .t t

PROOF. It is clear from the definition of the coalescing random walk that
cBŽL. BŽL.< < < < < <4.15 E z l B L y E z l B L F E z l B L .Ž . Ž . Ž . Ž .t t t

Ž . Ž .Every random walk starting outside B L and entering B L must pass
BŽL.c ̃BŽL.Ž . Ž .through  B L . Thus we can dominate z l B L by the process zt t

Ž .defined at the end of Section 2. Since all points in B L are distance greater
c' Ž .than u K away from B L ,

< BŽL.c <z l B L F HŽ .t L , K , u

Ž . Ž .for t F u. Taking expectations above and applying 4.13 and 4.15 , one gets
Ž .4.14 . I
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Lemma 4.1 also gives an upper bound for the voter model on the probabil-
Ž .ity of offspring of a parent at the origin escaping from B L by time u. The

bound will be used in the proof of Lemma 4.3.

COROLLARY 2. Suppose that L is large and L F u3r4. Then there is a
constant C so that

P h �O4 o B L for some t F u F CLu exp yL2r8u .Ž . Ž .Ž .t

Ž .PROOF. We use the duality relationship 2.11 . From this, it follows that
�O4 � 4h o B L for some t F u ; H ) 0Ž .� 4t L , K , u

'for K s Lr2 u . Consequently,

P h �O4 o B L for some t F u F EH .Ž .Ž .t L , K , u

Ž .The statement then follows from 4.13 . I

In the proofs of Lemma 4.2 and Propositions 2 and 3, we will use the
Ž .following analog of 3.16 . Here, we set

3r4 22'4.16 L s L q 2 u log L , where u s L r log L .Ž . Ž . Ž .
Ž .The reason for this choice of L will become clear in the proof of Lemma 4.2.

Ž .3r4Using Lemma 3.2 again, this time with K s log L , we see that for t F u,
c 3r2BŽL. 2< <4.17 E z l B L F 8 L exp y log L r2 ,Ž . Ž . Ž .Ž .t

which tends to 0 as L ª `.
< BŽL. < 2 Ž .2Lemma 4.2 gives asymptotics on E z for large t F L r log L . It willt

be used in the proofs of both of the propositions.

Ž . Ž .LEMMA 4.2. Let g L be any function with g L ª ` as L ª `. For all
« ) 0, if L is large enough, then

BŽL.< <p tE zt 224.18 1 y « F F 1 q « for t g g L , L r log L .Ž . Ž . Ž .2L log t

PROOF. For the upper bound, we write
c

BŽL. BŽL. BŽL.< < < < < <4.19 E z s E z l B L q E z l B L ,Ž . Ž . Ž .t t t

BŽL.Ž . Ž . Ž .where L is given by 4.16 , and argue as in 3.13 and 3.14 . Since z ; z ,t t
one has

2BŽL.< < < <4.20 E z l B L F E z l B L F L q 1 P O g z .Ž . Ž . Ž . Ž . Ž .t t t

Ž .Our choice for L implies that LrL ª 1 as L ª `. Together with 3.11 ,
Ž .which gives the asymptotic behavior of P O g z , this implies that the lastt

Ž . 2Ž .term in 4.20 behaves asymptotically like L log t rp t for large L and t. On
Ž . Ž .the other hand, an upper bound for the last term in 4.19 is given by 4.17 .
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Ž .Together with the bound for 4.20 just derived, this gives the upper bound in
Ž .4.18 .

Ž . < BŽL. Ž . <For the lower bound in 4.18 , we estimate E z l B L , wheret

3r4 22'4.21 L s L y 2 u log L and u s L r log L .Ž . Ž . Ž .
By Corollary 1, for t F u,

3r2BŽL.< < < <4.22 E z l B L y E z l B L F CLu exp y log L r2 .Ž . Ž .Ž . Ž . Ž .t t

< Ž . <This tends to 0 as L ª `. So, it suffices to analyze E z l B L . Usingt
Ž .reasoning analogous to that just below 4.20 , one can show that

2 2< <4.23 E z l B L G L y 1 P O g z ; L log t rp tŽ . Ž .Ž . Ž . Ž .t t

Ž . Ž .for large L and t. Together with 4.22 , this gives the lower bound in 4.18 .
I

Propositions 2 and 3 both involve extensions of Lemma 4.2. Proposition 2
asserts convergence in probability simultaneously over

22t g log L, L r log L ,Ž .
rather than just convergence of expectations. Proposition 3 extends the upper

2 Ž .2end of the range of t in Lemma 4.2, for the upper bound, to L r log log L
2 Ž .2 Žfrom L r log L . The lower end of the range given here, log L, is sufficient

.for our purposes. Since Proposition 3 involves less work, we show it first.

PROOF OF PROPOSITION 3. On account of Lemma 4.2, it is enough to
w 2 Ž .2 2 Ž .2 xconsider t g L r log L , L r log log L . We again use the decomposition

cBŽL. BŽL. BŽL.< < < < < <4.24 E z s E z l B M q E z l B M ,Ž . Ž . Ž .t t t

where we set
3r4 22'4.25 M s L q 2 v log log L with v s L r log log LŽ . Ž . Ž .

Ž .and L is given by 4.16 . Our choice for M implies that MrL ª 1 as L ª `.
Ž .Reasoning as in Lemma 4.2 for the first term on the right-hand side of 4.24

gives
2BŽL. 2< <4.26 E z l B M F M q 1 P O g z ; L log t rp tŽ . Ž . Ž . Ž .Ž .t t

for large L and t.
To demonstrate Proposition 3, we need to show that the second term on the

Ž . BŽL.right-hand side of 4.24 goes to 0. For this, we first consider z at thet
2 Ž .2 Ž .intermediate time u s L r log L . By 4.17 ,

c
BŽL.< <4.27 E z l B L ª 0 as L ª `.Ž . Ž .u

< BŽL. Ž .c < w xIn investigating E z l B M over u, v , we therefore only need tot
Ž .consider those particles inside B L at time u. Using Lemma 4.2,

3BŽL. BŽL. 2< < < <4.28 E z l B L F E z F L log u ru F 2 log LŽ . Ž . Ž . Ž .u u
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3r4' Ž .for large L. These particles need to move a distance of at least v log log L
w x Ž .c Ž .3r4over t g u, v to enter B M . By Lemma 3.2, with K s log log L , the

probability that a given one of these particles does this by time v is at most
Ž Ž .3r2 . Ž .8 exp y log log L r2 . With 4.28 , this shows that the expected number of

cŽ . Ž . w xparticles starting in B L , which visit B M at some time in u, v , is at
most

3 3r216 log L exp y log log L r2 ,Ž . Ž .Ž .
Ž .which approaches 0 as L ª `. Together with 4.27 , the limit shows that

cBŽL.< <E z l B M ª 0Ž .t

w xuniformly over t g u, v . This demonstrates Proposition 3. I

To demonstrate Proposition 2, we need the following variance estimate.
Ž < BŽL. < .2 Ž .y3r2Note that the bound is smaller than E z by a factor of log L .t

LEMMA 4.3. There is a constant C so that if L is large, then for all
w 2 Ž .3 xt g log L, L r log L ,

22L log ty3r2BŽL.< <4.29 var z l B 2 L F C log L .Ž . Ž . Ž .Ž .t ž /t

BŽL. < BŽL. Ž . <PROOF. Let F denote the event that x g z . Writing z l B 2 Lx t t
as a sum of the indicators of F , it is easy to see thatx

< BŽL. <4.30 var z l B 2 L s P F l F y P F P F .Ž . Ž . Ž .Ž . Ž .Ž . Ž .Ýt x y x y
Ž .x , ygB 2 L

� x4 � 4Let h denote the voter model started from x . We recall from Section 2t
� x4 Ž .that, by duality, F is also the event that h l B L / B. Using the samex t

percolation substructure, F l F is the event that if we start the multitypex y
voter model with, say, opinion 1 at x, opinion 2 at y and opinion 0 elsewhere,

Ž . Ž .then opinions 1 and 2 are both present in B L at time t. Let G x, y denote
the event that h � x4 and h � y4 intersect at some time s F t. By using twos s
independent graphical representations to construct h � x4 and h � y4 until thes s
first time they intersect, it is not difficult to check that the summands on the

Ž . Ž Ž ..right-hand side of 4.30 are bounded above by P G x, y . For more details
Ž . Ž .see the proof of 2.6 in Griffeath 1979 .

Ž .We now proceed to estimate G x, y . For this, we first note that taking
2r3'Ž .u s t and L s 2 log t t in Corollary 2 gives that

2r3�O4 '4.31 P h o B 2 log t t for some s F tŽ . Ž .Ž .ž /s

2r3 4r33r2 y4F C log t t exp y log t r2 F tŽ . Ž .Ž .
for large enough t. We define l so that

3r224.32 t s l r log l .Ž . Ž .
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Ž 3r4 .Assume that l G e so that the choice is unique. Since log t F 2 log l, it is
easy to see that

l2r3 2r3'log t t F 2 log l s o l .Ž . Ž . Ž .3r4log lŽ .
In particular,

2r3 '4.33 l ) 2 log t tŽ . Ž .
Ž . Ž . 2for l chosen large enough. It follows from 4.31 and 4.33 that for x, y g Z

5 5with x y y ) l and l large,
2r3� x4 'P G x , y F P z o x q B 2 log t t orŽ . Ž .Ž . Ž .ž s

2r3� y4 'z o y q B 2 log t t for some s F tŽ .Ž . /s
4.34Ž .

F 2 ty4 .
Ž .We analyze the terms on the right-hand side of 4.30 by dividing them up

Ž . 5 5 Ž . 5 5according to whether a x y y ) l or b x y y F l. In the first case, we
Ž . Ž .4 Ž .employ 4.34 . Since there are at most 2 L q 1 pairs x, y with x, y g

Ž .B 2 L ,

P F l F y P F P FŽ .Ž . Ž .Ž .Ý x y x y
Ž .x , ygB 2 L

5 5xyy )l

4y4F P G x , y F 2 t 2 L q 1Ž . Ž .Ž .Ý
Ž .x , ygB 2 L

5 5xyy )l

4.35Ž .

24L log tŽ .y2F C log LŽ . 2t

for large L and t G log L.
Ž .To demonstrate 4.29 , it therefore suffices to show that

22L log ty3r24.36 P F l F F C log L .Ž . Ž .Ž .Ý x y ž /tŽ .x , ygB 2 L
5 5xyy Fl

We use the bound

4.37 P F l F F P h � x4 / B, h � y4 / B .Ž . Ž . Ž .x y t t

Ž .By Lemma 1 of Arratia 1981 , for all x, y, and t,
2� x4 � y4 �O44.38 P h / B, h / B F P h / B .Ž . Ž . Ž .Ž .t t t

Ž . Ž .By 2.2 and 3.11 ,

log t
�O4P h / B s P O g z ;Ž . Ž .t t p t
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Ž . Ž .for large t. So, by 4.37 and 4.38 ,
2log t

4.39 P F l F FŽ . Ž .x y ž /t

Ž .2Ž .2 2 2for large t and all x and y. There are at most 2 l q 1 2 L q 1 F Cl L
Ž . Ž . 5 5pairs of sites x, y with x, y g B 2 L and x y y F l. It therefore follows

Ž .from 4.39 that for large L and t G log L,
2 2log t L log t5r22 24.40 P F l F F C l L F C log t .Ž . Ž .Ž .Ý x y ž /t tŽ .x , ygB 2 L

5 5xyy Fl

Ž . Ž .To convert the bound into the form given in 4.36 , we note that log t rt is
w 2 Ž .3 x Ž .3decreasing over t g e, L r log L . For such t and L G log L , one has

2 L2 log t4log L F .Ž .
t

It follows that

2 L2 log t5r2 5r2 y3r25r2 5r24.41 log t F 2 log L F 2 log L .Ž . Ž . Ž . Ž .
t

Ž . Ž . Ž . w 2 Ž .3 xPlugging 4.41 into 4.40 gives 4.36 for large L and t g log L, L r log L .
Ž .This in turn implies 4.29 . I

< BŽL. < Ž < BŽL. Ž . <.The estimates for E z in Lemma 4.2 and var z l B 2 L int t
Lemma 4.3, together with Chebyshev’s inequality, lead easily to a proof of
Proposition 2.

ˇBŽL. BŽL. Ž . Ž .PROOF OF PROPOSITION 2. Set z s z l B 2 L and fix d g 0, 1 .t t
Ž .Application of Chebyshev’s inequality to 4.29 implies that there is a con-

stant C so that
2dL log t C

BŽL. BŽL.ˇ ˇ< < < <4.42 P z y E z ) FŽ . t t 3r22ž /p t d log LŽ .
2 3w Ž . x Ž .for large L and t g log L, L r log L . Since L F 2 L, 4.17 implies that

3r2BŽL. BŽL. 2ˇ< < < <4.43 E z y E z F 8 L exp y log L r2 ,Ž . Ž .Ž .t t

ˇBŽL. BŽL.< < < <which approaches 0 as L ª `. Moreover, since z F z , one cant t
BŽL. ˇBŽL.Ž . < < < <apply Chebyshev’s inequality to 4.43 to bound z y z as well. Itt t

Ž . Ž .therefore follows from 4.42 and 4.43 that, for a slightly larger C,

22dL log t C
BŽL. BŽL.< < < <4.44 P z y E z ) FŽ . t t 3r22ž /p t d log LŽ .

w 2 Ž .3 xfor t g log L, L r log L .
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< BŽL. <Since z is decreasing in t, it suffices to control its behavior at thet
points t given byj

log L L2

4.45 t s n , j s 0, 1, . . . , J ,Ž . j j 31 y d log LŽ . Ž .
2 Ž .3where J is the first value of j at which t s L r log L . Fromj

log L L2

- ,Jy1 31 y d log LŽ . Ž .
one obtains

y2 log L 2 log L
4.46 J - q 1 - q 1.Ž .

log 1 y d dŽ .
Ž . Ž .Substitution of t , t , . . . , t into 4.44 , together with 4.46 , gives0 1 J

22dL log t jBŽL. BŽL.< < < <4.47 P z y E z F for all j F J ª 1Ž . t tj jž /p t j

as L ª `. Lemma 4.2 gives asymptotics for the mean. Together with the
< BŽL. <monotonicity of z , it implies thatt

L2 log t jq1 BŽL.< <P 1 y 3d F zŽ . tž p t jq1

L2 log t jF 1 q 3d for t g t , t , j F J ª 1Ž . j jq1 /p t j

as L ª `. Using the definition of t , one obtains thatj

BŽL.< <p t z 1q3dt 32P 1y3d 1yd F F for all tg log L, L r log L ª1Ž . Ž . Ž .2ž /1ydL log t

Ž .as L ª `. The bound 4.1 follows by setting d s «r5 n 1r5. I

5. Proof of Theorem 3.

Ž .PROOF OF THE UPPER BOUND. We compute the upper bound in 1.3 for
0 F r - 1. As in Section 4, we employ the duality relationships in Section 2

1Ž .for the process j started in equilibrium. Let 0 - « - 1 y r n , and T s 0,t 03

T s L2 r Ž1y« ., T s L2Ž1y« . and T s L2. Let y be the expected number of1 2 3 i
mutations along the extended ancestral path z BŽLr . between times T ands iy1

BŽLr . Ž .T . That is, y s EY . Using 2.7 , one hasi i T , Tiy 1 i

5.1 EN F y q y q z BŽLr . .Ž . r 1 2 T2

We proceed to estimate the terms on the right-hand side.
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For y , note that by Lemma 3.1,1

5.2 z BŽLr . F CL2 r log t rtŽ . Ž .t

2 2 r Ž1y« . Ž . Ž .for e F t F L . Using 2.8 and integrating as in 3.7 , we get that

log tT1 22 r 2 2 ry2y F CaL e q dt F CL log L ,Ž .H1 ž /2 te

where, as before, we change C when convenient. Since r - 1, it follows that

5.3 y ª 0 as L ª `.Ž . 1

To estimate y , note that for t G T ,2 1

z BŽLr . F z BŽLr . .t T1

Ž . Ž .So, by using 2.8 and 5.2 , it follows that

5.4 y F a T y T z BŽLr . F CLy2 « Ž1yr . log L ª 0Ž . Ž .2 2 1 T1

as L ª `.
To estimate z BŽLr ., we employ the proposition on page 615 of Bramson,T2

Ž .Cox and Griffeath 1986 . First note that there is nothing to prove when
r Ž .r s 0, so we can suppose r ) 0. Setting t s L r2 and b s 2 1 y « rr, we

have
y12 1 y «Ž .rBŽL .5.5 z F A y 2 k 1Ž . T2 ž /r

Ž .for large L, where A is a fixed constant not dependent on « . Together, 5.1 ,
Ž . Ž . Ž .5.3 , 5.4 and 5.5 imply that

y12 1 y «Ž .
5.6 lim sup EN F A y 2 k 1 .Ž . r ž /rLª`

Ž .Letting « ª 0, one obtains from 5.6 that

2¡
1, for 0 F r F ,y12 3~5.7 lim sup EN F A y 2 k 1 sŽ . r ž / Ar 2rLª` , for F r - 1.¢2 1 y r 3Ž .

Ž .This gives the upper bound in 1.3 . I

Ž . Ž .PROOF OF CONVERGENCE IN DISTRIBUTION. By 5.3 and 5.4 , y q y ª 01 2
as L ª `. This says that for large L and fixed « ) 0, there are typically no
mutations before time T along the extended ancestral path. So, in the limit,2
< BŽLr . <z provides an upper bound for N . Turning again to Bramson, Cox andT r2

Ž .Griffeath 1986 , we have, for 0 - r - r 9,

< BŽLr . <5.8 lim P z s k s p rrr 9 .Ž . Ž .2 rŽ .9L ` , k
Lª`
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This equation is a paraphrase of Theorem 1 of Bramson, Cox and Griffeath
Ž . 2 r 9 Ž1986 , where one sets t s L and a s rrr 9. This a is not the mutation

. Ž . Ž .rate. The terms p a are equal to P D s k , where D is the pure`, k log Ž1ra . t
j w Ž .death chain starting from ` that jumps from j to j y 1 at rate . See 3.10ž /2

Ž . xon page 357 of Cox and Griffeath 1986 for details. Consequently, for any k,
k

rBŽL .< <5.9 lim inf P N F k G lim P z F k s p rr 1 y « .Ž . Ž . Ž .Ž .Ýž /r T ` , j2Lª` Lª` js0

For the corresponding inequality in the opposite direction, we note that by
Ž .5.5 , the expected number of particles on the extended ancestral path at time
T is bounded. Therefore, with probability close to 1 for large L, all extant2

Ž .particles will experience mutations by time T . In particular, by 2.3 and3
Ž . < BŽLr . < Ž .2.6 , z provides a lower bound for N in the limit. Thus, using 5.8 ,T r3

k
rBŽL .< <5.10 lim sup P N F k F lim P z F k s p r .Ž . Ž . Ž .Ýž /r T ` , j3Lª`Lª` js0

Ž . Ž . Ž .Since the functions p ? are continuous, 5.9 and 5.10 imply`, j

5.11 lim P N s k s p r .Ž . Ž . Ž .r ` , k
Lª`

This identifies the limiting distribution in Theorem 3. I

PROOF OF THE LOWER BOUND. We still need to demonstrate the lower
Ž . Ž .bound in 1.3 . Fatou’s lemma and 5.11 imply

`

lim inf EN G kp r s ED .Ž .Ýr ` , k log Ž1r r .
Lª` ks1

Ž .Since log 1rr ; 1 y r as r ª 1, it suffices to show the following lemma.

LEMMA 5.1. As « ª 0, «ED ª 2.«

PROOF. The time t for D to make its transition from n q 1 to n isn t
Ž .exponential with mean 2rn n q 1 . Let t s t q t q ??? be the time ton n nq1

reach n starting from `. It is easy to see that
` `2 2 2 2

Et s s y s ,Ý Ýn ž /m m q 1 m m q 1 nŽ .msn msn

` `4 4 4
var t s F dx s .Ž . Ý Hn 2 4 32 xny1m m q 1 3 n y 1Ž . Ž .msn

2 Ž .3Thus, nt has mean 2 and variance at most 4n r3 n y 1 F 8rn for n G 3,n
and Chebyshev’s inequality implies that nt ª 2 in probability as n ª `.n
Since

P « D F x0 s P t F « ,Ž . Ž .« w x r« x

it follows easily that « D ª 2 in probability as « ª 0.«
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To get «ED ª 2, it suffices to prove uniform integrability, for example,«
2 2 ` Ž .that « ED or, equivalently, H xP « D ) x dx remains bounded as « ª 0.« 0 «

For « - 1 and x ) 4, we have

w xx x var xr« tŽ .w x r« x
P «D ) x s P t ) « FŽ .« w x r« x 2ž /« « w x« xr« y 2Ž .

16« 1 64«
F s .2 2x xr2 y 2 x x y 4Ž . Ž .

Thus,

` ` 64«
xP « D ) x dx F 25 q dx F 25 q 64«Ž .H H« 2

0 5 x y 4Ž .

and we are done. I
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