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Preface.  These lectures were written for the 1993 St. Flour Probability Summer 
School. Their aim is to introduce the reader to the mathematical techniques involved in 
proving results about interacting particle systems. Readers who axe interested instead in 
using these models for biological applications should instead consult Durrett and Levin 
(1993). 

In order that our survey is both broad and has some coherence, we have chosen to 
concentrate on the problem of proving the existence of nontrivial stationary distributions 
for interacting particle systems. This choice is dictated at least in part by the fact that 
we want to make propaganda for a general method of solving this problem invented in 
joint work with Maury Bramson (1988): comparison with oriented percolation. Personal 
motives aside, however, the question of the existence of nontrivial stationary distributions 
is the first that must be answered in the discussion of any model. 

Our survey begins with an overview that describes most of the models we will consider 
and states the main results we will prove, so that the reader can get a sense of the forest 
before we start investigating the individual trees in detail. In Section 2 we lay the founda- 
tions for the work that follows by proving an existence theorem for particle systems with 
translation invariant finite range interactions and introducing some of the basic properties 
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of the resulting processes. In Section 3 we give a second construction that applies to a 
special class of "additive" models, that makes connections with percolation processes and 
that allows us to define dual processes for these models. 

The general method mentioned above makes its appearance in Section 4 (with its 
proofs hidden away in the appendix) and allows us to prove a very general result about the 
existence of stationary distributions for attractive systems with state space {0, 1} s. The 
comparison results in Section 4 are the key to our treatment of the threshold contact and 
voter models in Section 5, the cyclic systems in Section 6, the long range contact process 
in Section 7, and the predator prey system in 9. 

In Section 7 we explore the first of two methods for simplifying interacting particle 
systems: assuming that the range of interaction is large. In Section 8 we meet the second: 
superimposing particle motion at a fast rate. The second simplification leads to a connec- 
tion with reaction diffusion equations which we exploit in Section 9 to prove the existence 
of phase transitions for predator prey systems. 

The quick sketch of the contents of these lectures in the last three paragraphs will be 
developed more fully in the overview. Turning to other formalities, I would like to thank 
the organizers of the summer school for this opportunity to speak and write about my 
favorite subject. Many of the results presented here were developed with the support of 
the National Science Foundation and the Army Research Office through the Mathematical 
Science Institute at Cornell University. During the Spring semester of 1993, I gave 10 
one and a half hour lectures to practice for the summer school and to force myself to get 
the writing done on time. You should be grateful to the eight people who attended this 
dress rehersal: Hassan Allouba, Scott Arouh, Itai Benjamini, Carol Bezuidenhout, Elena 
Bobrovnikova, Sungchul Lee, Gang Ma, and Yuan-Chung Sheu, since their suffering has 
lessened yours. 

Although it is not yet the end of the movie, I would like to thank the supporting cast 
now: Tom Liggett, who introduced me to this subject; Maury Bramson, the co-discoverer 
of the comparison method and long range limits, to whom I turn when my problems get 
too hard; David Griffeath, my electronic colleague who introduced me (and the rest of 
the world) to the beautiful world of the Greenberg Hastings and cyclic cellular automata; 
Claudia Neuhanser, my former student who constantly teachs me how to write; and Ted 
Cox, with whom I have written some of my best papers. The field of interacting particle 
systems has grown considerably since Liggett's 488 page book was published in 1985, so 
it is inevitable that more is left out than is covered in these notes. The most overlooked 
researcher in this treatment is Roberto Schonmann whose many results on the contact 
process, bootstrap percolation, and metastability in the Ising model did not fit into our 
plot. 
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1. O v e r v i e w  

In an  in terac t ing  part ic le  system, there  is a countable  set of spat ia l  locat ions S called 
.~ite3. In a lmost  all of our  appl icat ions  S = Z d, the set of points  in d dimensional  space 
wi th  integer  coordinates.  Each site can be in one of a finite set of .~tates F, so the  s ta te  
of the  sys tem at t ime t is 4t : S --4 F wi th  4t(x) giving the  s ta te  of x. To describe the 
evolut ion of these models, we specify an  interaction neighborhood 

H =  { z o , z l , . . . z k }  c Z d 

with  z0 = 0 and  define flip rated 

c~(x, ~) = g~(4(x + z0), 4(z + z l ) , . . .  ,4(x + zk)) 

In words, the  s ta te  of x flips to i at  ra te  c,(x,~) when the s ta te  of the process is 4. In 
symbols,  if ~t(x) # i t hen  

P ( 6 + , ( z )  = i [ 6  = 4) 
--+ c i (z ,  ~) as s -~ 0 

8 

The  formula  for ci indicates  t ha t  our  in teract ion is finite range, i.e., the  flip rates  depend 
only on the  s ta te  of x and  of a finite number  of neighbors;  and  translation invariant, i.e., 
the  rules applied at  x are jus t  a t r ans la t ion  of those applied at  0. 

To explain  what  we have in mind  when  making  these definitions,  we now describe 
two famous concrete examples.  In this  section and  th roughout  these lectures (wi th  the 
except ion of Sections 2 and  3) we will suppose tha t  

H =  {x: Ilxltp _< r} 

Here r _> 1 is the  range of the  in terac t ion  and  Ilzllp is the  usual L p no rm on R. d. T h a t  is, 
Ilxll, = ( ~  + . . .  + 4 )  1 / '  when 1 _< p < oo and  I1.11~ = supi Ixd. In  m o s t  of our  models 
the  flip ra tes  are based on the  n u m b e r  of neighbors  in s ta te  i, so we in t roduce the  nota t ion:  

rti(x,{) = I{z e .h/ :  {(x + z) = i}l 

where IAI is the number  of points  in A. 

E x a m p l e  1.1.  T h e  b a s i c  c o n t a c t  p r o c e s s .  To model the spread  of a p lant  species we 
th ink  of each site z as represent ing  a square  area in space wi th  {t(x) = 0 if t ha t  area is 
vacant  and  4t(x) = 1 if there  is a plant  there,  and  we formulate  the  dynamics  as follows: 

Co(X, 4) = a if 4(x) = 1 

q(x ,~)  = An~(x,~) if 4(x) = 0  

In words, plants  die at ra te  5 independen t  of the s ta te  of their  neighbors,  while b i r ths  at  
vacant  sites occur  at  a ra te  propor t iona l  to the number  of occupied neighbors.  Note t ha t  
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flipping to i has no effect when ~(z) = i so the value of ci(x, ~) on {~(x) = i} is irrelevant 
and we could delete the qualifying phrases "if ~(x) = 1" and "if ~(z) = 0" if we wanted to. 

E x a m p l e  1.2. T h e  bas i c  v o t e r  m o d e l .  This time we think of the sites in Z d as 
representing an array of houses each of which is occupied by one individual who can be 
in favor of (~t(x) = 1) or against (~t(x) = 0) a particular issue or candidate. Our simple 
minded voters change their opinion to i at a rate that is equal to the number of neighbors 
with that  opinion. That  is, 

e,(~, ~) = '~i(~, ~) 

The first question to be addressed for these models is: 

Do the rates specify a unique Markov processf 

There is something to be proved since there are infinitely many sites and hence no first 
jump,  but  for our finite range translation invariant models, a result of Harris (1972) allows 
us to easily show that  the answer is Yes. (See Section 2.) The main question we will be 
interested in is: 

When do interacting particle systems have a nontrivial stationary distributions? 

To make this question precise we need a few definitions. The state space of our Markov 
process is F s,  the set of all functions ~ : S --* F .  We let .Y" = all subsets of F and equip 
F s with the usual product a-field U s, which is generated by the finite dimensional sets 

{~(Yl) = i l , . . . , { ( y k )  = ik} 

So any measure 7r on ~-s can be described by giving its finite dimensional dis*ributions 

~(~(yl) = i ,  . . . .  ,~(Yk)=ik) 

As in the theory of Markov chains, 7r is said to be a stationary distribution for the process 
if when we start  from an initial state ~0 with distribution 7r (i.e., 7r(A) = P(~0 E A) for 
A E ~-s) then ~t has distribution ~r for all t > 0. Since our dynamics are translation 
invariant, we will have a special interest in stationary distributions that  are ~ranslation 
invariant, i.e., ones in which the probabilities 7r(~(z + yl) = i l , . . . ,  ~(x + y~) = i t )  do not 
depend upon x. 

To explain the term "nontrivial" we note that in Example 1.1 the "all 0" state (~(z) = 
0) and in Example 1.2 for any i the all i state are absorbing states. That  is, once the process 
enters these states it cannot leave them. If S were finite this fact (and enough irreducibility, 
which is present in Examples 1.1 and 1.2) would imply that  all s tat ionary distributions were 
trivial, i.e., concentrated on absorbing states. However, when S is infinite this argument 
fails and indeed, as the next few results show it is possible to have a nontrivial stationary 
distributions. 

T h e o r e m  1. Consider the basic contact process with A/" = {x : Ilxllp < r} with r > 1. If 
~[A/" I < 6 then there is only the trivial stationary distribution. If 6 /~  < 60 then there is a 
nontrivial  translation invariant stationary distribution. 
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Figure  1.1. Nea res t  ne ighbor  con t ac t  p rocess  in d = 1 w i th  A = 2. 
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The first result is easy to see. If the contact process has k particles then the number drops 
to k - 1 at rate 6k and increases to k + 1 at rate < ~[.hfl with the upper bound achieved 
when all particles are isolated (i.e., no two particles are neighbors). The reader should 
a t tempt  to prove the converse before we hit it with our sledgehammer in Section 4. By a 
simple comparison that you will learn about in Section 2, it is enough to prove the result 
when Af = {x : HxH1 = 1} and d = 1. A simulation of this case with A = 2 is given in 
Figure 1.1. A result of Holley and Liggett (1978) implies that in this situation there is 
a nontrivial s tat ionary distribution. In our simulation we have star ted with the interval 
[180,540] occupied at t ime 0 at the top of the page. As time runs down the page from 0 
to 720, it is clear that the region occupied by particles is growing linearly, as predicted by 
a result of Durret t  (1980). 

Turning to the voter model, the classic paper of Holley and Liggett (1975) tells us 
that  

T h e o r e m  2A.  Cluatering occurs in d < 2. That  is, for any 40 and x, y E Z d we have 

P(~,(x) r ~,(Y)) ~ 0 as t ~ o~ 

T h e o r e m  2B.  Let ~ denote the process starting from an initial state in which the events 
{~0~ = 1} are independent and have probability 0. In d >_ 3 as t ---+ co, ~? =~ , ~ ,  a 
translation invariant stationary distribution in which P(~(x )  = 1) = 0. 

Here =~ denotes weak convergence, which in this setting is just convergence of finite di- 
mensional distributions. That  is, for any x l , . . ,  xm E Z d and i l , . . . , i m  E {1, 2 . . . ,  n} we 
have 

P(G~ ) = i l , . . .  ~ ( ~ , . )  = i . , )  --. P ( ~ L ( z , )  = q , . . .  ~ L ( x , . )  = i . , )  

We will say that  coeziatence occurs if there is a translation invariant stationary dis- 
t r ibution in which each of the possible states in F has positive density. Theorems 2A and 
2B say that  in the voter model coexistence is possible in d > 3 but  not in d _< 2. We 
will see in Section 3 that  this is a consequence of the fact that  if we take two independent 
random walks with jumps uniformly distributed on 2r then they will hit with probability 
1 in d <_ 2 but  with probability < 1 in d _> 3. 

Figure 1.2 gives a simulation of a voter model with five opinions on {0, 1 , . . . ,  119} 2. 
Here and in the next six simulations in this section, we use periodic boundary conditions. 
Tha t  is, sites on the top row are neighbors of those on the bot tom row, and those on the 
left edge are neighbors of those on the right edge. We started at t ime 0 by assigning a 
randomly chosen opinion to each site. Figure 1.2 shows the state at t ime 500 suggesting 
that  the clustering asserted in Theorem 2A occurs very slowly. Results of Cox (1988) imply 
that  the expected time for our system to reach consensus is about 

41n(5/4) �9 2 (t20)~ ln120 = 39, 173 

The conclusions just  derived for the voter depend on the fact that the flip rates are 
linear. Nonlinear flip rates can produce quite different behavior: 
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Figure 1.2. Five opinion two dimensional voter model at time 500 
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E x a m p l e  1.3. The  thresho ld  v o t e r  m o d e l .  Cox and Durret t  (1991) introduced a 
modification of the voter model in which 

( ~  i f n i ( x , ~ )  > 0 
ci(x, ~) = if hi(x, ~) < 0 

In words, these voters change their opinion at rate 1 if at least 0 neighbors disagree with 
them. This change in the rules changes the behavior of the model drastically. 

We start  with the case O = 1: 

T h e o r e m  3A.  If d = 1 and A/" = { -1 ,  1} then clustering occurs. 

T h e o r e m  3B.  In all other  cases (recall we supposed that  A/" = {z : llz[[p < r} with 
r _> 1) we have coexistence. That  is, there is a nontrivial translation invariant stationary 
distribution ~u12 in which l ' s  and 2's each have density 1/2. 

Here as in many other  cases, the one dimensional nearest neighbor case is an exception. 
Cox and Durre t t  (1991) proved Theorem 3A and that  coexistence occurs in some cases 
(e.g., d = 1 and r >_ 7) but  the sharp Theorem 3B is due to Liggett (1992). Note that  in the 
threshold voter model coexistence occurs in all but  one case, while in the basic voter model 
coexistence occurs only in d > 3. A second difference is that  when coexistence occurs 
the basic voter model has a one parameter family of nontrivial s tat ionary distributions 
constructed in Theorem 2B but we believe 

C o n j e c t u r e  3C.  When coexistence occurs in the threshold one voter model there is a 
unique spatially ergodic translation invariaa~t stat ionary distribution in which l ' s  and 2's 
have positive density. 

Here, we say that  7r on F s is spatially ergodic if under 7r the family of random variables 
{~(x) : x E Z d} is an ergodic stationary sequence, i.e., the a-field of events invariant 
under all spatial shifts is trivial. We need the assumption of spatial ergodicity to rule out 
nontrivial convex combinations 

apl  + b#2 + (1 - a -  b)p12 

where pi is the point mass on the all i state, and #12 is the measure constructed in Theorem 
3B. In general, the set of translation invariant stationary distributions for an interacting 
particle system is a convex set and in most examples, the extreme points of the set axe 
the s tat ionary distributions that  are spatially ergodic. However, there is no general result 
that  shows this is true. See Problem 7 on page 178 of Liggett (1985). 

While the threshold 1 case is fairly well understood, there are many open problems 
concerning higher thresholds. To illustrate these we observe that  computer simulations 
suggest 

C o n j e c t u r e  3D.  For the Moore neighborhood A/" = {z : [[z[[oo -- 1} in d = 2 the threshold 
voter model has the following behaviors 
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Figure 1.3. Threshold 2 voter model, Moore neighborhood 
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Figure 1.4. Threshold 3 vo~er model, Moore neighborhood 



108 

coexistence 0 = 1, 2 
clustering 0 = 3, 4 
fixation 0 > 5 

Here, f ixat ion means that  each sites flips only a finite number of times. To see that  the 
last line is a reasonable guess note that an octagon of l ' s  cannot flip to 0 since each 1 has 
at most 4 neighbors that  are 0 

0 0 0 0 0 0  
0 0 1 1 0 0  
0 1 1 1 1 0  
0 1 1 1 1 0  
0 0 1 1 0 0  
0 0 0 0 0 0  

We will prove the result about fixation for 0 _> 5 and coexistence for 0 = 1 in Section 
5. The  other  conclusions axe opea problems. In support  of our conjectures we introduce 
Figures 1.3 and 1.4 which give simulations at t ime 50 of the case 0 = 2 on {0 ,1 , . . . , 89}  2 
and 0 = 3 on {0, 1 . . . .  ,179} ~ starting from product measure with density 1/2. 

Our next two systems model the competit ion of biological species. We begin with 

E x a m p l e  1.4. T h e  m u l t i t y p e  c o n t a c t  p rocess .  The set of states is F = { 0 , 1 , . . . ,  ~}, 
where 0 indicates a vacant site and i > 0 indicates a site occupied by one plant of type i. 
The  flip rates are linear 

c0(x,  ~) = 5~(~) 

c , (x ,  ~) = ~ , ~ , ( x ,  ~) if ~(x)  = 0 

Here and in what follows the rates we do not mention are 0. Suppose for simplicity that  
tr = 2. Neuhauser (1992) has shown 

T h e o r e m  4 A .  Suppose 61 = 52 and X1 > A2. If ~0 is translation invariant and has a 
positive density of l ' s  then P ( ~ t ( x )  = 2) ---* 0. 

In words, the species with the higher birth rate wins out ("survival of the fittest"). The 
following stronger result should be true but Neuhauser 's proof relies heavily on the as- 
sumption that  51 = 5 2. 

C o n j e c t u r e  4B .  Suppose A1/S1 > A2/62. If~0 contains infinitely many l ' s  then P ( ~ t ( x )  = 

2 ) ~ 0 .  

When Ax = $2 and 51 = 52, Neuhauser showed that the mult i type contact process 
behaves like the voter model. 

T h e o r e m  4C.  Clustering occurs for translation invaxiant initial states in d < 2. That  is, 
if ~0 is translation invariant, then for any x, y E Z d, and 1 < i < j < ~ we have 

P ( ~ , ( x )  = i, ~t(y) = j )  "--* 0 as t ---* oo 
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T h e o r e m  4D.  Let ~t ~ denote the process starting from an initial state in which the events 
{~0~ = i} are independent and have probability 0i with 82 = 1 - 01. In d >_ 3, as t ---* oo, 
~t ~ ::~ ~ ,  a translation invariant stationary distribution in which 

P ( ( , ( x )  = i) = ~ I - P w h e n i = O  
pO i when i > 0 L 

where p is the equilibrium density of occupied sites in the one type contact process. 

The  last result is a little disturbing for biological applications. It says that  if species 
compete on an equal footing then coexistence is not possible in d = 2 even if the birth and 
death rates are exactly the same. (This situation may sound unlikely to occur in nature 
but  it occurs, for example, if we look at the competit ion of genei:s genetically identical 
individuals of the same species.) Somewhat surprisingly, if species 2 dominates species 1, 
we get coexistence for an open set of parameter  values. 

E x a m p l e  1.5. S u c c e s s i o n a l  d y n a m i c s .  We suppose that  the set of states at each site 
are 0 = grass, 1 = a bush, 2 = a tree and we formulate the dynamics as 

c0(x, s = ~r 

c , (x ,~)  = A,~ , (x ,~)  

c2(x, ~) = ~2,~(x,  ~) 

if ~(x) = 0 

if ~(x) < 1 

The title of this example and its formulation are based on the observation that  if an area 
of land is cleared by a fire, then regowth will occur in three stages: first grass appears 
then small bushes and finally trees, with each species growing up through and replacing 
the previous one. With  this in mind, we allow each type to give bir th onto sites occupied 
by lower numbered types. As in the threshold voter model, the one dimensional nearest 
neighbor case is an exception. 

T h e o r e m  5A.  Coexistence is not possible in the one dimensional nearest neighbor case, 
i.e., d = 1, A r = { -1 ,1} .  

C o n j e c t u r e  5B.  In all other  cases (recall we supposed that  A/" = {z : II=llp - r} with 
r ~ 1) we have coexistence for an open set of values (61, A1,62, ,k2). 

Figure 1.5 shows a simulation of the nearest neighbor model on {0, 1 , . . .  ,89} 2 with pa- 
rameters  X1 = 5/4, 61 = 1, X2 = 1.9/4, and 62 = 1 run until t ime 100, which presumably 
represents the equilibrium state. Sites in state 1 axe gray; those in state 2 are black. 

Proving that  coexistence occurs in the two dimensional nearest neighbor case of this 
model seems to be a difficult problem, since computer  simulations indicate that  the open 
set referred to in Conjecture 5B is rather small. However, if we assume that  the range 
of interaction is large, we can get very accurate results about the coexistence region. Let 
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Figure 1.5. Two dimensional  nearest  neighbor succesional dyanmies,/31 = 5,/32 = 1.9 
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T h e o r e m  5C.  Suppose that  

(*) G fi~ - $________s 

If r is large then coexistence occurs. 

T h e o r e m  5D.  Suppose that  

~1" ~ < ,~1 + ~ ~---T- 

If r is large then coexistence is impossible. 

Theorems 5A and 5C are due to Durrett  and Swindle (1991), while the converse in 5D is 
due to Durre t t  and Schinazi (1993). To explain the condition in Theorems 5C and 5D, 
we begin by observing that  if we assumed that  u( t )  = P ( ~ t ( z )  = 2) does not depend on x 
and the states of neighboring sites were independent, then writing y ~ x to denote "y is a 
neighbor of x" 

du 
(1.1) d-[ = -~52P(~ t ( x )  = 2) + ~~=~ A 2 P ( { t ( x )  < 2,,~,(x) = 2) 

= - G u  + ~ 2 u ( 1  - u )  

where the first equality is true in general and the second follows from our assumptions and 
the fact that  f12 = IAf]A2- Dropping the - f l2u 2 term 

du 
- -  < ( ~  - (~2)u 
d r -  

so if (f2 > f12 all solutions tend to 0 exponentially fast. If ~2 < fi2 and we let u* = 

(f12 - ~2)/fl2 then 
/ > 0  f o r 0 < u < u *  

~ ~ 2  u + fl2"(1 I. < 0  for u > u* 

so if u(0) > 0, u(t) -~ u* as t -~ ~ .  
Applying the reasoning that  led to (1.1) to v( t )  = P ( ~ t ( x )  = 1) we see that  

dv 
(1 .2 )  at -- 61P(~ t (x )  = 1 ) -  ~ A2P(~,(x) = 1,~,(y) = 2) 

y ~ z  

"t- ~ A1P((,(x) ---- 0,~t(y) = 1) 
y~x 

= --(~1 v - -  ~2VU -~ ) 3 1 ( 1  - -  U - -  U ) U  
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where again the first equality is true in general and the second follows from our assumptions 
and the fact that  8i = ]AfIA~. To analyze (1.2), we note that  if the 2's are in equilibrium 
and the density of l ' s  is very small, then 

= ( 8 2  - 6 2 ) / 8 2  (1  - ~ - ~ )  ~ 6 2 / 8 ~  

62 
l ' s a r e b o r n a t r a t e  ~ f l l . ~ . v  

l ' s d i e a t  rate ~ 6 1 + f l 2 -  f12 ] v  

So if (*) holds a small density of l ' s  will grow in time, while if we reverse the inequality in 
(*) and use (1 - u - v) < (82 - 62)/82 then the birth rate always exceeds the death rate 
and v(t)  ~ O. 

The practice of calculating how densities evolve when we suppose that  adjacent sites 
are independent is called mean field theory. Theorems 5C and 5D are one instance of the 
general principle that  when the range of interaction is large mean field calculations are 
almost correct. A second method of making mean field calculations correct, which leads 
to connections with nonlinear partial  differential equations, is to introduce particle motion 
at a fast rate. 

E x a m p l e  1.6. P r e d a t o r  p r e y  s y s t e m s .  In this model we think of 0 = vacant, 1 = 
occupied by a fish, and 2 = occupied by a shark and we have the following flip rates 

c , ( z ,~ )  = fl, n l (x ,~)12d  i f ~ ( x ) = 0  

c2(x,~) = 8znz (x ,~ ) /2d  if ~(x) = 1 

{61 if ~(z) = 1 
co(x,~) = 62 + (Tn2(z,~)/2d)  if ~(z) = 2 

In words, fish die at rate 61 and are born at vacant sites at a rate proportional to the 
number of fish at neighboring sites. So in the absence of sharks, the fish are a contact 
process. 

Sharks die of natural  causes at rate 62 and kill a neighboring shark at rate 7/2d. 
The bir th rate for sharks may look a little strange at first: fish turn into sharks at rate 
proport ional  to the number of shark neighbors. This is not what happens in the ocean but 
it does capture an essential feature of the interaction: when the density of fish is too low 
then the sharks die faster than they give birth. A second justification of this mechanism is 
that ,  as we will see in Section 9, in a suitable limit we get s tandard predator-prey equations. 

Here ni (x ,~)  = I{z e Af : ~(x + z) = i}1 as usual, but  for reasons that  will become 
clear in a moment we take S = eZ a and .h/" = {z : ]z I = e} the nearest neighbors. We 
use a small lattice so that  we can introduce ~tirring at a fast rate, i.e., for each x, y E eZ ~ 
with Ix - Yl = e we exchange the values at x and y at rate e -2. Tha t  is, we change the 
configuration from ~ to ~='~ defined by 

~ '~ (x )  = ~(y), ~ ,~(y)  = ~(z), ~ 'Y(z)  = ~(z) if z r x ,y  
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The combination of the space scale of e and the time scale of e -2 means that  the individual 
values will perform Brownian motions in the limit e ---+ 0. The fast stirring keeps the states 
of neighboring sites independent, so using mean field reasoning leads to the following result 
due to DeMasi, Ferrari and Lebowitz (1986). 

T h e o r e m  6 A .  Suppose (~)(x), x E eZ a, are independent and let u~(t, x) = P ( ( t ( z )  = i). 
If u~(0, x) = gi(x)  is continuous then as e ~ 0, u~(t, z )  converges to ui(t,  z) the bounded 
solution of 

(1.3) 

O U l  
= m u  1 + / 3 1 u 1 ( 1  --  u x - -  u 2 )  - - / 3 2 U l U 2  - -  6 1 u  1 

ogt 
au2 

- A u 2  + / 3 2 u , u 2  - ~ 2 u 2  - "ru~ & 

with ui(O, x) = gi(x) .  

Here the Aui  terms reflect the fact that  in the limit the individual values are performing 
Brownian motions run at rate 2. The other  terms can be seen by using the reasoning that 
led to (1.1) and (1.2). 

If we suppose that  the initial functions gi(x)  are constant then this is true at later 
times ui( t ,  x)  = vi( t)  and the vl satisfy 

OVl 
Ot -- Vl((f l l  -- 61) -- fllVl -- (/31 -~- /32)~)2) 

(1.4) Or2 
= . 2 ( - 6 2  + / 3 2 v ,  - 7v2) 

Here we have rearranged the right hand side to show that it is the standard predator- 
prey equations with limited growth. (See for example Hirsch and Smale (1974) p. 263.) 
To determine the conditions for coexistence, we start  by finding the fixed points of the 
dynamical  systems, i.e., points (PI, P2) so that  vi(t  ) =_ Pi is a solution of (1.4). There are 
three 

(i) Pl = P2 = 0. No sharks or fish, the trivial equilibrium. 

(ii) We have a solution with P2 = 0 and Pl = (/3x - 61)//31 if fix > 132. This forumla is the 
same as the one in the last example because in the absence of sharks, fish are a contact 
process. 

(ill) There is a fixed point with pi = ai > 0 if and only if 

(1.5) /3, -6, 62 
/3, /3~ 

(which implies/31 > 6a). We do not have an intuitive explanation for the last condition. 
It is simply what results when we solve the two equations in two unknowns. 
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F i g u r e  1.6. P r e d a t o r  p r e y  m o d e l  ~l  = /~2 = 3, 81 = 62 = 1, 3' = 1 
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By exploi t ing the  connect ion between the part icle system and  the  par t ia l  differential 
equa t ion  given in Theorem 6A, we can prove 

T h e o r e m  6 B .  If (1.5) holds then  for small  e coexistence occurs. 

It would be nice to prove coexistence results wi thout  fast st irr ing.  Figure 1.6 shows a 
s imula t ion  of the  system on {0, 1 , . . . ,  79} 2 at  t ime 50 wi th  ~1 = ~2 = 3, 61 = 62 = 1, 3' = 1 
and  no  stirring. Again sites in s ta te  1 are gray; those in s ta te  2 are black. 

E x a m p l e  1.7.  E p i d e m i c  m o d e l .  In this example,  we th ink  of Z 2 as represent ing 
an  array of houses each of which is occupied by one individual  who can be (0) susceptible 
= hea l thy  bu t  capable  of get t ing the  disease, (1) infected wi th  the  disease, or (2) immune  
to fu r the r  infection. The  flip ra tes  are 

c l ( x , ~ ) =  Anl(x,~) i f ~ ( x ) = 0  

c2 (x ,~ )=6  i f ~ ( x ) =  1 

co(x,~) = a i f~ (x )  = 2 

As usual,  the  rates  we did not  ment ion  are 0. In words, a suscept ible  individual  gets 
infected at  a ra te  propor t iona l  to the number  of infected neighbors.  Infected individuals  
become removed at ra te  6. Here 1/6  is the  mean  dura t ion  of the  disease and  to obta in  
the  Markov  proper ty  we have assumed tha t  the  dura t ion  of the  disease has an  exponent ia l  
d is t r ibut ion .  If we want  to model  the  short  t e rm behavior  of a measles or flu epiemic then  
we set ~ = 0 since recovered individuals  are immune  to the  disease. If we want to examine 
longer t ime proper t ies  then  immune  individuals  will die (or move out  of town) and  new 
susceptibles  will be born  (or move into town) so to keep a fixed popula t ion  size of one 
individual  per  site, we combine the  two t rans i t ions  into one. 

To describe the  condi t ions for coexistence we begin with case c~ = 0 and  consider 
the  behav ior  of the  model  s t a r t ing  from one infected individual  at  0 in the midst  of an 
otherwise  susceptible populat ion.  Let 7/t = {x : ~t(x) = 1} be  the  set of the  infected 
individuals  at  t ime t and  let r = inf{t  : qt = 0}. We will have qt = 0 for all t > r so we 
say the  infection dies out at t ime T. Let 6c = inf{6 : P ( r  = cr = 0}. The  faster  people 
recover the  ha rde r  it is for the  epidemic to propagate  so we have P ( v  = cr = 0 for all 
6>6~.  

If we restr ic t  our  a t t en t i on  to the  neares t  neighbor  case, then  results of Cox and  
Dur r e t t  (1988) describe the asympto t i c  behavior  of the epidemic when  6 < 6c and r = eo. 
Building on those results  Dur re t t  and  Neuhanser  (1991) have shown 

T h e o r e m  7 .  S u p p o s e  d = 2 and  A/" = {x  : Ix] = 1}.  If 6 < 6c and  a > 0 then coexistence 
o c c u r s .  

Zhang  has  generalized the  results  of Cox and  Durre t t  (1988) to finite range interact ions.  
P re sumab ly  one can also prove the  result  of Durre t t  and  Neuhauser  (1991) in t ha t  level of 
general i ty  bu t  no one has  had  the  courage to t ry to write out  all the  details. 



116 

Closely re la ted to the  epidemic model is 

E x a m p l e  1.8 .  G r e e n b e r g  H a s t i n g s  M o d e l .  In this  model,  we th ink  of having  a neuron  
at each x E Z a t ha t  is connected  to each of its neighbors.  The  s ta tes  of each neuron  are 
F = {0, 1 , . . . ,  ~ - 1} where  1 is excited, 2 , . . . ,  a - 1 are a sequence of recovery states,  and  
0 indicates  a fully res ted neuron  tha t  is capable  of being excited. These  in te rpre ta t ions  
mot iva te  the  following flip rates  

cl(x, ~) = 1 if ~(x) = 0 and  n,(x, ~) > 0 

ci(x,~) = 1 if i # 1 and  ~(z) = i - 1 

Here a r i thmet ic  is done modulo  n so 0 - 1 = n - 1. The  second rule says t ha t  once excited, 
the  neuron  progresses t h r ough  the  recovery s ta tes  at  ra te  1 unti l  it is fully rested; the  first 
t h a t  a res ted  neuron  becomes excited at  ra te  1 if the  number  of i ts  neighbors  t ha t  are 
excited is a t  least  the  threshold  0. T he  next  result ,  due to Dur re t t  (1992), gives a regime 
in which this  model  has  ( somewhat  bor ing)  s t a t ionary  dis t r ibut ions .  

T h e o r e m  8 A .  Let e > 0 and  suppose 0 < (1 - e)lA0/2,,. If r is large then  there  is a 
s t a t iona ry  measure  close to the  uni form product  measure.  

Here the  uniform product measure is the  one in which the coordinates  ( (x)  are independen t  
and P(~(x) = i) = 1/~.  Based on  the  anMogy wi th  the  epidemic model  where if 6 < 6c 
there  is a coexistence for any a > O, we expect tha t  

C o n j e c t u r e  8 B .  There  is a cons tan t  a > 0 so tha t  if 8 < a[A/'[ t hen  coexistence occurs 
for any ~. 

C o m p u t e r  s imula t ions  indicate  t ha t  in this  regime the  exci ta t ion sus ta ins  itself by produc-  
ing moving fronts. See Figure  1.7 for a s imulat ion of the  system wi th  .M = {x :  t]xl]o~ < 2}, 
th resho ld  0 = 3, and  n = 8. Excited s ta tes  are black, rested sites are white,  recovering 
sites are appropr ia te  shades  of gray. 

The  analogue of Conjec ture  8B has been proved by Dur re t t  and  Griffeath (1993) for 
the  Greenberg  Hast ings  cellular a u t o m a t o n  in which ~,+x(x)  = ~ , (x )  + 1 if ~ , (x )  > 0 or 
~,(x) = 0 and hi(X, ~, )  > 0; ~ , + l ( x )  = ~ , ( z )  otherwise.  See Figure  1.8 for a s imulat ion of 
the  cellular a u t o m a t o n  wi th  the  same color scheme and  parameters :  A]" = {x : Ilxl[o~ < 2}, 
threshold  0 = 3, and  x = 8 r un  unt i l  it has  become periodic wi th  per iod 8. For more  on 
the  cellular a u t o m a t o n  consul t  Fisch, Gravner  and  Griffeath (1991), (1992), (1993), and  
Gravner  and  Griffeath (1993). 
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Figure 1.7. Greenberg Hastings model. A g = {z:  Ilxlloo ~ 2}, a = 3, ~ = 8 
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Figure 1.S. Greenberg Hastings cellular automaton, iV" = {x : I1=11oo _< 2}, 0 = 3, ~ = 8 
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2. C o n s t r u c t i o n ,  B a s i c  P r o p e r t i e s  

To construct an interacting particle system from given translation invariant finite flip 
rates 

ci(x,~) = gi(~(x + z0),~(x + z , ) , . . . , ~ ( x  + z , ) )  

based on a neighborhood set .IV" = { z o , z l , . . . , z , }  we can, by changing the time scale, 
assume that  c i ( x , ( )  < 1. For each x E Z d a n d i  E F ,  let {T~[ i : n > 1} be the arrival 
times of independent rate 1 Poisson processes (i.e., if we set To"  = 0 then the increments 

T~ ,i - T:'i_l axe independent and have an exponential  distribution with mean 1) and let 
UZ, 'i be independent  and uniform on (0,1). At time t = T,~ 'i site x will flip to state i 
if U ,  ~'i < ci(x ,  ~t-)  and stay unchanged otherwise. To see that  this recipe produces the 
desired flip rates recall the th innning property of the Poisson process: if we keep the points 
from {T~ 'i : n > 1} that  have U~ ,i < p then the result is a Poisson process with rate p. 

Since there are infinitely many Poisson processes, and hence no first arrival, we have 
to show that  we can use our recipe to compute the t ime evolution. To do this, we use an 
argument of Harris (1972). Let to be a small positive number to be chosen later. We draw 
an unoriented arc between x and y if y - x E .hf and for some i, T~ 'i < to. The presence 
of an arc between x and y indicates that a Poisson arrival has caused x to look at y to 
see if it should flip or caused y to look at x. Conversely, if there is no arc between x and 
y then neither site has looked at the other. The last observation implies that  the sites in 
two different components of the resulting random graph have not influenced each other by 
t ime to and hence their evolutions can be computed separately. To finish the construction 
then it suffices to show 

(2.1) T h e o r e m .  If to is small enough then with probability one, all the connected com- 
ponents of our random graph are finite. 

For then in each component there is a first flip and we can compute the effects of the 
changes sequentially. This allows us to construct the process up to time to but  to is 
independent of the initial configuration, so i terating we can construct the process for all 
time. 

PROOF o r  (2.1): Let Af* = {Z l , . . . ,  zk, - z x , . . . , - z k }  be the set of possible displacements 
along edges of the graph. (In this section alone, we will allow Af to be a general finite set 
not just  {x : [[x[[p _< r}.) We say that  Y0, Yx . . . .  y ,  is a path of length n if Ym - ym- l  E A f* 
when 0 < m _< n. We c a l l a p a t h  s e l f - a v o i d i n g i f y i  ~ YJ when 0 <_ i < j _< n. Let 
R = m~,{Iz~l  : z~ e ~r (Here Izl = IIz[12.) We c l a m  that  

(a) If 0 is connected to some point with Izl > M then there is a self-avoiding path  of length 
> M / R  start ing at 0. 

To see this note that  if there is a path from 0 to z, then by removing loops we can make 
it self-avoiding. Since each step along the path moves us a distance _< R, there must be at 
least I z l / R  such steps. The next ingredient in the proof is 

(b) If x, y, z, w are distinct, the presence of edges from x to y and from z to w are inde- 
pendent events. 
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To see this note that  the presence of an edge from x to y is determined by the Poisson 
processes T~ ,i and T~ 'i with i E F.  From (b) it is easy to see 

(c) Let N = I.A/'* I and n = IFI. The probability of a self avoiding path  of length 2n - 1 
s tar t ing at a given point x is at most 

N2n- l (1  _ e-2~,0) n 

The first factor is the number of paths of length 2n - 1 and hence an upper bound on the 
number of self-avoiding paths. To see the second factor note that  the presence of the edges 
(z0, zl) ,  (z~, z3) , . . .  (z2,~-~, z2n-1) are independent events that  have probability 1 - e -2*t~ 
since the probability of no arrival by t ime to in one of the 21r Poisson processes T~ 'i and 
T~ 'i is e - ~ t ~  

If we pick to small enough then Nz(1 - e -2~t~) < 1/2, so the probability of a self- 
avoiding pa th  of length 2n - 1 decreases to 0 exponentially fast, and it follows from (a) 
that  with probabili ty 1 the cluster containing any given point x is finite. [] 

An immediate  consequence of the construction is 

(2.2) C o r o l l a r y .  If ~0 is translation invariant then ~t is. 

PROOF: The family of Poisson processes is translation invariant, so if the initial state is, 
then so is the result of our computation.  [] 

It should also be clear from the construction that ~t is a Markov process, i.e., if we 
know the state at t ime s, information about  ~ for r < s is irrelevant for computing the 
evolution for t > s. Being a Markov process there is an associated family of operators 
defined by 

T, f (~)  = E~](~,) 

where Er denotes the expected value start ing from (0 = ~. The  Markov property of ~t 
implies that  the Tt form a ~emigroup. That  is, TsTt = Ts+t. If you are not familiar with 
semi-groups don' t  worry. We will only use the most basic results that  can be found in 
Chapter  1 of Dynkin (1965) or in Chapter  ? of Revuz and Yor (1991), and we will only 
use those facts in this section. The first thing we want to prove is 

(2.3) C o r o l l a r y .  Tt is a Feller 8emigroup, i.e., if f is continuous with respect to the 
product  topology on F s then Tt f  is continuous. 

PROOF: Note that  our construction defines on the same probability space the process 
start ing from any initial configuration. If t < to then proof of (2.1) shows that  up to time 
to, Z a breaks up into a collection of finite non interacting islands. From the last fact it 
follows easily that if ~ '  ---* ~0, (which means that  for each fixed x, ~ ( x )  --~ ~0(x)) then 
~ ---+ ~t almost surely. If f is continuous it follows that  f ( ~ )  ~ f (~ , )  almost surely. Since 
F s is compact  in the product topology, any continuous function is necessarily bounded, 
and it follows from the bounded convergence theorem that  Zf(~'~) ~ Ef (~ , ) .  This proves 
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the result for t < to. Using the semigroup property Tt+s = T~Tt, it follows that  the result 
holds for t _< 2t0, t < 3t0, and hence for all t. [] 

Our next step is to compute the generator of the semigroup. Let ~x,i denote the 
configuration ~ flipped to i at x. That  is, 

~*'i(z) = i ~,,i(y) = ~(y) otherwise 

Suppose f (~)  only depends on the values of finitely many coordinates and let 

L f  = E ci(x, ~) (f(~=,i) _ f(~))  
zEZd,iEF 

The sum converges since only finitely many terms are nonzero. Our next result says that  
L is the generator of Tt. 

(2.4) d T ,  f(~) = Lf(~) 
t=0 

If you have seen the generator of a Markov process with a discrete state space the formula 
should not be surprising. The proof of (2.4) is much like the proof for that  case so we will 
only give a quick sketch. 

PaOOF: Suppose f only depends on the values of ~ in [-L,L] d and recall we have defined 
R = max{]zil : zi E Af}. If t is small then with high probability there is at most one site 
x E [ - L  - 2R, L + 2R] d and one value of i E F with T ='i < t. By considering the various 
possible values of x and i and noting that the probability that  ~0 = ~ changes to ~=,i is 
,., tci(x, ~), the result follows easily. [] 

For the rest of this section, we will restrict our at tention to the case F = {0, 1}, in 
which case we think of 1 = occupied by a particle and 0 = vacant. Since we think of l ' s  
are particles we call el(x, ~) the birth rates and call co(z, ~) the death rates. We say that 
the birth rates el(x, () are increasing if 

~(y) < ( (y)  for all y ~: x and ~(z) = ((x)  = 0 implies cl(z,~) <_ e l ( z , ( )  

We say that  death rates co(z, ~) are decreasing if 

f (y)  < r for all y # x and ~(x) = ( (z)  = 1 implies c , (x , f )  > c , (x , ( )  

A process with increasing birth rates and decreasing death rates is said to be attractive. 
The last term comes from analogies with the Ising model in statistical mechanics. This 
assumption is not very at t ract ive for biological systems since there the death rate usu- 
ally increases due to crowding, but the at t ract ive property is what we need to prove the 
following useful result. 
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(2.5) T h e o r e m .  For an at t ract ive process, if we are given initial configurations with 
~0(x) _< ~0(x) for all z then the processes defined by our construction have ~,(x) < r 
for all z and t. 

PROOF: Intuitively this is true since each flip preserves the inequality. To check this 
suppose that  ~ _ ( y )  = 0 and a birth event T~ '1 occurs at t ime a. If r = 1 then r = 
1 and the inequality will certainly hold after the flip. If ~,_(y) = 0 and the inequality 
holds before the flip, then since our birth rates are increasing c(y,~,_) < c(y, r  By 
considering the possible values of U~ '~ se see that  in all eases the inequality holds after the 
flip. 

value of UY. 'i change in ~ change in 
[O,e(y,~,_)) flips to 1 flips to 1 

[c(y,~,_),c(y,~,_)) stays 0 flips to 1 
[c(y, ~s-), 1) stays 0 stays 0 

A similar argument  applies if ~ _ ( y )  = 1 and a death event T~ '~ occurs at t ime s. 
To turn the intuitive argument in the last paragraph into a proof, suppose that  the 

inequality fails at some point x at some time t _< to. Let C= be the connected component 
containing x for the random graph defined in the proof of (3.1), and let s > 0 be the first 
t ime the property fails at some point y E C~. By the definition of s the inequality holds 
on C~ before t ime s. Since C~ contains all the neighbors of any site in C~ that  flips by time 
to it follow from the argument in the last paragraph that  the inequality will hold until 
the next flip after t ime s. Since C~ is a finite set, the next flip will occur at a t ime > s, 
contradicting the defintion of s and showing that  the inequality must hold up to t ime to. 
I terat ing the last conclusion we see that the result holds for all time. [] 

To explain our interest in (2.2), (2.4), and (2.5) we will now prove that 

(2.6) T h e o r e m .  If A[.Af 1 < 5 then the contact process has no nontrivial stationary distri- 
bution. 

PROOF: Consider the contact process starting from all sites occupied, i.e., suppose (0~(z) = 
1 for all x. It follows from (2.2) that  P(~X,(z) = 1) is independent of x, so writing y ~ x 
for "y is a neighbor of z" and using ~ T t f  = T tL f  we have 

d P ( ~ ( ~ )  = 1) = - ~ P ( ~ I ( z )  = 1) + ~ ~P(~$(~) = O,~,(y) = 1) 

< -6P(~1(x ) = 1) + X]NIP(~I(y) = 1) 

If Al-n/'l < 6 then the last inequality implies that  P ( ~ ( x )  = 1) ~ 0 as t -4 oo. Now any 
initial configuration has ~0(z) _< 1 = ~0~(x) for all x, so by (2.5), we have ~,(x) < ~ ( x )  
for all t and x and it follows that  P(~t(z) = 1) ~ 0 for any initial configuration. If we 
pick ~0 to have a stationary distribution then P(~t(x) = 1) is independent of t, so the last 
conclusion implies this probability is 0 and the result follows. [] 
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The last argument  shows that  if we start  an attractive process with all sites occupied 
and find P(~(x)  = 1) --~ 0 then there is no nontrivial stat ionary distribution. Our next 
result proves the converse. Recall that => denotes weak convergence, which in this setting 
is just  convergence of finite dimensional distribution. 

(2.7) T h e o r e m .  As t ---* co, ~ ~ ~ .  The limit is a stat ionary distr ibution which is 
stochastically larger than any other stationary distribution and called the upper invariant 
m g a , ~ B r e ' .  

PROOF: The key to the proof is the following observation: 

(2.8) L e m m a .  For any set A C Z d, t ---* P((~(x) = 0 for all x E A) is increasing. 

PRooF:  Let (o = ~]. Clearly, ~l(x) > i0(z) for all z so (2.5) implies that for all t and x, 
~ ( x )  > (t(x).  Since (t has the same distribution as (]+t it follows that  

P(~(x)  = 0 for all x E A) <_ P({~+t(z) = 0 for all z E A) [] 

Let r = P(~(z) = 0 for all x E A) and B = { x l , . . . , x , , }  Using the inclusion 
exclusion formula on the events El = {(t(x) = 0} on A U {xi}, we can express any finite 
dimensional distr ibution in terms of the r  

1 - P(~(x) = 0 for all x E A,((x) = 1 for all x E B) = P(UT=IEi) 
r n  

= ~ r U {xi}) - ~ r  U {xi,xi} ) + . . .  + (-1)"~+1r U B) 
i~-I i<j  

So (2.8) implies convergence of all finite dimensional distributions. D 

The fact that ~ is a stat ionary distr ibution follows from a general result. 

(2.9) L e m m a .  Suppose the Markov process X has a Feller semigroup and X, =r Xoo then 
(the distr ibution of) Xoo is a stat ionary distribution. 

PROOF: Recall that if X0 has distr ibution/J  then the probability measure ~T, defined by 

i(tlTt)(dx)f(x) = / l~(dx)T,f(x) = i l~(dx)E~f(Xt) 

for all bounded continuons functions f gives the distribution of Xt when X0 has distr ibution 
/~. The key to the proof of (2.9) is the following general fact: 

(2.10) If Tt is a Feller semigroup and #~ => # then I~Tt ~ #Tt. 

To prove (2.10) we note that Ttf is bounded and continuous 

= / 
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where the second inequality follows from the fact that Ttf is continuous and #s ::~ #. 
To prove (2.9) now, let #s be the distribution of X,  and note that the Markov property 
implies ttsTt = #s+t. The right hand side converges to #, and by (2.10) the left hand side 
converges to #Tt, so #Tt = #, i.e., # is a stat ionary distribution. [] 

Finally we have to explain and show the claim " ~  is stochastically larger than any 
other stat ionary distribution ft." By stochastically larger we mean that if f is any increasing 
function which depends on only finitely many cooordinates then 

(2.11) E f ( ~ )  >_ /f(~)dre(~) 

Here f is increasing means that if ((x) < ~(x) for all x then f(((x)) <_ f(~(x)). To prove 
the claim let ~0 have distribution ~r. Clearly, (~(z) >_ ~0(x) for all z so (3.5) implies that 
~t(x) >_ ~t(x) for all t and x. Now if f is increasing 

Ef(~t) > Ef(~t) = f f(~)dTr(() 

since re is a stat ionary distribution. If f depends on only finitely many coordinates then 
it is continuous and 

Combining the last two conclusions, proves our claim and completes the proof of (3.7). [] 

(2.12) R e m a r k .  A result of Holley implies that since ~ is stochastically larger than re, 
we can define random variables ~ and (" with these distributions on the same probability 
space so that  ~(x) :> ~(x). 

Later we will need a variation of (2.9). The next result and (3.15) are not needed 
until  Section 5, so I suggest that you wait until  later to read the rest of this section. 

(2.13) T h e o r e m .  Suppose the Markov process X has a compact state space A and a Feller 
semigroup Tt. Let Pt be the distribution of Xt and ut the Cesaro average defined by 

1[ 
ut(A) = ~ #,(A) 

If tk ---* oo and u** =~ u then u is a stat ionary distribution. 

(2.14) C o r o l l a r y .  Since the set of probability measures on A is compact in the weak 
topology, this implies in particular that stat ionary distributions exist. 

PROOF: Since #sT,  = #s+r we have 

L [" .,rras 1 fr+,~ ut,T, = tk Jo = ~ #,ds 

1 / ~ + ' '  lff #sds - #~ds 
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The two error terms on the right hand side have each total mass r/ tk  and hence converge 
weakly to 0. Since ut~ ==~ u it follows that  utkTr ~ u. On the other  hand it follows from 
(3.10) that  utkT,. =~ uT,. so we have ~,Tr = u as desired. [] 

In Section 5, we will also need the following result: 

(2.15) T h e o r e m .  The upper invariant measure ~ is spatially ergodic. 

PROOF: We begin with the observation that  

(2.16) for each t, ~ is spatially ergodic. 

To prove (2.16) we let V * = ({T~,i ,n > 1} ,{U: , i , n  > 1},i = 0 . . . .  ,~ - 1). {V*,x 6 Z d} 
are i.i.d, and ( , (x)  is a function of the V, so the result follows from a generalization of 
(1.3) in Chapter  6 of Durret t  (1992). In words, functions of ergodic sequences axe ergodic. 

To let t --* cx), we note that the proof of (2.8) shows (~ is stochastically laxger than 
~ so (2.12) implies that  we can construct  the two processes on the same space so that 
(~(x) _> ( ~ ( x )  for all x. Let f be an increasing function that  depends on only finitely 
many coordinates. The ergodic theorem implies that as L ~ co 

1 
(2L + 1) d E ~:(x) ~ Ef(~t)  

�9 :11~:11~ __.L 
1 

(25 + 1) d ~ (~ ( z )  ~ E( f ( (~) IE)  
z:]l:~JJ~ <L 

The last result and our comparison imply that  E(f((oo)IZ) <_ E f ( ( , )  where Z is the a-field 
of shift invaxiant events. Letting t --* co we have E( I (G~) lZ)  _< E f ( ( ~ )  and since the left 
hand side has expected value Ef((o~), it follows that 

(2.17) E ( f ( ~ ) I Z )  = E f ( ~ )  a.s. 

At this point we have shown that (2.17) holds for increasing functions that  depends on only 
finitely many coordinates. Now every function on {0, 1} k is a difference of two increasing 
functions so (2.17) holds for any function of finitely many coordinates. Taking limits and 
using the inequality 

EIE(X  - YI-Z)[ _< E(IX - VllZ) = EIX - YI 

shows that  (2.17) holds for all bounded f so 2" is trivial. [] 
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3. P e r c o l a t i o n  S u b s t r u c t u r e s ,  D u a l i t y  

In this section we introduce a variation of the construction used in Section 2, due to 
Harris (1976) and Griffeath (1979), which applies to a special class of models with state 
space {0, 1} s and leads to a "duality relationship." For these purposes it is convenient to 
write our systems as set valued processes in which the state at t ime t is the set of sites 
occupied by l ' s .  We begin with 

E x a m p l e  3.1.  T h e  bas i c  c o n t a c t  p roces s .  We let Af be a finite set of neighbors of 0, 
say that  y is a neighbor of x if y - x E A/', and formulate the dynamics as follows: 

(i) Particles die at rate 1. 

(ii) A particle is born at a vacant site x at rate A times the number of occupied neighbors. 

To construct  the process we introduce independent Poisson processes {U~,n > 1} with 
rate 1 and {T,~'~,n >_ 1} with rate A for e a c h x ,  y E Z d with y - x  E A/'. At the space 
t ime points (x, U~) we write a 6 to indicate that a death will occur if x is occupied, and 
we draw an arrow from (y,T,~'Y) to (x,T,~ 'y) to indicate that if y is occupied then there 
will be a bir th from y to x. 

Given the Poisson processes and forgetting about the special marks, we could construct 
the process using the algorithm described in the last section. We introduce the special 
marks to make contact with percolation: we imagine fluid entering the bo t tom of the 
picture at the points in (0 and flowing up the structure. The 6's are dams, the arrows axe 
pipes that  allow the fluid to flow in the direction of the arrow, and (t is the set of sites 
that  are wet at t ime t. 

An example of the percolation $ub$~ruc~ure and the corresponding realization of ~t 
s tar t ing from ~0 = {0, 1} is given in Figure 3.1. The thick lines indicate the sites that  are 
occupied. To be able to define the dual process, we need an explicit recipe for constructing 
~t from the picture. We say that there is a path from (z, O) to (y, t) if there is a sequence 
of times s0 -- 0 < sl < s2 < ~, < sn+l = t and spatial locations z0 = x, x l , . . . , x ,  = y so 
that  

(i) for i - 1 , 2 , . . .  ,n  there is an arrow from xi-a to xl at t ime si 

(ii) the vertical segments {zl} x (si, s i+l) ,  i = 0, 1 , . . .  n do not contain any 6's. 

(Exercise: Find a path from (2, 0) to (3, t) in Figure 3.1.) Intuti t ively the arrows are births 
that  will occur if there are no 6's in the intervals in (ii), so to define the process start ing 
from ~0 a = A we let 

(3.1) ~a = { y :  for some x E A there is a path from (x, 0) t o ( y , t ) }  

It should be clear from the definitions that  (A is the contact process with one small 
modification: because of the open intervals in (ii) and the strict inequality in s ,  < s , + l  = t, 
the process we have constructed is left continuous. For example, if there is a death at x 
at t ime t, the particle will not be dead at t ime t but it will be dead at t ime t + e when e 
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Figure 3.1. Contact process 
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Figure 3.2. Dual of the contact process 
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is small. 
Although left continuous versions of Markov processes are not the traditional ones, we 

will tolerate them in this section since our main goal is to define the dual process and derive 
the duality relation (3.2), which is a s tatement  about the one dimensional distributions. 
(Note that  there are only countably many jumps so the left and right continuous versions 
axe equal almost surely at any fixed t.) To construct the dual process starting from time 
t, we say that  there is a path down f rom (y,  t) to (x,  t - r) if there is a sequence of times 
a0 = 0 < sl < s2 < an < sn+~ = r and spatial locations x0 = y , x ~ , . . . , z n  = x so that  

(i) for i = 1 ,2 , . . .  ,n  there is an arrow from xi to xi-1 at t ime t - si 

(ii) the vertical segments {x l}  x (t - s i + ~ , t  - s i ) ,  i = 0, 1 . . . .  n do not contain any 6's. 

Tha t  is, we have to avoid 6's as before but this t ime we move across arrows in a direction 
opposite to their orientation. (Exercise: Find a path down from (3, t) to (2, 0) in Figure 
3.1.) 

The  last definition is chosen so that  there is a path from (x, 0) to (y,  t) if and only if 
there is a path  down from (y, t) to (x, 0) and hence if we define 

(3.2) ~!B,O = {x :  for some y e B there is a path down from (y, t) to (x, t - s)} 

then { (Af l  B r 0} = {A Cl ~}B,,) 7/= 0}. With a little more thought one sees that for any 
0 < s < t  

~(u,t) (3.3) { ( A c l B T ~ 0 } =  { (Ac l s ,_ ,  r  = { A C l ~ B " ) r  

Figure 3.2 shows a picture of the dual process ~{0}.0. To work with the dual, it is 
useful to define a process ~B so that  for each t, {~B; 0 _< s < t} has the same distribution as 

{~B,t) : 0 < s < t}. Comparing the definition of the original process and the dual shows 
that  we can do this by reversing the direction of the arrows in the original percolation 
substructure and then applying the original definition. From this observation it should be 
clear that  if ~A is a contact process with neighborhood set A/" then ~B is a contact process 
with neighborhood set -A/" = { - x  : x E .Af}. So if we use our favorite neighborhood 

dV" = { x :  ]IzH~ < r} then the contact process is .~elf-dual, i.e., {~to,t > 0} and { ~ , t  > 0} 
have the same distribution. 

E x a m p l e  3.2.  T h e  voter  m o d e l .  Recall that  our simple minded voters have two 
opinions 0 or 1, and that  a voter at z changes her opinion at a rate equal to the number 
of neighbors (i.e., V with y - x E A/') with the opposite opinion. To make the percolation 
substructure we let {U~ 'y : n > 1} be independent Poisson processes with rate 1 when 
X, y E Z d with y - x E A/', we draw an arrow from (y, U~ 'y) to (x ,  U,~ 'v) and write a 6 at 
(x, U~'U). We define paths as before and use the paths to define a set valued process in 
which the state at t ime t is the set of sites with opinion 1. Writing 1 for occupied and 0 for 
vacant and thinking about the defintion it is easy to see that  the effect of an "arrow-delta" 
from y to x is as follows: 
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Figure 3.4. Dual of the voter model 
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s< 
} (  

before after 
x y x y 
0 0 0 0 
1 0 0 0 
0 1 1 1 
1 1 1 1 

In words, because of the  6 at  z, x will occupied after  the  "arrow-del ta"  if and  only if y 
is occupied.  From the  tab le  (or from the  verbal  descript ion) we see t h a t  the  effect of an  
"arrow-del ta"  f rom y to x is to force the  voter  at  x to imi ta te  the  voter  at  y, so the  process 
defined by (3.1) is the  voter  model. F igure  3.3 gives an  example of the  cons t ruc t ion  wi th  
(0 = { - 1 , 0 } .  Again the  th ick lines indicate  occupied sites. 

The  mot iva t ion  for this  cons t ruc t ion  is t ha t  it allows us to define a dual  process which 
in the  case of the  voter  model  is quite simple. Since dual  pa ths  c a n n o t  continue th rough  
6's and  can only move across arrows in a direct ion opposi te  the i r  or ientat ion,  i t  is easy to 

check t h a t  ~!(~}#) is always a single site S, ~'t, which has  the  in te rp re ta t ion  t ha t  the  voter  
at  z a t  t ime t has  the  same opinion of the  voter  at  S~'t a t  t ime t - s. See Figure 3.4 which 

shows ~!{z},t) for x = - 1  and  x = 2. In words, S~ 't sits a t  a site y unt i l  t - s = U~ 'z for 
some z, indicat ing the  voter  at  y imi ta ted  the  one at  z, a t  which t ime  S~ 't j umps  from y 
to z. From the  last  descr ipt ion it should  be clear t ha t  S~ 't is a cont inuous t ime r a n d o m  
walk t h a t  for each w E A / j u m p s  from y to y + w at  ra te  1. 

To de te rmine  the  behav io r  of the  dual  s ta r t ing  from more t h a n  one point ,  we note  
t h a t  it is cons t ruc ted  f rom a percolat ion s t ruc tu re  wi th  independen t  Poisson processes 
{U~ 'y : n >_ 1} for x , y  E Z d wi th  y - x E A/" at  which t ime  we draw an  arrow from 
(x, U,~ 'y) to (y, U,~ 'y) and  wri te  a 6 at  (x, U,~'Y). From the  definit ion it  is easy to see t ha t  
a "del ta-arrows" from z to y has  the  following effect 

s > 
X Y 

before after 
x y x y 
0 0 0 0 
1 0 0 1 
0 1 0 1 
1 1 0 1 

The  6 at  x makes  i t  vacant  while the arrow from x to y will make  y occupied if the re  was a 
part ic le  at  y or at  x. These  are the  t rans i t ions  of a coalcacing random walk. Part icles  move 
independen t ly  unt i l  they h i t  and  then  move together  after  tha t .  The  duali ty re la t ionship 
(3.3) between the  voter  model  and  coalescing r a n d o m  walks leads easily to the  resul ts  of 
Holley and  Liggett  (1975). These  conclusions are t rue qui te  general ly b u t  we will s t a te  t hem 
only for our  favori te  ne ighborhoods  {z : [[z[[p < r} wi th  r > 1. To make the  s t a t ement s  
here ma tch  Theorems  2A and  2B in Section 1, we rever t  to coordinate  nota t ion:  ~t(x)  = 1 
if and  only if x E ~t. 

T h e o r e m  3.1.  Clu~tering occurs in d <_ 2. T h a t  is, for any (0 and  x, y E Z a we have 

P ( ~ , ( x )  # ( , ( y ) )  ~ 0 as t --, oo 
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T h e o r e m  3.2. Let (0 denote the process starting from an initial state in which the events 
{(0~ = 1} are independent and have probabifity 0. In d >_ 3 as t ---* oo, ~0 =,. ( o ,  a 
translation invariant stationary distribution in which P(~oo(z) = 1) = 0. 

PROOF OF THEOREM 3.1. From our discussion of the dual it should be clear that  

P(r # ~,(u)) < P(S} ~'~ r s} ''~ 

since if the two sites x and y trace their opinions back to the same site at t ime 0 then 
r S~ y't) is a random walk they will certainly be equal at t ime t. Now the difference us - 

stopped when it hits O, and the random walk has jumps that  have mean 0 and finite 
variance. Such random walks are recurrent, and since ours is also an irreducible Markov 

chain, it will eventually hit O. Since 0 is an absorbing state for S~ *'t) - S~ u't) it follows 

that P(S} ~'t) 7s S~ y't)) ---* O and the proof is complete. [] 

R e m a r k .  The reader should not misinterpret Theorem 3.1 as saying that  the voter model 
is boring in d < 2. Cox and Griffeath (1986) have proved a number of interesting results 
about the clustering in d = 2, which is rather exotic since two dimensional random walk 
is just  barely recurrent. 

PROOF OF TtIEOREM 3.2. From the proof of (2.8) we see that  it is enough to prove the 
convergence of P(~t n B = 0) for each B. To treat these probabilities we observe that  

P( ( ,  f? B = O) = E{(1 - O) I~In'')l } 

since by duality there are no particles in B at t ime t if and only if none of the sites in ~}B,t) 

is occupied at t ime 0, an event with probability (1 - 0) I~B'~ To analyze the right hand 

side we note that  ~B,t) has the same distribution as ~ constructed from the percolation 

substructure that  has the directions of all the arrows reversed. Since ~B is a coalescing 

random walk, I~B[ is a decreasing function of t and has a limit. Since 0 _< (1 - O) 1~,81 _< 1 
it follows from the bounded convergence theorem that 

lim E{(1 - O) I~f'')l } exists 
t ~ o 0  

and the proof is complete. [] 

Since the ~0 are translation invariant (by (2.2)), it follows that  the limits ~o  are. 

P(~ e ~,~) = e ( s ? '  e ~0 ~ = e 

for all t so P(x  E ~ )  = 0. Holley and Liggett (1975) showed that  the ~ are spatially 
ergodic and give all the stationary distributions for the voter model. Tha t  is, all stationary 
distributions are a convex combination of the (distributions of the) ~ .  For proofs of this 
result see the original paper by Holley and Liggett (1975) or Chapter  V of Liggett (1985). 
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Using  dual i ty  we can  prove a convergence  t h e o r e m  due to  Har r i s  (1976) for a gen-  
eral  class of  p rocesses  t h a t  con ta ins  t he  con tac t  process  as a specia l  case. We beg in  by 
i n t r o d u c i n g  the  mode l s  we will consider .  

A d d i t i v e  p r o c e s s e s .  For  each  f ini te  A C Z d a n d  x E Z d we in t roduce  i n d e p e n d e n t  
Po i s son  processes  {T,~'A,n >_ 1} and  {u~,A,n >_ 1} wi th  ra tes  X(A) a n d  6(A). (To have a 
f ini te  r a n g e  in te rac t ion ,  we only  allow fini tely m a n y  of  t he  ra tes  to  be  nonzero . )  At  t imes  
T,~ 'A we d raw ar rows  f rom x + z to x for all z E A and  the re  will be  a b i r th  if some  site in 
z + A is occupied .  At  t imes  U,~ ,A we wr i t e  a 6 a t  x, d r aw ar rows  f rom x + z to x for all 
z E A, and  the re  will be  a d e a t h  at  z unless  some  po in t  in x + A is occupied .  T h e  process  
is t h e n  o b t a i n e d  f rom the  pe rco la t ion  s u b s t r u c t u r e  by us ing (3.1). In t he  new n o t a t i o n  our  
two e x a m p l e s  m a y  be  w r i t t e n  as ( the  ra tes  we do  no t  men t i on  are  0): 

T h e  c o n t a c t  p r o c e s s .  A(A) = X if A = {x} wi th  z E .iV'; 6(0) = 1. 

T h e  v o t e r  m o d e l .  6(A) = 1 if A = {x} wi th  z E A/'. 

I t  shou ld  be clear t h a t  for any add i t ive  process  t he  b i r t h  ra tes  are  increas ing  and  the  d e a t h  
ra tes  are  dec reas ing  so these  sys t ems  are  a t t r ac t ive .  To see tha t  add i t i ve  processes  are  a 
fair ly smal l  subc lass  of  t he  a t t r ac t i ve  models ,  we will now cons ider  

E x a m p l e  3 .3 .  N o n l i n e a r  C o n t a c t  P r o c e s s e s .  In these  s y s t e m s  the  flip ra tes  are  

co(x, ~) = 1 

c,(:~, 5) = b(l{u E .,v': ,:(x + y )  = 1}[) 
w h e r e  b(0) = O. To get  the  desi red d e a t h  ra tes  we set  6(0) = 1 and  6(A) = 0 o therwise .  
To see w h a t  b i r t h  r a tes  we can c rea te  we begin  wi th  the  special  case 

(i) d = 1, Af = { - 1 , 1 } .  In th is  s i t ua t ion  we m u s t  have 

A({I})  = A({--1})  = a I A({1, - -1})  = a2 

a n d  the  o t h e r  X(A) = 0, so 5(1) = al  + a2 and  b(2) = 2al + a2 which  is poss ib le  wi th  
a l ,  a2 _> 0 if a n d  only  if 

5(1) < b(2) < 2b(1) 

T h e  e x t r e m e  case 5(2) = 2b(1) is the  bas ic  con tac t  process ,  the  o t h e r  e x t r e m e  5(2) = 5(1) = 
b is ca l led  the  threshold contact process because  the  b i r th  ra te  is b if the re  is at  least  one  
o c c u p i e d  ne ighbor .  An  example  of  a s y s t e m  no t  covered by this  c o n s t r u c t i o n  is t he  sexual 
reproduction model which  has  b(1) = 0 and  b(2) = $. 

(ii) S u p p o s e  ].N'{ = 4 a n d  th ink  abou t  .N" = { - 2 , - 1 , 1 , 2 }  in d = 1 or  A/" = { z :  ]]zH1 = 1} 
in d = 2. ( T h e  g e o m e t r y  of  the  set  .N" does  no t  e n t e r  into the  decis ion as to w h e t h e r  or no t  
a s y s t e m  is addi t ive . )  In  this  case $ (A)  = a, if A C .hf wi th  IAI = i ( and  0 o the rwise )  so 

b(1) = al  + 3 a 2  + 3 a 3  + a 4  

b(2) = 2al  + 5a2 -{- 4a3 + a4 

b(3) = 3al  + 6a2 + 4aa + a4 

b(4) = 4al  + 6a2 + 4a3 + a4 
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To see the equation of b(2) say, note that  any two element subset of Af touches 2 of the 
singleton subsets of .N', all but one of the 6 two element subsets, all 4 of the three element 
subsets, and the four element subset. Subtracting the cquations gives 

b ( 4 )  - 5 ( 3 )  = a ,  

b ( 3 )  - b ( 2 )  = a 1 + a2 

5(2) - 5(1) -- g l  -~- 2a2 + a3 

b(1) - b(O) =- e l  + 3a2 + 3a3 + a4 

and taking differences again 

ai = b(4) - b(3) 

a 2  = ( b ( 3 )  - 5 ( 2 ) )  - ( 6 ( 4 )  - b ( 3 ) )  

a3 = (b(2) - b(1)) - 2(b(3) - b(2)) + (b(4) - b(3)) 

a ,  = ( ( 5 ( 1 )  - b ( 0 ) )  - 3 ( 5 ( 2 )  - 5 ( 1 ) )  + 3 ( 5 ( 3 )  - b ( 2 ) )  - ( 5 ( 4 )  - b ( 3 ) )  

The process is additive if and only if these quantities are nonnegative. These conditions 
are monotonicity and convexity properties of the sequence of birth rates b(i). A result 
for general neighborhoods can be found in Harris (1976), see (6.4) on page 184. The 
conclusions we would like the reader to draw from this computat ion are that  (i) the additive 
processes are a small subset of the at t ract ive processes but (ii) when we consider nonlinear 
contact processes with IHI = 4 additive processes are a four dimensional subset of the four 
dimensional set of models. 

H a r r i s  ~ c o n v e r g e n c e  t h e o r e m  for  a d d i t i v e  p r o c e s s e s .  Before getting started we 
need to introduce a technical condition. Let f ~ denote the process starting from a single 
particle at the origin. We say it  is irreducible if for any x and t > 0 P(x E i t )  > 0. Recall 
that  in Section 2, we let ~I denote the process starting from ~0 l = Z d and showed that  for 
any at t ract ive process f1 :=~ f ~ ,  a translation invariant stationary distribution. 

T h e o r e m  3.3. Suppose i t  is an irreducible additive process with 6(0) > 0. If 40 is 
translat ion invariant and assigns 0 probability to the empty configuration then i t  =r ~ 
as t ---* c~. 

C o r o l l a r y .  f ~  is the only translation invariant stationary distribution that  assigns 0 
probability to the empty  configuration. 

R e m a r k s .  The condition 6(0) = 0 eliminates the voter model for which the conclusion of 
Theorem 3.3 is always false. Our result is only for translation invariant initial distributions. 
With a lot more work one can prove a complete convergence theorem: 

T h e o r e m  3.4 Suppose it  is an irreducible additive process with ~5(0) > 0. Then for any 
A, 

~a =~ p(rA < oo),50 + P(r  j = oo)~L 
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where 60 denotes the pointmass on the emptyset and we are using ~ to denote its distri- 
bution. 

In words, if the process does not die out, then at large times it looks like the process 
s tar t ing from all l ' s .  This implies that all stationary distributions have the form 060 +(1  - 
0 ) ~ .  For the contact process, this result is due to Bezuidenhout and Grimmett  (1990). 
To prove this in the general case you will need to consult Bezuidenhout and Gray (1993). 

PROOF OF TIIEOREM 3.3. To begin we note that the duality equation (3.3) implies 

= P ( ~  # O) --* P('7 "B = co) 

as t ---* co. As in the proof of Theorem 3.2, the argument in (2.8) shows that it is enough 
to prove P(~t n B ~ O) ---, p(.?B = co). Half of this is very easy. By duality and the fact 
that ~0 C Z d 

P(~, n B :~ O) = P((o N ~I B'O r O) < p(§ > t) 

SO 

l i m s u p P ( ( ,  n B # O) < p(§ = co) 

To prove the other direction, we let to be the constant in (2.1) and observe that (3.3) 
implies 

P(~,+,o n B # O) = P(~,o N ~',,+,o) # O) 

To get the right hand side to converge to p(+B = co) we need to show that  when ~B,,+to) # 
O then it will intersect ~t0 with high probability. The first step in doing this is to show 

that when ~B,,+,0) # 0, it will contain a large number of points with high probability. To 
do this, let 

A = Z ]AI(A(A) + 6(A)) 
A 

be the rate at which an isolated particle gives birth to a new particle and let a = (1 - 
e-6(~ - ^  be a lower bound on the probability that  in one unit  of t ime an isolated particle 
is killed and does not give birth. Now for any K 

P(t < § < t + I) >_ c~Kp(0 < I~} B''+'o)] < K) 

To see this note that the events that each particle is killed by a 6 are independent,  and write 
the s ta tement  that no particle gives birth in terms of Poisson processes in the percolation 
substructure.  Since P(t < § <_ t + 1) ~ 0 as t --* co, and a K is a positive constant, it 
follows that 

(3.4) P(O < [~['"+*~ _< K)  ~ 0 

To complete the proof now it suffices to show 
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(3.5) L e m m a .  If e > 0 then we can pick K large enough so that  if IAI > K then 
P(~to gl A = 0) < 3e. 

For then it follows that  from (3.5) and (3.4) that  

~( B,t-4-to) 
l iminf  P (~ t0 t~oo  n ~t # O) > (1 - 3e)l i tm~fP(l~ u't+t~ ] ~  > Ix') 

> (1 - 3e)P('~ B > t) 

R e m a r k .  For the conclusion in (3.5) it is important  that  we let the process run for a 
positive amount of time. The initial configuration ~0 that  is 2Z with probability 1/2 and 
2Z + 1 with probability 1/2 is translation invariant but  P(~0 f3 {2 ,4 , . . .  ,2K})  = 1/2 for 
all K .  

PROOF OF (3.5): For this proof it is convenient to use the coordinate representation 
of the process, i.e., ~t(x) = 1 if x is occupied at t ime t and 0 otherwise. Let tt be 
the distribution of ~0 (i.e., the induced measure on {0, 1} s) and use Pe to denote the 
probabili ty law for (t when ~0 = ~. Our assumption of irreducibility and attractiveness 
imply that  P~(~to(X) = 1) > 0 unless ~ - 0, an event that  by assumption has probability 
0~ SO 

(3.6) For any e > 0 there is a p < 1 so that  

It({~ :pr > p}) ~r 

Here we need translation invariance to conclude that  the left hand side does not 
depend on x. The second ingredient is to note repeated use of HSlder's inequality gives 

E ( X I ' "  Xk) <_ (EIX~[) ~/k... (EIX~I) '/k 

which in turn implies 

(3.7) Let X ~ , . . . ,  Xk be random variables so that  0 _< Xi <_ 1 and P(Xi  > p) <_ e. Then 

E(X1 " " X k )  < pk + e 

Pick J so that  p /  _< e. Our proof of the next result explains why we chose the time 
to. The result is valid for any t ime t, see Holley (1972). 

(3.8) Given e > 0 and J ,  wecan  pick L so that i f B  C Z d with [B l = J and [ I x - y [ l ~  > 2L 
whenever x, y E B with x # y then 

P a o o r  o r  (3.8): First we compute the value of each ~to(Z) with x E B by using an 
independent copy of the percolation substructure P~. The second step is to combine 
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all these independent substructures to make a new one Pau by taking Tgn ,A and Ugh 'A 
from P ,  if and only if y + A C D(z ,L)  = {z : ]Ix - Zl[oo < L} and then using another 
independent percolation substructure P* to fill in the missing Poisson processes. Let R 
be the largest value of ilXlloo for a point in some set A with A(A) or 5(A) > O. R is the 
range of the interaction. If the cluster containing x in P ,  defined in the proof of (2.1) lies 
inside D(x, L - R) then it is identical with the cluster containing x in P~u and the values 
computed for ~t0 are the same. Since the states of x in the processes on P ,  are independent,  
it follows from the proof of (2.1) that  if L is large the random variables 1 - ~to(x) on P~n 
are equal with high probability to independent random variables and (3.8) follows. [] 

To complete the proof of (3.5) now, we observe that  

(3.9) If B C Z a with IBI = J and if IIx - yll~ > 2L whenever x, y e B with x 7~ y then 

P(~to(x) = 0 for all x C B)  = / p ( d ~ ) E r  l - I (1  - ~to(X)) 
, /  fEB 

< ~ + / , ( d e )  H E~(1 - ~to(X)) < 2e + pJ < 3e 
J xCB 

by (3.8), (3.6), (3.7), and the choice of J .  To get from the last result to the desired 
conclusion we let K = ( 4 L +  1)dJ and observe that  if [A I > K we can find a subset B with 
[B[ = J that  sastisfies the hypotheses of (3.9). [] 

E x a m p l e  3.4.  M u l t l t y p e  c o n t a c t  p roce s se s ,  defined in Section 1, have state space 
{0, 1,~ - 1} s where 0 indicates a vacant site and i > 0 indicates a site occupied by one 
plant of type i, and have flip rates that  are linear: 

co(z, ~) = ,5~(~) 

c~(~, ( )  = A a ~ ( x ,  ~) if ((~) = 0 

When Ai = A and 51 = 5, this process can be studied by using a duality that is a hybrid 
of the one for the contact process and for the voter model. The first step is to construct 
the process as we did the contact process. We introduce independent  Poisson processes 
{U,~,n > 1} with rate 6 and {T,~'Y,n > 1} with rate A for each x ,y  E Z d with y - x EAf.  
As before, we write a 8 at (x, U~) to indicate that a death will occur if x is occupied by a 
particle of either type, and we draw an arrow from (y, T,*'Y) to (x, T~ 'y) to indicate that if 
x is vacant and y is occupied then there will be a birth from y to x. 

If we define the dual process as in (3.2) then reasoning as before we see that x will 

be occupied at t ime t if and only if some site in ~}{,},t) is occupied in ~0. The dual 

for the mutl i type contact process is the set d}{x},0 plus an ordering of that  set with the 
interpretat ion that the type of x is that  of the first occupied site in the ordering. For 
example in the realization drawn in Figure 3.2, the ordering is 1 > 2 > - 2  

The first site in d({,},t) in this ordering is called the distinguished particle. Results of 
Neuhauser (1992) show that the movements of the distinguished particle are enough like 
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those of a random walk to conclude that in d < 2 the distinguished particles for the duals 
of two different sites will eventually be equal for large t. This is the key idea in proving 
Theorems 4C and 4D in Section 1. In the two type case, when 61 = 62 and A1 < Az we 
can augment the construction above with Poisson processes of arrows that only allow the 
births of 2's and an easy argument gives Theorem 4A. However such an approach will 
never give us Conjecture 4B. 
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4. A C o m p a r i s o n  T h e o r e m  

In this section we will introduce a comparison theorem that  is very useful in proving 
the existence of nontrivial translation invariant stationary distributions. At this point we 
have to ask for the reader's patience: the result given in Theorem 4.3 is powerful but you 
will need to see a few applications to understand how it works. 

Our general method for proving the existence of stationary distributions is to compare 
the process of interest with oriented percolation, so our first step is to introduce oriented 
percolation and state some of its basic properties, the proofs of which are hidden away in 
the appendix. Let 

s  e Z ~ : z + n i s e v e n ,  n>_0} 

and make /:o into a graph by drawing oriented edges from (x, n) to (x + I, n + 1) and 
from (x, n) to (= - 1, n + 1). Given random variables w(z,  n) that  indicate whether the 
sites are open (1) or closed (0), we say that (y, n) can be reached from (z, m) and write 
(x, rn) ~ (y, n) if there is a sequence of points x = x , , , , . . . ,  z ,  = y so that [xk - zk - l [  = 1 
for rn < k < n a n d w ( x k , k )  = 1 for m < k < n. In the standard oriented percolation 
model the variables w(x,  n) are independent,  but  in almost all cases our comparisons will 
introduce dependencies between the w(x,  n), so we need a more general set-up. We say that 
the w(x,  n) are " M  dependent with density at least 1 - 7 "  if whenever (x i ,n i ) ,  1 < i < I 
is a sequence with ]l(xi,ni) - (xj,nj)[]oo > M if i r j then 

(4 .1)  P ( ~ ( = , ,  h i )  = 0 for 1 < i < z)  _<_ 7 I 

Note: Classical M-dependence would require that the w(xi,n~) considered above are in- 
dependent.  However the probability in (4.1) is the only one we need to control and hence 
the only thing we assume. 

Given an initial condition W0 C 2Z = {= : (z ,0)  E/ :0},  we can define a process by 

w .  = { y :  ( z , 0 )  ~ (y , ,~)  for s o m e  = e W0}  

In words, the sites W,  are those that  are wet at t ime n. To keep the terminology straight, 
think of open sites as air spaces in a rock, and the sites in W,  as the ones that the fluid 
cart reach (and hence wet) at level n. We use W ~ to denote the process that  results when 
W ~ = {0} and we let 

Co = ( ( ~ , n ) :  ( 0 , 0 )  ~ (~,n)} 
be the set of all points in space-time that  can be reached by a path  from (0, 0). (When 
(0,0) is open Co = U,~(W ~ x {n}).) Co is called the cluster containing the origin. Figure 
4.1 shows a simulation of the independent oriented percolation process in which sites are 
open (indicated by black dots) with probability p = 0.6. Time goes up the page and lines 
connect the points of C,. 

When the cluster containing the origin is infinite, i.e., {[C0[ = oo} we say that perco- 
lation occurs. Our first result shows that  if the density of open sites is high enough then 
percolation occurs. All that  is important  about the upper bound is that  it is < 1 for small 
7 and converges to 0 as 7 -"* 0. 
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Figure 4.1 

T h e o r e m  4.1. If 3" _< 6 -4(2M+1)~ then 

P(]C0[ < oo) _< 5501/(~M+I)~ <_ 1/20 

In order to prove the existence of stationary distributions we need results about M 
dependent oriented percolation starting from the initial configuration W~' in which the 
events {z E W0P}, x E 2Z are independent and have probability p. We will sometimes 
call this a Bernoulli random set with denai~y p. Taking p --- 1 (i.e., all sites wet initially) 
corresponds to computing the upper invariant measure for oriented percolation, but for 
some of the proofs below we will need to allow p < 1. Note that the estimate on the lim inf 
is independent of p and is 1 minus the upper bound in Theorem 4.1. 

T h e o r e m  4.2. If p > 0 and 3' _< 6 -4(2M+1)~ then 

lim inf P(0 E Wff,) >_ 1 - 55 3' I/(2M+1)2 > 19/20 
n ~ o o  

The last result shows that if the density of open sites in oriented percolation is suf- 
ficiently high and if we start with from a Bernoulli random set with density p then the 
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probabili ty 0 is wet at time t does not go to 0. This result will allow us to prove in a 
number  of situations that if we start from a suitably chosen translat ion invariant initial 
distribution, then the density of sites of type i does not go to 0 and then using (2.7) or 
(2.11) that a nontrivial translat ion invariant stat ionary distr ibution exists. The missing 
link is provided by Theorem 4.3, which gives general conditions that guarantee a process 
dominates oriented percolation. This is the result we warned the reader about at the 
beginning of the section - it does not look pretty but  it is very useful in a number of 
situations. 

C o m p a r i s o n  A s s u m p t i o n s .  We suppose given the following ingredients: a translation 
invariant finite range process (t : Z d ---* {0, 1 , . . .  n - 1} that is constructed from the graph- 
ical representation given in Section 2, an integer L, and a collection H of configurations 
determined by the values of ( on I -L ,  L]d with the following property: 

if ( E H then there is an event Ge measurable with respect to the graphical representation 
in [-koL, koL] d x [0,j0T] and with P(G~) > (1 - 7) so that if ~0 = ~ then on G~, ~T lies 
in eY2LeIH and in o'_2LeIH. 

Here (cr~)(x) = {(z + y )  denotes the translat ion (or shift) of ( by y and cruH = {au( :  ( E 
H}. If we let M = max{j0, k0} then the space time regions 

Tim,,, = (m2Le,,nT) + {[-koL, koL] d x [0,j0T]} 

that  correspond to points ( m , n ) , ( m ' , n ' )  C/3 with II(m,n) - ( m ' , ~ ' ) l l ~  > M are disjoint. 

For a concrete instance of the comparison assumptions consider the applications we 
will make to the threshold contact process in Section 5 and to the basic contact process 
in Section 7. In both cases ~ -- 2, and H is the set of configurations with at least K l ' s  
in [-L,L] d, k0 = 4, and j0 = 1. In words, we show that if there is a "pile" of at least K 
particles in I - L ,  L] a then with high probability there will be piles of at least K particles 
in -2Lel + [ -L ,  L] d and in 2Lex + [ -L ,  L]d at time T, and the event that guarantees this 
is measurable with respect to the graphical representation in [ -4L,4L]  d x [0, T]. Figure 
4.2 below gives a picture of the event. 

Using words inspired by the contact process example, our comparison assumptions 
say that if we have a "pile of particles" in I , ,  = m2Lel + [-L, L] d at time nT (i.e., 
( ,T E a,,,2g,lH) then with high probability we will have piles of particles in I,n-1 and 
in I ,n - i  at time (n + 1)T, and the event that guarantees this is measurable with respect 
to the graphical representation in 7~ . . . .  If we think of drawing arrows from (m, n) to 
(m + 1 ,n  + 1) and to (m - 1 ,n  + 1) whenever the good event in TOm,,, occurs then the 
connection with oriented percolation should be clear. 
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Figure 4.2 

To formulate our theorem we let X,, = {m : (m, n) E s ~.T E a,-,,2L., H}. Intuitively, 
m E X .  if there is a pile of particles in Im at time nT 

T h e o r e m  4.3. If the comparison assumptions hold then we can define random variables 
w(x, n) so that Xn dominates an M dependent oriented percolation process with initial 
configuration Iu = X0 and density at least 1 - % i.e., X ,  D W, for all n. 

Again the details are hidden away in the appendix so that they can be digested after the 
reader has seen that this is a useful result. 

Our first indication that Theorems 4.1-4.3 are useful is a simple proof of a general 
result about the existence of stationary distributions, which contains as a special case a 
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n u m b e r  of earlier results.  To formulate  our  resul t  we will consider a fixed set of increasing 
b i r t h  ra tes  Cl(X, ~) and introduce dea th  rates  co(x, ~) - e. We say t ha t  the b i r t h  rates  are 
robust if the re  is an  e0 > 0 so t ha t  there  is a t r ans la t ion  invar iant  s t a t iona ry  d is t r ibut ion  
wi th  a posi t ive densi ty of l ' s  for e < e0. Our  next  result  gives a sufficient condi t ion for 
robustness .  It  may look a l i t t le s t range  at  first bu t  it has  been formula ted  to be easy to 
prove and  to apply. 

T h e o r e m  4.4 .  Let ~L,p denote  the process wi th  no deaths ,  i.e., e = 0, s ta r t ing  from 

~0~'P(x) = 1 for x E [ - L , L ]  ~, = 0 otherwise  and  modified so t h a t  no  b i r ths  axe allowed 
outs ide  [ -pL ,  pL] a. Suppose tha t  we can pick p > 3 so tha t  for any 6 > 0 we can pick L 
and  T < oo so t ha t  

P(~L'P(x) = 1 for all z E [-3L,3L]  d) >_ 1 - 6 

T h e n  the  b i r t h  ra tes  are robust  (and  fertile). 

Ignoring the  undef ined te rm in parentheses ,  this  theorem says t h a t  if, in the  absence 
of deaths ,  the  b i r t h  mechan ism can tr iple the  size of a cube [ - L ,  L] ~ wi th  high probabili ty,  
t hen  there  is a nontr ivia l  t rans la t ion  invar iant  s t a t iona ry  d is t r ibut ion  when  the  dea th  ra te  
Co(X, ~) - e is small. The  requirement  tha t  this  can be done when  the  model is "modified 
so t h a t  no b i r ths  are allowed outside [ - p L ,  pL] d'' is a technical condi t ion  t h a t  is usually 
satisfied wi th  p --- 3. 

PROOF OF TIIEOREM 4.4:  If we let K = p, J -- 1 and  H = {~ : ~(x) -- 1 for all x E 
[ - L ,  L]a}. then  the  hypotheses  of Theorem 4.4 are t ha t  the compar ison assumpt ions  hold 
for the  sys tem wi th  e -= 0. However, once L and  T axe fixed it follows t ha t  for e _< e0, 
the  good event  G~ for the  one configurat ion in H has  probabi l i ty  at  least  1 - 26, since the 
p robabi l i ty  a dea th  occurs  at  some site in the  space t ime box [ - 3 L ,  3L] d x [0, 7"] is less 
t h a n  6 when  e0 is sufficiently small. 

To cons t ruc t  our  s t a t ionary  dis t r ibut ion,  we consider the process ~ s ta r t ing  from 
~0~(x) = 1 for all x. In this  case X0 = 2Z so using Theorems 4.3 and  4.2 wi th  p = 1, it 
follows t ha t  if e ~ e0 then  

l imin f  P((1T(0 ) = 1) >_ 19/20 
n ~ o o .  

Using (2.7) now it follows t h a t  there  is a nontr iv ia l  s t a t ionary  dis t r ibut ion.  [--] 

We will now give three  examples to shows t ha t  is easy to check the condi t ions of 
Theo rem 4.4. 

C o r o l l a r y  4 .5 .  If we fix A = 1 in the contac t  process wi th  ne ighborhood  .Af = {x : 
I[x[Ip _< r} where r >_ 1 then  there is a nont r iv ia l  s ta t ionary  d is t r ibu t ion  when the  dea th  
ra te  6 < 60. 
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PROOF: Take p = 3 and L = 1. Since l ' s  can never flip to 0 it is easy to see that  

lim P(~L'P(X) = 1 for all x E [-3L,3L] a) = 1 
T ~ o o  

so the hypotheses of Theorem 4.4 are satisfied. [] 

E x a m p l e  4.1.  O n e  D i m e n s i o n a l  C o u n t i n g  R u l e s .  Suppose d = 1, .hf = {z : lz[ _< k}, 
and let 

n l ( x , ( ) = l { z E A / ' : ~ ( x + z ) = l } l  

be the number of neighbors of x that are 1. We call a birth rate cl(x,~) a counting rule 
if it only depends on the number of l ' s  in the neighborhood, i.e., cl(x,~) = b(n~(x,~)) 
Clearly a counting rule bir th rate is increasing if and only if j --~ b(j) is nondecreasing. 
Let j0 = min{j  : b i > 0} and call j0 the order of the bir th rate. The next result is due to 
Mityugin. 

C o r o l l a r y  4.6.  When d = 1 and Af = {j : [Jl -< k}, increasing counting rule birth rates 
are robust if and only if their order j0 < k. 

PROOF: If j0 > k then a string of at least k + 1 consecutive O's can never flip back to 
1 even if all the other sites are 1. If co(x, 4) ~- e > 0 then such a string will eventually 
be created and grow to cover the whole line, so there cannot be a nontrivial stationary 
distribution. 

If J0 < k, we take p = 3 and choose L so that  2L + 1 > k. When e = 0 the l ' s  never 
flip back to 0. The 0 at L + I  has k neighbors that  are 1 and hence flips to 1 at rate 
b(k) > b(jo) > 0. Once the 0 at L + 1 flips to 1, the 0 at L + 2 will flip to 1 at rate b(k), so 

TlirnP(iL'P(z) = 1 for all x E [ -3L,3L])  = 1 

and the hypotheses of Theorem 4.4 are satisfied. [] 

Things get more interesting in two dimensions. 

E x a m p l e  4.2.  T w o  D i m e n s i o n a l  T h r e s h o l d  B i r t h  R a t e s .  Suppose d = 2 and 
Af = {z : [Izl[or = 1}, i.e., in addition to the four nearest neighbors we use the four 
diagonally adjacent points: 

( - 1 , 1 )  (0,1) (1,1) } 
N = ( - 1 , 0 )  (1,0) 

( - 1 , - 1 )  ( 0 , - 1 )  ( 1 , - 1 )  

This is sometimes called the Moore neighborhood in honor of one of the pioneers in the 
field of cellular automata.  Let hi(X, ~) = [{j E A f  : ~(x) = 1} be the number of neighbors 
in state 1 and let 

1 i fnl(X,~)~_O 
c l ( x , ~ ) =  0 i f n l ( x , ~ ) < 8  
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This is called a threshold 0 since the birth rate 1 if there are at least 0 l ' s  in the neigh- 
borhood then the birth rate is 1, and otherwise it is 0. From Theorem 4.4 we get easily 
that  

C o r o l l a r y  4.7.  Two dimensional threshold birth rates for the Moore neighborhood in two 
dimension are robust if 8 < 3. 

PROOF: Take p = 3, L = 1, and draw a picture. 

4 3 2 3 4  
3 1 1 1 3  
2 1 1 1 2  
3 1 1 1 3  
4 3 2 3 4  

We start  with the 3 x 3 square of l ' s  occupied by l 's .  If 0 _< 3 then the four sites marked 
with 2's have birth rate 1 and will eventually become occupied. Once they do, the eight 
sites marked 3 have three occupied neighbors and will become occupied. Finally the four 
sites marked 4 will become occupied. At this point we have shown how the process can fill 
up [ -2 ,  2] 2. Repeating the argument, it is easy to see tha~ 

lim P(~L'P(x) = 1 for all x E [--3,312) = 1 
T ~ o o  

the hypothesis of Theorem 4.4 is satisfied and the result follows. [] 

In the last argument it was important  that  we used the Moore neighborhood, instead 
of the usual nearest neighbors {z : Izl = 1}. If we use the nearest neighbors then, no 
mat te r  how big L, is if we start  with [ - L , L ]  ~ occupied nothing happens since any site 
outside I - L ,  L] 2 has at most one occupied neighbor. 

0 0 0 0 0 
0 0 z 0 0 
1 i I 1 1 

Since births are impossible outside any rectangle containing the l ' s  in the initial config- 
uration, it is clear that  the threshold two birth rate for the nearest neighbors dies out 
whenever the death rate is co(x, ~) - e > 0. That  is, if there are only finitely many l ' s  in 
~o, then 

P(( ,  r 0) ~ 0 as t ---* c~ 

Here ~t -- 0 is short for ~,(z) = 0 for all x. Note that the all O's state is absorbing so 
t ~ P(~t ~ 0) is decreasing. The opposite of dies out is survives. That  is, if L is large 
enough and we start  with l ' s  on I - L ,  L] d then 

lim P(~t ~ O) > 0  as t ---* oc 
f ~ O o  
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We say that a birth rate is fertile if it survives when co(x,{) = e and e < e0. As the 
parenthetical phrase in Theorem 4.4 indicates, our sufficient conditions for robustness are 
also sufficient for fertility. 

Having two notions of what it means for bir th rates to be large enough, fertility and 
robustness, it is natural  ask what is the relationship between these two notions: 

1. Results of Bezuidenhout and Gray imply that increasing birth rates that are fertile are 
also robust, but  the two notions are not equivalent. 

2. As we have shown the two dimensional threshold two system using the nearest neighbors 
is not  fertile. However, Bramson and Gray (1991) have shown that it is robust. Intuitively 
the process cannot grow outside of a rectangle but  it is good at filling in holes that develop 
so it can have a nontrivial  stat ionary distribution when e is small. 

In the case of the Moore neighborhood in two dimensions, it is easy to see that the 
threshold 4 system is not fertile but  techniques of Bramson and Gray (1991) can be used to 
show that  it is robust. The threshold 5 system has finite configurations of O's that  cannot 
be filled in 

0 0 
0 0 0 0 
0 0 0 0 

0 0 

so an easy argument shows that it is not  robust. An interesting open problem is to look 
at the neighborhoods Af = {z :  ]lzl[p _< r} (or even just  take p = o0) and find the largest 
thresholds for which the threshold O birth rule on that neighborhood is robust (resp. 
fertile). 

F u r t h e r  r e s u l t s .  There are many other results proving the existence of phase transi- 
tions for processes with state space {0, 1} s. Gray and Griffeath (1982) proved a "stability 
theorem for attractive nearest neighbor spin systems on Z" by the contour method, a re- 
sult which was reproved by the methods of this section by Bramson and Durret t  (1988). 
Gray (1987) proved results for the one dimensional majority vote model. Chen (1992) used 
ideas from bootstrap percolation to study a model with sexual reproduction. In general 
the numerical bounds on critical values from this method are terrible but  Durret t  (1992c) 
has shown that in some cases you can get good bounds. 

Bramson and Neuhanser (I993) studied perturbations of one dimensional cellular au- 
tomata.  Their  results are exciting because they apply to a number of examples that are 
not attractive. An important  special case is that  if one considers the addition mod 2 
automaton:  

r/,+l(X ) = (~, (z  - 1) + ~ , (z  + 1)) (mod 2) 

and adds spontaneous deaths at a small rate e then there is a stat ionary distribution close 
to product measure with density 1/2. Figure 4.3 shows the cellular automaton starting 
from a single 1 at 0, which generates a discrete version of the Sierpinski gasket. Figure 4.4 
shows what happens when we introduce spontaneous deaths at rate e = 0.01. Note that 
there are many more occupied sites in the model with extra deaths. 
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Figure 4.3. Pascal's triangle mod 2 

Figure 4.4. Plus spontaneous deaths with probability 0.01 



147 

5. T h r e s h o l d  M o d e l s  

We begin by recalling a definition given in Section 1. 

E x a m p l e  5.1. T h e  t h r e s h o l d  v o t e r  m o d e l .  The state space is {0, 1} s and the flip 
rates are 

1 if ~ (x ,~ )  >_ 0 
ci(x,~)= 0 i f n i ( x , ~ ) < O  

Here, as usual, ni(x, ~) = I{Y E A/" : ~(x + y) = i}] is the number of neighbors of type i and 
we assume .N" = {y:  I]Yl]p -< r} for some 1 <__ p < oa and r > 1. 

Our first goal is to show that  the behavior of the threshold 1 voter model is much 
different from that  of the basic voter model. We begin with one case in which the behavior 
is the same. 

T h e o r e m  5.1. Suppose d = 1 and A/ = { -1 ,1} .  Then the threshold 1 voter model 
clusters start ing from any translation invariant initial state ~0. Tha t  is, for any x r y we 
have P(~,(x) r ~,(y)) ~ O. 

PROOF: To motivate the proof, take a look at Figure 5.1 which shows a simulation of the 
system on {0,1 . . . . .  719} with periodic boundary conditions (i.e., 0 and 719 are neighbors). 
The initial configuration at the top of the page is product measure with density 1/2. As 
we go down the page from time 0 at the top to t ime 690 at the bot tom,  it should be clear 
that  intervals of sites with the same opinion can be destroyed but  cannot be created. Thus 
the number of intervals per unit distance will go to 0, i.e., the system clusters. 

To turn the last paragraph into a proof, we define a process on 1/2 + Z so that 

( , (z)  = I~,(x - 1/2) - ~,(x + 1/2)] 

In words, there is a 1 at z if and only if ~ ( x  - 1/2) r ~,(x + 1/2). ~ is called the boundary 
proce88 o]~ since the l ' s  mark the boundaries between clusters of the voters with the same 
opinion. To see how ~ evolves consider the following picture 

,~ 1 1 0 1 1 0 0 
(~ 0 1 1 0 1 0 

x 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 

Isolated l ' s  in ~ like the one at 5.5 perform random walks: the 1 at 5 flips to 0 at rate 
one and when this occurs the boundary jumps  from 5.5 to 4.5; similarly, the 0 at 6 flips 
to 1 at rate one and when this occurs the boundary jumps from 5.5 to 6.5. When a 1 is 
adjacent to another 1 (like those at 2.5 and 3.5) they annihilate at rate 1, since when the 
0 at 3 flips to 1 the two boundaries disappear. 

Let u(t) = P(E,t(x) = 1), which is independent of x since we have supposed that  ~0 is 
t ranslat ion invariant. Since l ' s  can be destroyed in ~ but cannot be created, it should not 
be surprising that u(t) ---* 0 as t ~ c~. To prove this, we note that  

du 
(5.1) dt - P(~t(x)= I , 4 t ( x - 1 ) =  I ) -  P(r I,4t(x + I )=  I) 
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Figure 5.1. One dimensional nearest neighbor threshold voter model. 
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This can be proved by using ~tT t f  = T t L f  or more intuitively by noting that  the right 
hand side gives the two ways that  a 1 at x can be destroyed. The  terms that  involve a 1 
moving to x or moving away from x cancel. 

Translation invariazace implies that  the right hand side of (5.1) is 

-2v( r  = 1, ( , ( -0 .5)  = 1) = - v ( t )  

The first step in proving u(t) ---* 0 is to show that  if t >_ 1 

(5.2) v(t) >_ g ( u ( t  - 1)) where g(=) > 0 when = > 0 

To do this we note that  if u(s) > 1 /L  where L is an integer then 

1 
(5.3) P(~s has at least two l ' s  in ( - L , L ] )  > 2L - 1 

for otherwise we get a contradiction 

2L - 2 1 4L - 2 
2 < 2Lu(*) = E E (s(x) < 1.2L----'---'~ + 2L.  2L'----~- 1 = 2L 1 

zE(-L,L] 

- 2  

Now if we have an initial configuration in which there are at least two l ' s  in ( - L ,  L] there is 
a probabili ty > eL > 0 that  no particles will enter ( - L ,  L] before t ime 1, the two particles 
closest to 0 will move to 0.5 and -0 .5 ,  and none of the other particles in ( - L ,  L] will move. 
Combining this observation with (5.3) proves (5.2). To complete the proof of Theorem 5.1 
now, we observe that  u(t) is decreasing so u(t) ---+ u(oo) > 0 as ~ oc. If u(oo) > 0 then 
for all t we have 

du 
d-7 = - v ( t )  <__ -g(u(oo))  < 0 

so integrating we find u(t) --* - c o  a contradiction. O 

R e m a r k .  The  argument above applies to any one dimensional nearest  neighbor system in 
which ci(x, 4) = f ( n i ( x ,  4)) with f (0)  = 0, the so-called nonlinear vo~er models. In the case 
of the basic voter model, i.e., f (2)  = 2f(1)  the boundary process is an annihilafing random 
walk. That  is, particles perform independent random walks until they hit at which t ime 
the two particles annihilate. Theorem 3.1 shows that  for the basic voter  model clustering 
occurs for any initial configuration. Theorem 4 in Cox and Durre t t  shows that  for the 
threshold voter  model clustering occurs for any initial configuration. We 

Conjecture 5.1. In any one dimensional nearest neighbor nonlinear voter model cluster- 
ing occurs for any initial configuration. 

Our next  goal is to show that  coexistence is possible in the threshold 1 voter model 
even in one dimension. To do this we will use some ideas from Liggett (1993) to compare 
with 
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E x a m p l e  5.2. T h e  t h r e s h o l d  c o n t a c t  p rocess .  The state space is {0, 1} s and the flip 
rates are 

{ A if nl(x,~) ) O 
cl(z,~)= 0 i f n l ( x , ~ ) < O  

c0(x, ~) = 1 

Here cl(x, ~) is the same as in the threshold voter model but we have set c0(z, () - 1. 

(5.4) L e m m a .  If the threshold 0 contact process with A = 1 has a nontrivial stationary 
distribution then so does the threshold 0 voter model. 

PROOF: To construct the stationary distribution we will start  the threshold voter model 
from ul/2, product measure with density 1/2, and compare with the threshold contact 

process ~" to show that  clustering does not occur. 
The  first step in doing this is to show that  the upper invariant measure 7r for the 

threshold voter model with A = 1 is stochastically smaller than ul/2 To do this we compare 
the threshold contact process ~ with the "independent flips process" r h in which ci(x, ~) =- 
1, i.e., each site flips at rate 1 independently of the others. Since sites in r 7 flip to 1 at 
rate one independent of what is around them, if we start  ~ and 7/ with ~0 = 7/o having 
distribution rr and construct the two processes using the recipe in Section 2 then ~t(x) < 
yt(x) for all t and x. This is true since l ' s  flip to 0 at rate 1 in both processes while O's 
flip to 1 at rate 1 always in r/, but  at rate 1 in ~ only if there are enough 1 neighbors. On 
the graphical representation then we find that  each flip preserves the inequality and the 
result can be proved like (2.5). 

Now since the sites in r/flip independently it is easy to see that  as t ---+ c~ r h converges 
to vii :. The inequality ~t(x) < qt(x) and the fact that  (~t always has distribution 7r imply 
that  r is stochastically smaller than ul/2. To prove this we observe that  if f is increasing 
and depends on only finitely many coordinates then Ef(r < Ef(rl,) and since any such 
f is bounded and continuous letting t ---* c~ gives 

/ f(~)dTr <_ / f(~)dTr 

checking the definition we gave in (2.11). 
Now the result of Holley in the remark (2.12) implies that  we can define ~0 with 

distribution ul/2 and ~0 with distribution 7r, so that that ~0(x) _> ff0(x) for all x. Since 
sites in ff flip to 0 at rate one, while those in ~ only flip to 0 at rate one when there are 
enough 0 neighbors, and the rates of flipping to 1 are the same, if we construct the two 
processes using the recipe in Section 2 then ~t(x) ~ ~t(x) for all x and t. To construct a 
s tat ionary distribution for ~, let/zt  be the distribution of ~t, form the Cesaro average 

fl T = "~ ['It d t  

and let t2oo be the limit of a weakly convergent subsequence. It follows from (2.13) that #oo 
is a stat ionary distribution. To see that it concentrates on configurations with infinitely 
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many l ' s  we note that  the inequality ~ ( x )  > ~t(x) implies that  p ~  is larger than the 
upper invariant measure 7r, which is spatially ergodic by (2.15) and hence concentrates 
on configurations with infinitely many l 's .  To see that  Poo concentrates on configurations 
with infinitely many O's, note that  the initial distribution Vl/~ and the threshold voter 
model are symmetric  under the interchange of O's and l ' s ,  so the limit measure/2oo is as 
well. 

Liggett (1993) has shown 

T h e o r e m  5.2. When d - -  1 and Af = { - 2 , - 1 , 1 , 2 }  or d = 2 and Af = {y:  [[Y[[1 = 1} the 
threshold 1 contact process with A = 1 has a nontrivial stationary distribution. 

Since enlarging the neighborhood 2r makes it easier for the threshold 1 contact process to 
have a nontrivial stationary distribution, it follows from (5.4) and Theorem 5.2 that  

T h e o r e m  5.3. SupposeAY = {z : HzHp < r} with 1 < p < cx~ and r > 1. With  the 
exception of the one dimensional nearest neighbor case, the threshold one voter model 
always has a nontrivial stationary distribution. 

By another comparison argument Liggett shows that  to prove Theorem 5.3 it is enough 
to consider the case d = 1 and A / =  { - 2 , - 1 , 1 , 2 }  - map Z 2 to Z by (x ,y)  ~ x + 2y and 
notice that  the image of the two dimensional threshold contact process dominates the one 
dimensional one. A simulation of the case d = 1 and A z = { - 2 ,  - 1 , 1 ,  2} given in Figure 
5.2, which parallels the one for the nearest neighbor case in Figure 5.1, makes it clear 
that  Theorem 5.3 is true. However, the proof of Theorem 5.2 (which implies 5.3) requires 
a tricky generalization of the result Holley and Liggett (1978) that  the one dimensional 
nearest neighbor contact process has ~c -< 2. Therefore we content ourselves to prove less 
(and more). 

T h e o r e m  5.4. Suppose A / =  {y : Hy[Ip -< r} with r > 1. For any threshold 8 if r > ro(d, 8) 
then there is a nontrivial s tat ionary distribution for threshold 8 contact process with A = 1 
and hence also for the threshold 8 voter model. 

PROOF: We will use the comparison theorem from Section 4. To do this, it is convenient 
to suppose that  ~ has been constructed from a percolation substructure with rate 1 Poisson 
processes {T,~,n > 1} at which times we draw arrows from y + x to x for all y s Af, and 
rate 1 Poisson processes {U~,n > 1} at which times we write a ~ at x. 

E x e r c i s e .  This shows that  the threshold contact process can be constructed from a 
percolation substructure defined in Section 3. What  is the dual process? 

Suppose r = (2d + 2)L. To check the comparison assumptions, let H be the config- 
urations that  have at least O l ' s  in I - L ,  L] a. Let 7 > 0. If T is small enough then the 
probabili ty that U~ > T for all of our 0 l 's ,  is e -~  > 1 - 7/5.  Now since r = (2d + 2)L, 
the neighborhood of each site in I1 = [L, 3L] x [ - L ,  L] d-1 contains all the sites in [ - L ,  L] a 
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Figure 5.2. One dimensional threshold voter model, range two. 
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(distances are largest for the L ~ norm and for the points (3L, L . . . . .  L) and ( - L ,  L , . . . ,  L)). 
Now as long as there are at least O l ' s  in [ -L ,  L] a, each site in [L, 3L] will flip to 1 at rate 1. 
If r and hence L is sufficiently large then with probability at least 1 - 7 / 5  at least 8 sites will 
flip to 1 by time T. A similar remark applies to the sites in I_~ = [ - 3 L , - L ]  x [ -L ,L]  a - l ,  
and our first estimate implies that in each case the probability one of our 8 l ' s  flips back 
to 0 by time T is _< ")'/5. 

The results in the last paragraph show that if we start with 8 l ' s  in I0 = [-L,L] d 
then with probability at least 1 - 3' there will be at least 8 l ' s  in I i  and in I-1 at time T. 
Our good event is measurable with respect to the graphical representation in [ -3L ,  3L] a 
so we have checked the comparison assumptions of Section 4 with k0 = 3 and jo = 1. If 
we start  the threshold contact process with all sites occupied then Theorem 4.3 implies 
our process dominates an oriented percolation starting with all sites wet, so Theorem 4.2 
shows 

limin~ P(O e X~.) >__ 19/20 

Now 0 E X2,  means that there are at least 8 l ' s  in [ -L ,L]  a at time 2nT and ~2,T is 
t ranslat ion invariant so it follows that 

1 Z P(~2,T(X) = 1) l iminf  P(~2.T(O) = 1) = lim inf 
. . . . . .  (2L + 1) a zE[_L,L] d 

1 . 8 .  19 
> (2L + 1) - - - - - - - - - z  ~ > 0 

To pass from this result to the whole sequence we notice that since a 1 survives for t units 
of t ime with probability c -t ,  P(~2nT+t(O) = 1) _> e- tP(~2,T(0)  = 1) . Combined with the 
last result this implies 

liTm~f ~ P(~,(O) = 1)ds > 0 

and it follows from (2.13) that there is a nontrivial stat ionary distribution. {::] 

The last result shows that if the threshold is small compared to the number of neigh- 
bors then coexistence occurs in the threshold voter model, i.e. there is a stationary dis- 
t r ibut ion that  concentrates on configurations with infinitely l ' s  and infinitely many O's. 
Our next result due to Durrett  and Steif (1993) shows that if the threshold is too large 
the system fizate~, i.e., with probability one each site changes its state only finitely many 
times. 

T h e o r e m  5.5. Suppose Af = {y : [}Y[[p -< r}. If 8 > ([Af[ - 1)/2 then the system fixates. 

The borderline case in this result, 8 = ([Af] + 1)/2 (IAf[ is always odd), is called the majority 
vote proee~, since you change your mind if you are in the minority in your neighborhood. 

Pr toov:  Our proof is based on an idea of Grannan  and Swindle. Let ~5=,~(t) be 1 if 
(~(x) r (,(y), 0 otherwise, and define the energy at time t to be 

z , . ~ : y -  z 6 , M  
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where e > 0 is to be chosen later.  Since 0 < go < 0% we can prove Theorem 5.5 by showing 

(5.5) If 8 > (I.N'I - 1) /2  and  e is small  then  a flip at  x decreases the  energy by at least 

3'(=) > o. 

To prove (5.5) we note  t ha t  if a = I{Y ~ ~ + ~ r  ~,(Y) # ~,(=)}1 and  N = s u p { l l = l l =  : = ~ ~r 
t hen  the  drop in energy due to a flip at  x is a t  least  

(5.6) e-=,"=,[= [ - , N  _ e ' N ( I H I _ I _ o ) ]  

since (i) the  site x now agrees wi th  the a sites it used to disagree wi th  and  now disagrees 
wi th  the  o ther  I.N'I - 1 - a neighbors and  (ii) even in the  worst ease all the  points  in 
{y E x + .hf: it(Y) # i t (x)}  have I[x + YI[2 -< 2llxll2 + U and  the  o ther  points  y E x + 24" 
have Ilx + yll2 > 2llzll2 - N.  In order  for a flip to occur we must  have a > 0 > (].A/'] - 1)/2 
and  hence  I.N'I - 1 - ce < c~. Since the last  two number  axe integers smaller  t han  I.N'l, (5.5) 
follows from (5.6). [] 

R e f i n e m e n t s  o f  T h e o r e m  5.4.  Before we s t a t ed  Theorem 5.5, we said "if the threshold  is 
small  compared  to the  n u m b e r  of neighbors"  then  the threshold  contact  process with  A = 1 
has  a nontr iv ia l  s t a t ionary  d is t r ibut ion  (and  hence there  is coexistence in the  threshold 
voter  model) .  W h a t  we would like to concent ra te  on now is: 

How large can 0 be when ~he range ia r ? 

T h e  comparison theorem involves obnoxiously smal l  constants  (when M = 1 Theorems  4.1 
and  4.2 require 3" < 6-a~176 �9 So we cannot  hope to get a nontr iv ia l  resul t  for r = 10, or 
even r = 10,000, bu t  it is not  unreasonable  to look at how 0 behaves  asymptot ica l ly  with  
r. The  results  were are abou t  to give foreshadow the developments  in the next  section, 
bu t  axe not  needed for them,  or for any subsequent  section, and  can be skipped wi thout  
lOSS, 

Here and  unti l  the  end  of the section we suppose At" = { z :  Ilzl[p < r}, let Y = I.N'I, 
and  we invest igate what  happens  for fixed p as r --+ oo First  let 's  see what  we get when 
we follow the  proof  of Theorem 5.4. 

(5.7) There  is a % > 0 so tha t  if 0 <_ % v / N  and  if r (and  hence N )  is large then  the 
threshold  8 contac t  process with  A = 1 has  a nontr ivia l  t rans la t ion  invar iant  s ta t ionary  
d is t r ibut ion.  

PROOF: Taking T = 3'/50 gives e - eT  = e -'~/~ >_ I - 3'/5. Having fixed the  t ime, the 
n u m b e r  of sites in [L, 3L] • [ - L ,  L] a-x t ha t  flip to 1 by t ime T has  a b inomial  d is t r ibut ion  
wi th  pa ramete r s  n = ( 2 L +  1) d a n d p  = 1 - e  - T  >__ 3"/60 when 0 is large. If we let Z 
be the  n u m b e r  of sites in [L,3L] • [ -L ,L]  a-1 t h a t  flip to I by t ime  T then  Z has  mean  
_> (2L + 1)~3'/60 and  variance < (2L + 1)d"//60 so if we set (2L + 1)a3'/60 = 20 (sticklers for 
detai ls  should  take the smallest  integer L so t ha t  _> holds) Chebyshev ' s  inequali ty implies 
t ha t  

P ( Z  < 0) < (2L + 1)a3"/60 < 2 ~ 0 
- - 0 ~ - 0 
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as 0 ~ co. Now 82 = (2L + 1)d7/12 > cpN since r = (2d + 2)L and the result follows, t3 

By choosing a more intelligent block event we can get 

(5.8) There is a ep > O so that if 0 _< cpN and if r (and hence N)  is large then the threshold 
0 contact process with A = 1 has a nontrivial translation invariant s tat ionary distribution. 

PROOF: Let 8 = ( 2 L +  1)d/5 and let H be the configurations that  have at least (2L + 1)d/4 
l ' s  in [-L,L] d. If we pick r = ( 2 d +  2)L then 8 _> cpN for all r and as long as there are at 
least 0 l ' s  in [-L,L] d the number of l ' s  in [-L,L] d (or in [L,3L] x [-L,L]d-1), behaves 
like a Markov chain that  jumps k --* k + 1 at rate (2L + 1) d - k and k ---* k - 1 at rate k. 
Now when k < (2L + 1)d/3 this chain jumps at rate (2L + 1) d moving up with probability 
at least 2/3 and down with probability at most 1/3. A comparison with asymmetric  simple 
random walk shows 

(i) with high probability it will take a long t ime (i.e., at least c c(2L+I)J for some c > 0) for 
the total  number of l ' s  in [-L,L] d to go below 0 

(ii) we can pick a large t ime T (that is independent of L) so that  if L is large then with 
high probability the number of l ' s  in [L, 3L] • [-L,L] d-1 and in [ - 3 L , - L ]  x [-L,L] d-~ 
at t ime T will be at least (2L + 1)d/4 

We leave it to the reader to fill in the missing details since we know how to prove a sharp 
result: 

(5.9) Let c < 1/4. If 8 < cN and if r (and hence N)  is large then the threshold 0 contact 
process with A = 1 has a nontrivial translation invariant s tat ionary distribution. 
Let c > 1/4. If 8 > cN and if r (and hence N)  is large then the threshold 0 contact process 
with A -- 1 has only the trivial stationary distribution. 

The proof of the first conclusion is closely related to that  of Theorem 6.1. For details and 
the proof of the converse see Durret t  (1992). 
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6. C y c l i c  M o d e l s  

As already suggested by our remarks on ref inements  in the last  section, we can con- 
siderably close the gap between Theorems 5.4 and  5.5 if we look at systems with large 
range. The  proof  of our ma in  result,  Theorem 6.1, is no harder  for a class of models tha t  
includes a mult icolor version of the threshold  voter  model, so we formulate  the result  in 
that generality. 

E x a m p l e  6 .1 .  C y c l i c  C o l o r  M o d e l .  The  s ta tes  of each site are {0, 1 , . . . ,  ~ - 1} and  
the  flip ra tes  are 

{ 1  i f { ( z ) = i - l a n d n i ( x , { ) k 0  
ci(x,{) = - 0 otherwise 

Here and  th roughou t  this  section, a r i themtic  is done modulo  ~ so 0 - 1 = ,~ - 1. W h e n  
= 2 the last  definition reduces to the threshold voter  model. The  dynamics  here were 

invented by David Griffeath as a general izat ion of the voter  model. The  cyclic color model 
is closely re la ted to the hypercycle of evolut ionary biology. See Eigen and  Schuster (1979) 
and  Boerli jst  and  Hogeweg (1991). 

Our  ma in  result  also applies to two other  examples 

E x a m p l e  6.2 .  G r e e n b e r g  H a s t i n g s  M o d e l .  The  s ta tes  of each site are {0, 1 , . . . ,  ~ -  1} 
and  the  flip rates  are 

c l (x ,~ )  = 1 i f~ ( z )=Oandnl (x ,~ )>O 
ci(x,{) = 1 if ~(z) = i -  1 

In words, we need an  above threshold number  of l ' s  to make the t rans i t ion  from 0 --4 1 
but  then  the rest of the t ransi t ions  happen  at ra te  1. When  ~ = 2 this reduces to the 
threshold  contact  process with  A = 1. 

E x a m p l e  6 .3 .  H o s t  P a r a s l t o i d  I n t e r a c t i o n s .  Insect parasi toids  lay their  eggs on or 
in the  bodies of o ther  a r thropods ,  and the paras i to id  larvae kill thei r  host  as they feed 
on it. Hassell, Comins,  and  May (1991) in t roduced a cellular a u t o m a t o n  model for this 
system. The  corresponding part icle system model has nine s ta tes  {0, 1 , . . .  8} and  makes 
t rans i t ions  as follows: 

c l (x ,~ )  = 1 i f~ (x )=Oandnl (x ,~)>O 
c4(x,~) = 1 if ~(x) = 3 and  ns(x,~) >_ 0 
c i (x , { )=l  i f i T k l , 4 a n d ( ( x ) = i - 1  

As they explain on page 256, the first t rans i t ion  corresponds to colonization of empty  sites 
(s ta te  0) by the  host,  the second to a ma tu re  paras i to id  (s ta te  5) colonizing a m a t u r e  host  
( s ta te  3), and  the others  to the aging a n d / o r  dea th  of host  and parasi toid.  

To indicate  wha t  common features of the last  three  models are needed to apply The-  
orem 6.1, we say tha t  ~ is a cyclic model if the s ta tes  of each site are { 0 , 1 , . . . ,  ~ - 1} and  
makes t ransi t ions  as follows: 

ci(x,~) = 1 if ~(x) = i and  ng(,)(x,() >_ Oi 
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Here g(i) E {0, 1 , . . . ,  ~ - 1} and  we set 0i = 0 if the t rans i t ion  happens  at  ra te  1 indepen- 
dent  of the  s ta tes  of the  neighbors.  Let 0 = maxl  01. 

T h e o r e m  6.1.  Let e > 0 and suppose 0 _< (1 - e)lN'[/2~. If r >__ R, then there is a 
s t a t ionary  d is t r ibu t ion  close to the uniform product  measure.  

Recall t ha t  we suppose N" = {y : [Ivllp ~ r )  and  tha t  the uniform product  measure  is the 
one in which the  coordinates  are independent  and  have P({(z) = i) = 1/~. W h e n  ~ = 2 
this  says t h a t  for thresholds  alN" [ with  a < 1/4  there is coexistence for large r. (This  result  
was s ta ted  in (5.9).) In contras t  Theorem 5.4 says t ha t  when a > 1 /2  the system fixates 
for any r. We 

C o n j e c t u r e  6 .1 .  W h e n  0 = alJV" [ in the  threshold  voter  model  and  1/4  < a < 1/2,  
c luster ing occurs  for large r. 

We will explain our reasons after we give the proof. Theorem 6.1 concentrates  on the 
behavior  for large range. For results  about  the one dimensional  cyclic color model, see 
Bramson  and  Griffeath (1987) (1989), or for a t r ea tmen t  of the corresponding cellular 
au toma ton ,  see Fisch (1990a), (1990b), (1991). 

PROOF IN d = 1: Let a = 0/[A/'[. By assumpt ion  a _< (1 - e)/2~. P ick /3  e (O, e/4] so tha t  
B = 1//3 is an  integer, pick p < a < 1 /n  so t ha t  (1 - 2/3)p >_ (1 - e) /~ ,  then pick r large 
enough so t ha t  

2r 
- -  > ( I  - ~)/~ 

(1 -/3)p. 2r + 1 - 

Let K = /3r and  note  t ha t  BK = r. For e a c h m  C Z, w e c a l l [ r n K , ( m + l ) K )  a house. 
We say t ha t  a house is good at t ime 0 if it contains at  least aK sites in each of the s tates  
0, 1 , . . . ,  x - 1. We say t ha t  the interval [ - r ,  r )  is good at t ime 0 if all the  houses it contains 
are good. This  will be our  event H when we apply Theorem 4.3. 

We have chosen our  constants  so t ha t  as long as each house in [ - r , r )  is reaaonable 
i.e., contains  at  least pK sites of each color, each site in [ - r  - K, r + K )  will see at  least 
8 sites of each color. To check this, note  t ha t  the  worst case occurs when  x E [r , r  + K) ,  
bu t  even in this  case all the  sites in [K, r)  are in its ne ighborhood and  if all of the houses 
in [K, r)  are reasonable  then  the number  of sites of a given color in x ' s  ne ighborhood will 
be at  least 

p ( 1 - / 3 )  2_.~._r . 2 r + l  
p ( r  - I 0  = pr (1  -- /3)  = 2 2 r  + 1 

> (1 - e) . (>+1)>o 
- -  2 ~ ;  

So as long as each house in [ - r , r )  s tays reasonable,  the sites in [ - r  - K, r + I f )  flip 
from i to i + 1 at  ra te  1 (here (~ - 1) + 1 = O) and  hence behave like independent  Markov 
chains. These  "single site" Markov chains are irreducible on {0, 1 , . . . ,  ~ - 1} and  hence 
converge to the equi l ibirum dis t r ibut ion,  which assigns probabif i ty  1 /~  to each state.  Let 
pt(i,j) be the  t rans i t ion  probabi l i ty  of the single site Markov chain, let d C (e, I /K) and  
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pick S so that  ps(0, i) >__ a '  for all i. Let T = 2 B S .  By using a simple large deviations 
result (see (6.2) below) it is easy to show that with high probability 

(a) All the houses in [ - r ,  r) stay reasonable until time T. 

(b) The houses [r + (j  - 1)K, r + j K )  and [ - r  - j K ,  - r  - ( j  - 1)K) will be good at 
time j S  and stay reasonable to time T. 

(c) All the houses in It, 3r) and [ - 3 r , - r )  will be good at time T. 

Figure 6.1 gives a picture of this expansion. The gray shaded area gives the space time 
region occupied by reasonable houses. 

--3*" 
3W" 

- - r  1P 

Figure 6.1 

Since our good event is measurable with respect to the Poisson processes in [ -3r ,  3r) x 
[0, T) we have verified the comparison assumptions with L = r, K = 3, J = 1. If we start 
our cyclic system from uniform product measure then X0 is a Bernoulli set with density 
p > 0. (p is close to 1 if L is large but we do not need that.) Applying Theorems 4.3 and 
4.2 now it follows that 

lim inf P(0 6 X , )  >_ 19/20 
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Arguing as in the end of the proof of Theorem 5.4 it is easy to improve this conclusion to 

linm_inf P(  all ~ colors are in [ - r ,  r)) > 0 

and it follows from (2.13) that there is anontrivial  stationary distribution. By using an 
improvement of Theorem 4.2 given in the appendix (see Theorem A.3) 

(6.1) L e m m a .  If p > 0 and 3' _< 6 -4(2M+1)2 then 

lim inf P ( { - 2 K , . . .  ,2K} VI W~n r 0) > 1 - eK 

where e g --* 0 as K ---* oo 

we can show that the stationary distribution we constructed concentrates on configurations 
in which there are infinitely many sites in each state. ((6.1) shows directly that  with 
probabili ty one each state appears somewhere in the configuration, bu t  the distribution is 
s tat ionary so if there were only finitely many sites in some state we would have positive 
probabili ty of having 0 in that state a contradiction.) 

By the arguments in the last paragraph it is enough to show that  (a), (b), and (c) 
hold. The first step is proving the large deviations estimate. 

(6.2) L e m m a .  Let  X1 . . . .  X n  be i.i.d, with P ( X i  = 1) = p, P ( X i  = O) = 1 - p. Then 

p(xx + . . .  + x n  _< n ( p  - ~))  < e x p ( - ~ n / 2 ) .  

R e m a r k .  This result and its proof are s tandard but  we need to know that the right hand 
side does not depend on p. 

Proof: If a > 0 then 

P(X1  + . . .  + X n  < n ( p -  e))e - ~ " ( ' - 0  < (pe -~  + (1 - p))n 

Taking log's, dividing by n, rearranging and then using log(1 + x) < x we have 

1 log P ( X l  + . . .  + X,,  <_ n(p - e)) <_ a(p  - ,) + log(1 + p(e -~  - 1)) 
n 

_< ~ ( p  - ~) + p ( e  - ~  - 1) = - ~  + p ( e  - ~  - 1 + ~) 

Now e -~' - 1 + a = a2/2!  - a3/3! + . . .  ~ a 2 / 2  for 0 < a < 1, so taking a = e and using 
p <: 1 gives 

P(X, + . . .  + X,,  < n ( p -  e)) < exp( -e2n /2)  

and completes the proof of (6.2). r-I 

Let Zt be a copy of the single site Markov chain, let p t ( i , j )  = Pi (Zt  = j ) ,  and observe 
that p,(i ,  j )  = p,(O, j - i ) .  Until  the first timc some house in [ - r ,  r) becomes unreasonable, 
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the sites in each house in [ - r ,  r) behave like independent copies of the single site Markov 
chain so we consider a collection of K = rfl independent copies of Zt and let Ui be the 
number of "sites" in state i at time 0. The expected number of sites in state j at t ime t is 
wj(t)  = ~ i v i p t ( i , j ) .  To prove (a) we apply (6.2) with n = vi _> a K  to the sites that start 
in s tate i to see that  with probability at least 1 - e x p ( - e 2 a K / 2 ) ,  at least vi(pt(i, j )  - e) of 
the sites that  start  in state i will be in state j at t ime t. Taking e = (a - /9)  and summing 
over i gives 

~ v i ( p t ( i , j )  - e) > a K  ~-~p, ( i , j )  - Ke  > (e - e )K = p K  
i i 

since E v i  = K and E i p , ( i , j )  = 7]~pt(O,j - i) = 1. So with probability at least 1 - 
exp(-e2~rK/2) ,  at least p K  sites will be in state j at t ime t. 

The  last bound is for a fixed time but it is easy to extend it to cover the interval [0, T]. 
Let 6 = e2a/2, let J = exp(SK/2) ,  and tk = k / J  for 1 < k < JT.  The probability that 
the number of sites in state i is less than pig at some time tk is at most 

n J T  e x p ( - e  2aK/2)  = aT e x p ( - r K / 2 )  

The  probabili ty that  two sites flip in some interval ( tk - l ,  tk) is at most 

J T ( ~ ' ) J - ~  <_ K 3 T e x p ( - r K / 2 ) .  

When we never have two flips in any interval, the state at each t E (tk-1, tk) agrees with 
the state at one of the two endpoints. Combining the last two estimates we have that  the 
probabili ty a collection of K independent single site chains becomes unreasonable before 
t ime T 

< (~ + K a ) T e x p ( - r K / 2 )  

Since the sites in [ - r ,  r) behave like independent single site chains until some house becomes 
unreasonable, the probability of the event in (a) is at least 

1 - 2B(~ + K a ) T e x p ( - r K / 2 )  

The proof that the house It, r + It') will be good at t ime S is similar but simpler. If 
all the houses in I - r ,  r) stay reasonable until t ime S then each site in It, r + K)  always 
sees an above threshold number of sites of each color and flips to the next color at rate 1. 
We again consider a collection of It" independent single site chains but  this t ime starting 
from an arbitrary initial configuration. The  choice of S guarantees that  p s ( i , j )  > a' so 
applying (6.2) to It' i.i.d, random variables with p = a '  we conclude that  the fraction of 
sites in state j is at least a K  with probability at least 1 - ~ e x p ( - ( a '  - cr)2K/2). Once we 
know that  with high probability [r, r + It') is good at t ime S and all the houses in [ - r ,  r) 
are reasonable at all times in [0, T], we can repeat the proof of (a) to conclude that  the 
house [r, r + It') stays reasonable at all times in IS, T]. This verifies (b) when j = 1 but by 
continuing in the same way we can prove the result for 2 < j < 2B. Now (b) implies that  



161 

all the houses in [ - 3 r  + K, 3r - K)  are reasonable at t ime T - S we can repeat the proof 
that  the house [r, r + K)  is good at t ime S to conclude that  all the houses in [ -3r ,  3r) are 
good at t ime T and the proof is complete. [] 

PROOF IN d > 1: Let Bp(x,r) = {y : I1= - yl lp  < r } .  The key to the proof is the following 
fact, which basically says that  large bails are almost fiat. 

(6.3) L e m m a .  Suppose A < 1/2. There are constants Ro, 6, and Mo, so tha~ i / .M > M0 
and R >__ Ro then/'or x E B2(O, (R + 6)M). 

IB2(O, RM) o Bp(x,M)l >__ ),lBp(x,M)l 

PROOF: In one dimension we can t a k e / t o  = 1 and 6 = 1 - 2A. Turning to dimensions 
d > 1, let Q = {x E R d : IIxl[p < 1} and let q be its volume. To prove the result it is 
convenient to scale space by 1/M and translate so that  x /M sits at the origin. Any d - 1 
dimensional hyperplane through the origin divides Q into two pieces with volume q/2. For 
i = 1,2,3 let A < A3 < A~ < A1 < 1/2. By continuity, there is a 6 > 0 so that  i f a  
hyperplane passes within a distance 6 of the origin then it divides Q into two pieces each 
of which has volume at least qA1. Another application of continuity shows that  if R0 is 
large and D = B2(y, r) with r ~ R0 and B2(y, r) VI B2(0, A) ~ 0 then the volume of D VI Q 
is at least q~2. 

The  last step is to argue that  if M is large then the lattice behaves like the "continuum 
limit" considered above. Pick e > 0 so that  if D = B2(y, r) is as above then the volume of 
B2(y, r - e) N (1 - e)Q is always larger than qA3. Then pick M0 so that  1/Mo < e and if 
M ~ M0 then IBp(0, M)[/qM ~ < Aa/A. Let X = (Za/M) N D V~ Q. The  first part  of the 
choice of M0 implies that  if M > M0 then 

B~(~, r - ~) n Q(1 - ~) c u ~ x  �9 + ~--~, 

so M-alXI >_ qA3 >_ AIBv(O,M)I M-a, by the second part  of the choice of M0 and the 
proof is complete. [] 

To use this lemma we pick A < 1/2 and p < 1/~ so that  Ap > a, use (6.3) to pick R0, 
A, M0, and then pick M1 >_ M0 so that  

(6.4) ApKa[Bp(O,M~)I > aIBp(O,K(MI +d)) [  holds for large g 

Let a E (p, 1/~)  and suppose that  the range of interaction is r = K(M~ + d). For z E Z a 
let 

I: = [z,K, (z, + 1)K) x . . -  x [zaK, (za + 1 ) g )  

and call I ,  a house. We say that a house is good at t ime 0 if it contains at least aK d sites 
of each color. We say that ~0 is good if all the houses I : ,  z E B2(0, RoM1) are good. This 
will be our event H when we apply Theorem 4.3. 



162 

We have set things up so that  as long as each house in B2(O, RoM1) is reasonable, 
i.e. contains at least pK d sites of each color, each site in each house in B2(0, (R0 + 5)M1 ) 
sees at least 0 sites of each color. To check this note if z E B2(0,(R0 + 5)M1) then all 
the sites in any house I~  with w E B2(O, RoM1) fq Bp(z,M1) are within p-norm distance 
r = (M1 +d)K of each site in Iz. (To see note that  I[z-wllp <_ M1 so IIzK-wgHp <_ M~K 
and if we use 1 to denote a vector of l ' s  then I[zK - (w + 1)grip < (M1 + d)K, with p = 1 
being the worst case.) By (6.3) 

IB~(0,RoM,) n Bp(x,M~)l > AIBp(x, M1)I 

Multiplying the last inequality by pK a and using the choice of M1 and K in (6.4) that 

pKa]B2(O, RoMa ) N Bp(x, M, )[ _> ApKalB~,(x, M)I 

> alBp(x , K(M, + d)l = 0 

Pick B so that  B5 > 2R0 and hence 

Bp(x, (Ro + BS)M,) D Bp(x,3RoM1) 

Let a '  e (a, 1/x) ,  choose 
B~(O, (Ro + jS)) (D is for 
one dimensional proof we can show that  with high probability 

(a) All the houses in Do stay reasonable until t ime T. 

(b) The  houses in Aj will be good at t ime j S  and stay reasonable to time T. 

(c) All the houses in DB D B2(0,3R0) will be good at t ime T. 

and the desired result follows from an application of Theorems 4.3 and 4.2 as before. 

S so that  ps(O,i) >_ a' for a l l i ,  and let T = BS. Let Dj = 
disk) and Aj = Dj - Dj-1 (A is for annulus). By repeating the 

We will now give the promised explanation of the conjecture for the case x = 2. First 
consider the situation in d = 1 and for ease of exposition call the two states "yellow" and 
"blue". As our proof shows if we have a sufficiently large interval of sites in which two 
colors occur with approximately equal frequency then the distribution of colors in this 
region will quickly converge to a product measure with density 1/2 and the region will 
expand, no mat ter  what it encounters outside. For the region to expand we need 0 = alAZ I 
with a < 1/4 for if a > 1/4 and all sites in [r, 2r) are yellow then the random region cannot 
expand since the site at r will have about r / 2  < a(2r + 1) blue sites in its neighborhood. 
Applying the same reasoning to yellow sites in x e [br, r), who have about (2 - b)r/2 blue 
sites in their neighborhood, we see that if (2 - b)/2 < 2a, i.e. b > 2 - 4a then the yellow 
sites in [br, r)  will not flip to blue but since a < 1/2 the blue sites will flip to yellow at rate 
one. 

Similar reasoning applies to the system in d > 1 with 1/4 < a < 1/2 and shows that 
a large enough ball of yellow sites will expand through a random region. The trouble with 
turning this into a proof is that we cannot guarantee that the blob will always find itself in 
competion with a random region. Indeed in a deterministic version of the threshold voter 
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model in d = 1 (see Durret t  and Steif (1993)) this naive picture is not correct since there 
are "blockades" that  in some circumstances will stop the advance of blobs. However, we 
believe that  this will not happen in random systems or in d > 1. In support  of this claim, 
we note that  Andjel, Mountford, and Liggett (1992) have shown that  clustering occurs in 
d = 1 when Af = { - k , . . . ,  k} and 8 = k. The important  special property of this example 
is that  if an interval of l ' s  (or O's) is long enough only the site on either end can flip. 
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7. Long Range Limits 

In the  last  section, we saw tha t  the  cyclic color model  and  Greenberg  Hastings models 
simplified considerably when the range of in teract ion was large. In this  section we show 
tha t  the contact  process also simplifies in this way. 

E x a m p l e  7.1 .  T h e  b a s i c  c o n t a c t  p r o c e s s .  As usual  the ne ighborhood is .IV" = {x : 
Hzl[p _< r}. We will write the  contact  process as a set valued process wi th  the s ta te  = the 
set of sites occupied by part icles and  formulate the dynamics  as follows: 

(i) Each  part ic le  dies at  ra te  1, and  gives b i r th  at  ra te /3 .  

(ii) A part ic le  born  at  x is sent to a site y chosen at r a n d o m  from x + Af. 

(iii) If y is vacant,  it becomes occupied. If y is already occupied the  b i r t h  has  no effect. 

If r is large and  the  contac t  process s tar ts  from a single occupied site then  at least unt i l  
the  n u m b e r  of particles is a significant fract ion of ]Af], the  contact  process will behave like 
a branching random walk, i.e., the  process tha t  obeys (i) and  (ii) bu t  allows any number  
of part icles per  site. 

The  to ta l  number  of particles at  t ime t in a b ranching  r a n d o m  walk is a branching 
process - a Markov chain Zt in which t ransi t ions  from k to k + 1 occur at  ra te  k/3 and 
t r ans i t ions  k to k -  1 occur at  ra te  k. Let Ty = inf{t  : Zt = y} and  use P ,  to denote  
the  law of the  b ranch ing  process with  Z0 = z. Well known proper t ies  of the  exponent ia l  
d i s t r ibu t ion  imply t ha t  

# 
Pk(Tk+l < Tk-1) = f o r  k > 0 

/ 3 + 1  

so Zt is a t ime change of an  asymmetr ic  r a n d o m  walk Sn tha t ,  when  k > 0, makes 
t rans i t ions  k ~ k + 1 wi th  probabi l i ty /3 / ( /3  + 1) and  k --~ k - 1 wi th  probabi l i ty  1/(/3 + 1) 
and  has  0 as an  absorbing state,  i.e., once Sn = 0 we will have Sm = 0 for all m > n. 
Using this  observat ion and  well known formulas for simple r a n d o m  walk it follows tha t  

PI(T0 < c x ~ ) =  ~ 1  if/3_< 1 
1//3 if # > 1 k 

so the  crit ical value of/3 for the survival of the b ranch ing  process is 1. 
The  ma in  result  in this  section is tha t  as the range r ~ oo the  crit ical value for survival 

of the  contact  process converges to tha t  of the b ranch ing  process. Let r ~ = inf{t  : ~0 = O} 
where ~0 denotes  the  contact  process s ta r t ing  from a single part icle at  the origin, i.e., 
~o = {0}. Let/3~ = inf{/3 : P(T ~ = oo) > 0}. 

T h e o r e m  7.1.  As r -4 c~, fl~ -+ 1 and if ~ > 1 

# 
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R e m a r k .  Schonmann  and  Vares (1986) have shown tha t  if we consider the basic contact  
process in d dimensions wi th  A/" = {z : ]lzll~ = 1} and  we let ~ = 2dA then  the  conclusions 
of Theo rem 7.1 and  (7.18) below hold. 

PROOF: To begin  we note  t ha t  we can construct  the contac t  process from a b ranch ing  
r a n d o m  walk by suppressing b i r ths  onto occupied sites. So we can define the  contact  
process and  the  b ranch ing  r a n d o m  walk on the  same space so t h a t  the  branching  r andom 
walk always has  more part icles t han  the  contaact  process, and  it follows t ha t  13c > 1 for all 
r. To prove the  rest  of the  resul t  we note  t ha t  taking A = Z d and  B = {0} in the duali ty 
equa t ion  (5.3) gives 

P(~I n {0} # O) : p(~0 n z d # O) = P ( r  ~ > t) 

Let t ing  t ---+ c~ we have 

(7.1) P ( 0  E ~ )  = P(T ~ = cr 

So to prove Theo rem 8.1 it suffices to show tha t  

(7.2) If fl > 1 then  P ( r  ~ = oo) --+ (fl - 1) / f l  

for this  implies tha t  l imsupr~o~  tic < 1. To prove (8.2) we scale space by dividing by r and  
consider the  contact  process on z d / r  to facil i tate taking the l imit  r ---+ cr Our  approach 
will be  to use the compar ison theorem,  so we let Ik = k2Lel  + [ - L , L ]  d and  consider a 
modif icat ion of the  contact  process ~t in which b i r ths  are not  allowed outside ( - 4 L ,  4L)  d. 
The  two key ingredients  in the  proof  are 

(7.3) Let 6 > 0. If we pick L large, set T = L 2, and  pick K large then  for r > r0, ~T will 
have  at  least  K particles i n / 1  and  in I - l  wi th  probabi l i ty  at  least  1 - 6 whenever  ~0 has 

at  least  K part icles in I0 

(7.4) Consider  the process s t a r t ing  from G ~ = {0}. If we pick S large then  for r > r l  >_ r0, 
~ will have at  least  K part icles in I0 wi th  wi th  probabi l i ty  at  least  ((fl - 1)/f l)  - 

Once this  is done (7.2) follows by using Theorem 4.3 to compare  

X n {?Yl : o : I~S+.T n I . ,  I > K }  

with  a one-dependen t  or iented percolat ion wi th  densi ty > 1 - 6 and  Theorem 4.1 to 
conclude t ha t  the cluster  conta in ing (0,0) in the  percolat ion model  will be infinite wi th  
probabi l i ty  at  least 1 - 5561/9. For these two facts imply tha t  

P ( r  ~ = cr _> fl - 1 _ ~ _ 5561/9 
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PROOF OF (7.3): The starting point is the observation that  if we let r ---* oo then the 
contact process o n  Zd/r converges to a branching random walk r h in which 

(i) Each particle dies at rate 1, and gives birth at rate ft. 

(ii) A particle born at x is sent to a point y chosen at random from {y:  I[g - z[[p _< 1}. 

This should be intutively clear since if we start  with one particle at 0, fix T and let r -+ oo 
then the probability of a collision (birth onto an occupied site) by time T goes to 0 as 
r --~ oo, and the displacements of the individual particles converge to a uniform distribution 
on  { y :  IIYlIp --- 1} .  

We will prove the convergence of the contact process on Zd/r to the branching random 
walk later (see the "continuity argument" below). We have introduced this result now 
to motivate the first step of the proof, which is to prove the analogue of (7.3) for the 
branching random walk qt, which is given in (7.12) below. Let rl~ denote the branching 
random walk start ing from r/~ = {x}. To leave room for the limit r -+ eo we consider f/~ a 
modification of 'I t  in which particles that  land outside ( - 4 L  + 1,4L - 1) a are killed. Let 
re(t, x, A) = E[0~ n A[ be the mean number of particles in A at t ime t for the modified 
branching random walk start ing with a single particle at x. We claim that  

(7.5) m(t ,x ,A)  = e(Z-mP(l?d• e A) 

where l~ [  is a random walk that starts at x, jumps at rate fl, has jumps  that  are uniform 
on {y:  IIyll, --- 1}, and is kined when it lands outside ( - 4 L + 1 , 4 L - l )  d. To check this claim 
note that  both  sides of (7.5) satisfy the same differential equation: if A C ( - 4 L +  1 , 4 L - 1 )  ~ 
then 

dm(t,dtZ, A) _ re(t, x, A) + / re(t, x, dy)u(A - y) 

where A -  y = {x - y :  x E A} and v is the uniform probability measure on {y:  [[y[[p _< 1}. 
Let I{ = 2Let + [ - L  + 1, L - 1] d, i.e. /1 shrunk by a little bit. Donsker's theorem 

implies that  if T = L 2 and x /L  ---+ 0 E [ -1 ,  1] a 

(7.6) P(I?V:~ e I',) --+ r  

where r  = Pe(Bt E [ -4 ,4]  d for t < 1, B1 e 2el + [ -1 ,  1] d) and Bt is a constant multiple 
of d-dimensional Brownian motion. r  > 0 and is continuous, so a simple argument 
(suppose not and extract  a convergent subsequence) shows 

l iminf  [ inf P ( I ~ ,  E I / ) ]  > inf r  > o. (7.7) 
L--~o LzeI-L,LI ~ J - 0G[-I,]I" 

It follows from (7.5)-(7.7) that  we can pick L large enough so that  

(7.8) inf El0 ~. Cl I[[ >_ 2. 
zeI--L,Ll" 

Let 0 A denote the modified branching random walk with ~A = A. (7.8) implies 

(7.9) E]O A n I'1] >_ 2]A] 
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while an obvious comparison and a well known fact about branching processes (see Athreya 
and Ney (1972) for this and other facts about branching processes we will use) impfies 

(7.1o) var(O~ n I',) <_ EIO~ n z;I ~ <_ E M ,  I ~ = CT < o0 

Combining the last two conclusions and using Chebyshev's inequality it follows that if 
A C [-L,L] d has I A l = K t h e n  

(7.11) 
var(I2T A N I~1) Ksup~ var(12~ n I{I) < CT 

P( IoAnI I I<K)<- -  ( - ~ 2 - I ~  <- K 2 - K -  

From the last result it follows that 

(7.12) I f6  > 0 and K is large then for any A C [-L,L] d with IAI = K. 

P(Io A n I11 < K) _< ~/lo 

C o n t i n u i t y  A r g u m e n t .  (7.12) shows that  if A C I0 has IAI = K then with high 
probabili ty 0T A will have at least K particles in I-1 and in I i .  The  next step is to prove 
the corresponding result for the contact process. To avoid some technicalities we will give 
the details only for the case in which N" = {z : I[z]loo < r} and then indicate the extension 
to p < cr in a remark after the proof. 

Let ~A be a modification of the contact process with ~A = A in which births outside 
( - 4 L ,  4L) d are not allowed. We begin by observing that  the number of births up to time t 
in the contact process, V,, is dominated by a branching process ~ in which births occur at 
ra te /3  and deaths occur at rate 0. If [A] = K then El), = Ke ~t < oo, so our comparison 
and Chebyshev's  inequality imply 

(7.13) 
Ke ~T 

P(VT > r '/3) <_ P(l)T > r'/3) <-- ~ --* 0 

since T is fixed and r ~ oo. 
Let GI = {Vt <_ rl/3}. Here G is for good event and the subscript indicates it is the 

first of several we will consider. When G1 occurs, the probability of having a birth land 
on an occupied site (a "collision") is 

r i /3 
(7.14) < r 1 / 3 -  ~ 0 

- ( 2 r  + 1) d 

since there are at most r ' /a  births and even if all the particles are in {x :  Ilxll~ ~ 1} (on 
Zd/r) each birth has probability at most rl/a/(2r + 1) d of landing on an occupied site. 
Let G2 be the event that  there are no collisions by time t. 

To deal with the spatial location of particles, we will create a coupling of the displace- 
ments of the particles in the branching random walk to those of particles in the contact 
process. To couple the displacements we observe that  if U is uniform on {y : Ilvllo~ -< 1} 
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and 7r~(x) is the closest point in Z/r a to x (with some convention for breaking ties) then 
U ~ = ~r.(U(1 + 1/2r))  is uniform on Af/r. 

Now if the Ui are the displacements of particles in the branching random walk, we will 
use the U[ for the displacements in the contact process. When our good events G1 and G2 
occur, we have G3 = all of the points in the contact process ~A are within r'/3/r (in [I lion) 
of their counterparts  in the branching process A r h . Passing to the t runcated processes and 
noting that  the branching particles are required to stay in ( - 4 L  + 1, 4 L - 1 )  ~t for 0 < s < T, 
while the contact process particles are required to stay in (-4L,4L) d, it follows that  on 
G3 we have ]~a gl Ial >_ ]~/A f'l I~[ Combining the last observation with (7.12) gives (7.3). [] 

R e m a r k .  If p < oo then U ~ = 7r~((1 + 1/2r)U) is not uniform on .hf/r  but  is within C/r 
of uniform in the total variation norm. In the last paragraph of the proof we then have 
P([[U~-  V/[[or > 1/r) < C/r, which since there are at most r ~/3 transitions on G~, is good 
enough for the proof. 

PROOF OF (7.4): By the continuity argument it is enough to show that we can pick S 
so that  q~ will have at least K particles in I0 with probabili ty at least ((fl - 1)/]3) - $/2. 
However, this follows from 

(7.16) If g/oo is the event that  the branching process does not die out, then for any L > 0 
and K < oc, 

p([~0 n [-L, LI~I < K, aoo) -'* 0 

Indeed as Asmussen and Kaplan (1976) have shown (see Theorem 2 on p. 5) 

(7.17) There is a constant a > 0 so that 

(2L + 1) ~ 
V/~e-(~- ' ) t l r ] t  0 FI [-L,L] d ---* W .  (2~ra2)d/2 

where W = limt~oo e-(Z-Utl~t~ I > 0 a.s. on ~oo 

This completes the proof of (7.4) and hence of (7.2). [] 

The  argument just  used on the long range contact process can also be applied to 

E x a m p l e  7.2. S u c c e s i o n a l  d y n a m i c s .  We suppose that  the set of states at each site 
are 0 = grass, 1 = a bush, 2 = a tree and formulate the dynamics as 

co(z,  ~) = ~(~) 
c , ( z , ~ )  = ~ , , ~ , ( z )  if c~(~) = 0 

c~(x,~)  = ~ n ~ ( ~ )  i f c~(x)  _< 1 

The title of this example and its formulation are based on the observation that if an area 
of land is cleared by a fire, then regowth will occur in three stages: first grass appears 
then small bushes and finally trees, with each species growing up through and replacing 
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the previous one. With  this in mind, we allow each type to give bir th onto sites occupied 
by lower numbered types. 

T h e o r e m  7.2.  Let ~i = ),ilAfl- Suppose that  82 > ~52 and 

If r is large then there is a nontrivial translation invariant stationary distribution in which 
all three types have positive density. 

SKETCH OF PROOF: The fact that the 2's do not feel the presence of the l ' s  implies that the 
set of sites occupied by 2's is a contact process. To construct a stat ionary distribution we 
start  with the 2's in their upper invariant measure and we put l ' s  at all sites not  occupied 
by l ' s  to get a process ~2.  This is the analogue of start ing an at t ract ive system from 
all l ' s  and a result of Durret t  and Moller imples that  as t ---* co, ~2  =~ ~ a translation 
invariant s tat ionary distribution. 

To prove that  ~ is nontrivial we will prove an analogue of (7.3). The first step is to 
prove the following result about the long range contact process (which is here considered 
as a subset of Z d) 

(7.18) If fl > 1 and x # y then as r - ~  co 

In words, the equilibrium distribution converges to a product measure as r ---* co. Of course, 
the last conclusion only says that the sites are asymptotically pairwise independent, but 
the argument  can easily be generalized to a finite number of x's. 

PROOF: By duality (see the proof of (7.1)) 

P ( x ,  y e ~ )  = P ( r  ~ = co,  r y = co) 

Our comparison of the contact process with a branching process at the beginning of the 
proof of Theorem 8.1 shows that  P ( r  x = co) < (fl  - 1 ) / f l  for all r. If we pick K and L as 
in (7.3) and then pick S large as in (7.4) then for r > rl  we have 

f l - 1  
- - + 5 > _ P ( r  ~> S) 

> P ( I ~ n [ - L , L ] I  > K )  > - -  - 

Our choice of K and L and the comparison with oriented percolation shows that  

P ( t ( }  N [ - L ,  LI[ > K ,  r ~ < oo) < 55~ 1/9 
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Combining the last two estimates shows 

[ P ( T  x ----- 0 0 )  --  P ( T  x > S)] <~ ~ -~- 55(~ 119 

With this in hand the desired result follows easily since continuity argument shows that 
for any fixed S as r ~ oo 

P('c ~ > S, r v > S )  ~ P ( q ~  s # O) 2 [] 

Turning now to the heart of the proof we will again scale space by dividing by r and 
consider the contact process on Z a / r  to facilitate taking the limit. The  approach we will 
take is a combination of that of Durret t  and Swindle (1991) and Durret t  and Schinazi 
(1993). We will concentrate on explaining the main ideas and refer the reader to those 
papers for the details. Pick p > (/~2 - 62)/fl2 so that 

(*-~) ill(1 - p) > 6 1 + f 1 2 p  

By dividing space into cubes of side 3r then using (7.18) and the weak law one can prove 
that  with high probability all sites in our space t ime box have at most pI.N'I neighbors 
in state 2. (Recall that  the set of 2's at any t ime is distributed according to the upper 
invariant measure.) This means that a single 1 will have births that  land on an occupied 
site at rate > ill(1 - p) while it dies at rate 61 and is smothered by a 2 at rate <_ fl2P. 

The inequality (**) implies that a single particle gives birth faster than it dies. If we 
start  with a fixed number of l ' s  then in the limit r --+ e~ the l ' s  dominate  a supercriticai 
branching random walk. If this fixed number K is large and L and T = L 2 are chosen 
appropriately then for large r a t runcated version of the process which is not allowed to 
give birth outside ( - 4 L ,  4L) a will with high probability have at least K particles in I1 and 
in 1-1 whenver the initial configuration has at least K particles in I0. 

The  last result is an analogue of (8.3) but  there is one problem. The event that 
4t(x) = 2, which is the same as the survival of the dual contact process of 2's start ing from 
(x, t), does not have a finite range of dependence. To avoid this problem we adopt the 
more liberal viewpoint that x is occupied by a 2 at t ime t if the dual process escapes from 
a certain space-time box. If the box is large enough the liberalization of the definition does 
not increase the density of 2's by enough to violate (**), we can verify the comparison 
assumptions of Theorem 4.3 and the desired result follows from Theorem 8.2. 
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8. Rapid Stirring Limits 

The point of this section is that if we take a fixed interacting particle system, scale 
space by e and "stir" the particles at rate e -2 then as e ~ 0 the particle system converges 
to the solution of a reaction diffusion equation. To be precise, we consider processes 
(~ : eZ a ~ {0, 1 , . . . ,  n - 1} that evolve as follows 

(i) there are translation invariant finite range flip rates 

c~(~, ~) = h,(4(z), ~(~ + ey , ) , . . .  ,~(= + euN)) 

(ii) rapid stirring: for each x, y E eZ d with [1 x - Y[[1 = e we exchange the values at x and 
y at rate e -2. That  is, we change the configuration from ~ to (z,u where 

~ , ~ ( y ) = ~ ( x )  ~ ,~ (z )  = ((u) ~ ,~(z)  = ~(z) z#x ,y  

The reader should note that  in (i) changing e scales the lattice but  does not change the 
interaction between the sites. In (it) we superimpose stirring in such a way that  the 
individual values will be moving according to Brownian motions (run at rate 2) in the 
limit. The  motivat ion for modifying the system in this way comes from the following 
mean field l imit  theorem of De Mast, Ferrari, and Lebowitz (1986). The derivation of such 
"hydrodynamic limits" has become a major  enterprise (see e.g., Spohn (1991) or DeMasi 
and Presut t i  (1992)) but  this particular result is rather easy to establish. 

T h e o r e m  8.1.  Suppose (~(x) axe independent and let u~( t ,x )  = P ( ~ ( x )  = i). If 
u~(O,x) = gi(x) is continuous then as e ~ 0, u~(t ,x)  --* u i ( t , x )  the bounded solution 
of 

(8.1) 

where 

(8.2) f i (I t)  : < ci(O,~)l(~(O)~i) >u -- E < cj(O'~)l(~(O)=i) >u 

and < r >u denotes the expected value of r under the product measure in which 
state j has density u j,  i.e., when ~(x) are i.i.d, with P ( ( ( x )  = j )  = uj .  

Theorem 8.1 is easy to understand. The stirring mechanism (i.e., (it)) has product 
measures as its stationary distributions. See Griffeath (1979), Section II.10. When e is 
small, stirring operates at a fast rate and keeps the system close to a product measure. 
The rate of change of the densities can then be computed assuming adjacent sites are 
independent.  To help explain the somewhat ugly formula in (8.2) we will now consider 
two concrete examples. 

E x a m p l e  8.1.  T h e  bas i c  c o n t a c t  p rocess .  In this case c0(x,~) = 1 and cl(x,~)  = 
Anl(X , ~) where n i ( z  , ~) = ]{y E ) f  : ~(x + y) -~ i} is the number of neighbors in state i. 
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We claim tha t  when ]JV'I = N the equat ion in (9.1) becomes (we do not  need an equat ion 
for u0 = 1 - U l )  

O u l / O t  = A u l  - ul  + NA(1 - u l ) u l  

To see the second te rm on the right h a n d  side the  equation,  we note  t ha t  particles die at  
ra te  1 independent  of the  s ta te  of neighbors.  For the third,  we note  t ha t  if we assume 
all sites are independent  then the probabi l i ty  x is vacant  and  y E x + .M is occupied 
is (1 - u l ) u l .  Each such pair  produces a new part icle at  ra te  A and  there are N such 
pairs,  so the  to ta l  ra te  at  which new particles are created (assuming tha t  adjacent  sites 
are independen t )  is NA(1 - u x ) u l .  

The  equa t ion  in the  last example is jus t  the mean  field equat ion  for the contact  process 
t ha t  we have seen several t imes before. To see someth ing  new we look at 

E x a m p l e  8.2 .  T h e  t h r e s h o l d  o n e  v o t e r  m o d e l .  In this case 

c i ( x ,~ )  = l i f n i ( x , ( ) > _  1 

and  if we assume [Af[ = N then  the l imit ing equat ion is (again we do not  need an  equat ion 
fo ru0  = l - u 1 )  

au , /O t  = Au ,  - u , ( 1  - u N )  + (1  - -  u , ) ( 1  - (1 - -  u] )  N) 

To see this  note  tha t  if all sites are independent  then  the probabi l i ty  x is occupied and  at 
least one ne ighbor  is vacant  is ux(1 - Ul N) and this is the ra te  at  which l ' s  are destroyed. 
In te rcahnging  the  roles of vacant  and  occupied in the  last  sentence gives the th i rd  term. 

Having explained the  formula in (8.2) we t u rn  now to a resul t  t ha t  extends  Theorem 
8.1 by showing t ha t  the  part icle system itself, not  jus t  its expected values are close to the 
p.d.e. To mot iva te  the  s t a t emen t  we note  tha t  the  s ta tes  of the  sites in the  model become 
independen t  in the  l imit e --* 0 and  the  number  of sites per uni t  volume becomes large so 
it should  not  be surpris ing tha t  in the l imit ~ ( x )  becomes determinist ic .  

T h e o r e m  8.2 .  Let r  be a smooth  funct ion wi th  compact  suppor t .  As e --* 0 

yEcZ d 

in probabil i ty.  

Al though  the  indicator  funct ion of a bounded  open set G is not  continuous,  this  should be 
though t  of as saying tha t  

yEeZdnG 
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or more  intui t ively tha t  the  fract ion of sites near  y tha t  are in s ta te  i converges t o  ui(t, !1). 
The  resul t  for an  open set G is also true, bu t  is a lit t le more difficult to prove precisely 
because I a  is not  continuous.  

Theo rem 8.2 provides a link between the part icle system wi th  fast  s t i rr ing tha t  we will 
exploit  in the  next  lecture to prove the existence of s t a t ionary  d is t r ibut ions  for a predator  
prey model  wi th  fast st irring. Once Theorem 8.1 is establ ished,  the  proof  of Theorem 8.2 
is easy: compute  second moments  and  use Chebyshev ' s  inequality. So we will concentra te  
on the  proof  of Theorem 8.1. The  ideas beh ind  the proof are simple: we will give an 
explicit  cons t ruc t ion  of the  process t ha t  allows us to define a dua l  processes by asking 
the  quest ion:  " W h a t  is the  s ta te  of x at  t ime t?" and  working backwards in time. The  
answer to this  quest ion can be de te rmined  by looking at the s ta tes  of the sites in the "dual 
process" I~,t(s) at  t ime t - s. The  particles in I~'t(s) move according to s t i r r ing at a fast 
ra te  and  give b i r t h  to new particles at  ra te  

c* -- s~p ~ c,(x, {) 

We will show tha t  for small  e the dual  process is a lmost  a b ranch ing  r a n d o m  walk and  
converges to a b ranch ing  Brownian  mot ion  as e ~ 0. The  proof  of the last  result  leads 
easily to the  conclusion t ha t  two dual  processes I~,'(a) and  I~ ' t ( s )  are asymptot ical ly  inde- 
penden t  which  gives the asympto t ic  independence  of the  sites in the  parr t iele  systems. The  
convergence of the  dual  process to branching  Brownian  mot ion  leads in a s t ra ightforward 
way to the  convergence of the u~(t, x) to l imits ui( t ,  x) and  the  asympto t ic  independence 
of ad jacent  sites implies t ha t  the  ui(t, x) satisfy the  l imit ing equat ions.  

a.  T h e  d u a l  p r o c e s s .  The  first s tep in the proof is to cons t ruc t  the process from a 
n u m b e r  of Poisson processes, all of which are assumed to be independent .  The  cons t ruct ion  
is s imilar  in spirit  to the one in Section 3 but  it is convenient  to do the  details in a slightly 
different way. For each x E eZ d, let {T~ ,n  >_ 1}, be  a Poisson process with  ra te  c* and  let 
{U~, n _> 1} be a sequence of independent  r a n d o m  variables t ha t  are uniform on (0, 1). At 
t ime T~ we compute  the  flip rates  ri = ci(x, {(T~)) and  use U a to de termine  what  (if any) 
flip should  occur at  x at  t ime T,~. To be precise we let pi = ~ <i r j /c* for i = 0 , . . . ,  n - 1 

2_ 
with  P-1 = 0 and  flip to i if U,  = E (p i - l ,P i ) .  If U ,  ~ C (p~-~, 1) no flip occurs. To move the  
part icles  around,  we let {S ,  x'y, n _> 1} be Poisson processes wi th  ra te  e -2 when x, y E eZ d 
with  IIx - yll~ = e, and  we declare t ha t  at  t ime S~ 'v the  values at  x and  y are exchanged. 

The  dual  process I~'t(s) is na tu ra l ly  defined only for 0 < s < t bu t  for a number  
of reasons,  it is convenient  to assume tha t  the  Poisson processes and  uniform random 
variables in the  cons t ruc t ion  are defined for negat ive t imes and  define I*,'t(s) for all s > 0. 
Let Af = { e y l , . . . ,  eyN} be the  set of neighbors of 0. The  dual  process makes t ransi t ions  
as follows: 

If y e I~'t(s) and T ,  v = t - s then we add  all the  points  of y + .X" to l~"(s) .  

If y E I~'*(s) and  S ,  v': = t - s then  we move the  part icle at  y to z. 

For a p ic ture  of (a r a the r  unlikely sample pa th  for) the  dual  when  d = 1 and  .N" = { - 1 , 0 , 1 }  
see Figure 8.1 
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Figure 8.1 

It  is easy to see t ha t  we can compute  the  s ta te  of x at  t ime t by knowing the s ta tes  of the 
y in I [ ' t ( s )  a t  t ime t - s. We s tar t  wi th  the  values in I['t(s) at  t ime  t - s and  work up to 
t ime t. At  S arrivals we perform the indica ted  stirrings.  W h e n  an  arrival  T~ occurs at  a 
poin t  of the dual,  we look at the value of the  process on y +A/ ' ,  compu te  the flip rates  ri, 
and  use U,  ~ to de termine  what  (if any) flip should occur. 

To prepare  for the  proof  of the convergence of u~(t, x) we will now give a more detailed 
descr ipt ion of I~"(s). Let X~ = x, let / ~  be the smallest  value of s so tha t  we have a 
T arr ival  a t  X~ at  t ime t - s, and  set X~(s) = eyi + XO(s) for 1 < i < N.  Finally, we 
s e t / ~  = 0 to indicate  t ha t  0 is the mo the r  of the  N particles crea ted  at  t ime R~. Passing 
now to the  induct ive  step of the  definition, suppose t h a t  we have defined the process up 
to t ime  R~ m with m > 1. The  m N +  1 exist ing particles move as dic ta ted by st irr ing 
unt i l  R ~  +1, the  first t ime s > R ~  t h a t  a T arrival  occurs at  the  location of one of our 
moving  particles Xk,(s) and  then  we set X,mg+i(s) = eyi + X~(s) for 1 < i < N ,  and  
/ j~+ l  = k. The  new particles may be created at  the  locat ions of exis t ing particles. If so we 
say t h a t  a collision occurs and  call the  new part ic le  fictitious. We will prove later  t h a t  the 
probabi l i ty  of a collision tends to 0 as e ~ O, bu t  for proving the  convergence of u~i(t, z), 
it is convenient  to allow the  fictitious particles to move and  give b i r t h  like other  particles,  
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so for each rn > 1 we define an independent copy of the graphical representation which we 
use for the births and movement of the rnth particle if it is fictitious. By definition all the 
offspring of fictitious particles are also fictitious. 

b. T h e  d u a l  p r o c e s s  is a l m o s t  a b r a n c h i n g  r a n d o m  wa lk .  The point of intro- 
ducing fictitious particles is that Kt = rnN + 1 for t E [R~m,R~+a) defines a branching 
process in which each particle gives birth to N additional particles at rate c*. Our next 
goal is to show that  if e is small then I['t(s) is almost a branching random walk in which 
particles jump to a randomly chosen neighbor at rate 2de -2 and give bir th as above. To do 
this we will couple X~ to independent random walks y k that  start  at the same location at 
time/3k = the birth time of X~, and jump to a randomly chosen neighbor at rate 2de -2. 

We say X~ is crowded at t ime s if for some j # k IlX/(s) - X~(s)[ll _< e. When 
X~ is not crowded, we define the displacements of y k to be equal to those of X~. When 
X~ is crowded we use independent Poisson processes to determine the jumps of y k. To 
est imate the difference between X~ and y k we need to est imate the amount of time X~ 
is crowded. Let j r k, V~ = X~(s) - XJ(s) and W~ be a random walk that jumps to a 
randomly chosen neighbor at rate 4de -2. (Notice that  V{ is the difference of two random 
walks and hence jumps at rate 4de ~. The transition probabilities of V~ differ slightly from 
those of W~ when IIxHx = ~. Here y denotes any point r - z  with Ilyllx = ~- 

jumps from x to rate in V rate in W 
--Z s 0 

0 0 2e -2 
x + y 2e -2 2e -2 

From the last table it should be clear that I IW~ll l  is stochastically smaller than IIV~ll~, i.e., 
the two random variables can be constructed on the same space so that  IIW,~II1 _< IIv~llx 
for all s. To check this note that  all the transition of V and W can be coupled except 
those in the first two lines of the table, but there ]IW][~ jumps from 1 to 0 at rate e -2 
while IlVlll jumps from 1 to 1 at rate e~/2. 

From the last comparison of Ilvl]~ and Ilwl[a it follows that  for any integer M >__ 1, 
v, u~ = [{s _< t : IlWlla -< Me}l is stochastically smaller than w M~ = [{s _< t : [[W~l[l < 
Me}[. Well known asymptotic results for random walks imply that  when te -2 > 2 

(s.3) 
CMae d >_ 3 

Ew~ ~ <_ CM2e 21og(te -2) d = 2  
CMet 1/2 d = 1 

2 hi To see this note that  w M~ has the same distribution as e wt~_2 and the last line is equal 
to CMe2(te-2) 1/2. 

Let x~(t) be the amount of time X~ is crowded in [0, t]. It is easy to see that 

(s.4) 
(s.5) 
(s.6) 

E(~(~) lpc ,  = I,') _< K E w ;  
EASt = exp(ut) where u = c*N 

E(x~(t)) < exp(ut)Ew~ 
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To estimate the difference between X~(s) and Y,k(s) we observe that if x ~ ( t )  = r then 
the number of "independent jumps" in the ith coordinate of y k that occur in [0, t] has 
a Poisson distribution with mean e-2r. Let A~(s) be the net effect of the independent 
jumps on coordinate i up to time s. Recalling that changes in the ith coordinate of y k 
have mean 0 and variance e 2, it follows that EA~(s)  = 0 and 

(8.7) E(A~,(s) 2) = Exk,(s) 

Since A~(s) is a martingale, Kolmogorov's inequality implies 

(8.8) Z ( m a x  A~/(s)2~ < 4E(A~(t) ~) 
\ 0 < , < ,  / - 

Using Markov's inequality (i.e., if X _> 0 then P(X > x) < E X ' / x  r) then (8.8), (8.7) ,  
(8.6), and (8.3) (noting that the worst case is d = 1) gives 

(8.9) P \o<J<t(max Im~(,)l >_ es)<e -'sE_ \o<s<t(max A~-(s)2) <_ Ce'4t I/2 exp(vf:) 

Here and in what follows C dentores a constant whose value is unimportant and that will 
change from line to line. The arguments leading to the last inequality also apply to A~(t), 
the net effect of jumps in [0, t] while X~ is crowded, so 

(8.10) P \0<,<t ( max I1X~(s) - Y~k(s)lloo _:> 2e "3) _< Ce'4t 1/2 exp(vt) 

The estimate in (8.10) shows that the X~ are close to independent random walks. 
To see that with high probability no collisions occur, we pick M large enough so that 
Ilxl[1 N M for all z E At" and repeat the derivation of (8.6) with e replaced by Me to 
conclude that the expected number of births from X~ while there is some other X[ in 
X~ + .N" is smaller than 

(8.11) Get I/2 exp(vt) 

(8.5) and Markov's inequality imply that 

(8.12) P(/C, > It') < I f - '  exp(vt) 

When )Ct < K, (8.11) implies that the expected number of collisions is smaller than 

(8.13) KCet I/2 exp(ut) 

Combining the last two results and setting K = e -~  shows that the probability of a 
collision is smaller than 

(8.14) Ce'5(1 -1- 1~) 1/2 exp(v~) 
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Having shown that  collisions are unlikely we no longer have to worry about the labels 
/J~,, that  tell us the mother  of the N particles created at t ime R~, since this will be clear from 
the evolution of the dual. A more significant consequence of the results in this subsection 
is that  dual processes for different sites are asymptotically independent.  To argue this, we 
say the two duals collide if a particle in one dual gives birth when crowded by a particle in 
the other  one. The arguments leading to (8.14) show that  with high probability two duals 
do not collide, and (8.10) implies that the movements of all the particles can be coupled 
to independent random walks. 

c. C o n v e r g e n c e  o f  u~(t, x). The next step is to show that  as e ~ 0 the branching 
random walk Y converges to a branching Brownian motion Z. To do this we use Sko- 
rokhod's trick to embed the i th component of the kth walk, y~,i in a a Brownian motion 

k , i  Z s . Using some standard estimates (see Durret t  and Neuhauser for details) it follows 
that  

P ( max ]lYe'(s) -- Zk(s)l]oo > 4e "3 for some k _< I{'~ _< EVe'32(1 + t) ( 8 . 1 5 )  
\ O<s<t / 

To compute the state of x at t ime t, we need not only the dual process I~'t(s),  ~ < t but 
also the labels/z~, and the uniform random variables U,*. However, the uniform random 
variables are independent of the dual process and, as we pointed out in a remark after 
(8.14), t h e / ~  are only needed when a collision occurs. 

As we will now explain, the results in the last paragraph make it easy to show that 
u~(t ,x)  ---* ua(t ,x)  as e ---* O. Here and in what follows we will use a and b to denote 
possible states of the sites to ease the burden on the middle of the alphabet. The first 
step is to describe u , ( t , x ) .  Let Z,  be a branching Brownian motion starting with a single 
particle at x and let/Ct be the number of particles at t ime t. For 0 _< k </Ct ,  we let (0(k) 
be independent and = a with probability r  Once the (0 are defined, we work up 
the space time set {Z,k_,} x {s}. The values of ( , (k) ,  the state of Z~_, at t ime s, stay 

constant as long as only stirring occurs. When N + 1 branches Zit-s, zkN+lt--s , " " " ~ t - s T " ( k + l ) N  

come together (corresponding to a birth in the dual), we compute the flip rate at Z~_~ 
assuming it is in state r and its neighbors are in states ~, (kN + j) ,  1 < j < N.  We 
generate an independent random variable uniform on (0, 1) to determine what (if any) flip 
should occur at Z~_,. After we decide if we should change (s(i), we can ignore ~s(kN + j )  
for 1 < j <_ N.  When we reach t ime t we will only be looking at the value at ~,(0). We 
call this value, the result of the computation and let Ua(t, Z) = P(~t(O) = a). 

The description in the last paragraph is much like the one given earlier for the dual 
with one exception: the uniform random variables come from an auxiliary i.i.d, sequence 
instead of being read off the graphical representation. When there are no collisions in the 
dual, then the family structure of the influence set and the branching Brownian motion 
are the same. In this case if the inputs (0(k) and the uniform random variables used are 
the same, the two computations have the same result. We have supposed that  the initial 
functions eb(x) are continuous so (2.19) implies that  as e ~ 0, 

m ~  I e b ( X ~ ( ~ ) )  - r  ~ o 
k 
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where the maximum is taken over particles alive at t ime t. The last observation implies 
that  we can with high probability arrange for all the inputs to be the same and it follows 
that  u~(t,x) -* ua(t,x). The last proof extends trivially to show that  if x, ~ x then 
u~(t, x,)  --+ ua(t, x). At the end of subsection b, we observed that  the influence sets from 
different points are asymptotically independent. Combining that observation with the 
proofs in this subsection implies that if x, ~ x then 

N 

(8.16) P(~(x~ + eyj) = cj, 0 <_ j < N) -* H ucj (t, x) 
j = 0  

We are interested in s tatements  that allow x~ --~ x since this form of the conclusion implies 
that  convergence occurs uniformly on compact sets. 

d.  T h e  l i m i t  sa t i s f ies  t h e  p .d .e .  The first step is to write the limiting equation in 
integral form. 

(8.17) L e m m a .  Suppose f, ,O _< a < ~ are continuous and ga,0 _< a < x are bounded and 
continuous. The following statements are equivalent: 
(i) The  functions u~(t, x) are a classical solution of 

Ou~ 
= a , , o  - A ( u )  ~ ( o ,  x) = go(x)  & 

i.e., the indicated derivatives exist and are continuous. 
(ii) The functions u,(t, x) axe bounded and satisfy 

/ /o'I u~(t,x) = p,(x,y)ga(y)dy + ds p , ( x , y ) f~ (u ( t -  s,y))dy 

where pt(x, y) is the transition probability for Brownian motion run at rate 2. 

P r o o f :  (i) implies that  Z~ = u , ( t -  s, B,) - fo s  - r, B~))dr is a bounded martingale, 
so Z~ = EZ~ and (ii) follows from Fubini 's theorem. To prove the converse, we begin 
by observing that if (ii) holds then u~(t,x) has the necessary derivatives and Z,  a is a 
martingale,  so (i) follows from Ith's formula. [] 

To get (ii) we will use the integration by parts formula. Let S[ be the semigroup for 
the stirred particle system and 7"[ be the semigroup for pure stirring. The integration by 
parts formula implies that  for nice functions ~/, we have 

/0' (8.18) S~r = T / r  + ds S~_,LT~r 

where L is the generator for the particle system with no stirring. We use (8.18) with 
r = 1 if {(x) = a and 0 otherwise. Now for this choice of r 

(8.19) T:~b,,~(() = E p ; ( z ,  y)r 
Y 
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e X where p,( , y) is the transition probability of a random walk that jumps from y to z at 
rate e -2 /2  if [lY - z[[1 = ~. Now if cb(y,() = hb(~(y + eyo) . . . .  ,~(y + eyN)) then 

(8.20) LCy,~ = - ~ hb0(a, bl, 
b 

+ E ha(bo,bl, 
b 

., bN)r 1] ~+,~,~ 
j ~ l  

N 

., bN)r 1 ]  r 
j = l  

where the sums are over bo . . . .  , bN E {0, 1 , . . . ,  ~ -- 1}. Substi tuting (8.19) and (8.20) into 
(8.18) gives 

(8.21) P(~;(x)  = a) = E p ~ ( x , y ) g a ( y  ) 
Y 

' I + f o d s  E p'~(x, y )E  - E hbo(a, b, . . . . .  bg)r H ~by+,yj,bj (~ ; - , )  
y ( b j = l  

Ebb ')I1 + ~( o,bl . . . .  ,bN)r Cu+,Uj,bi ((t--, 
b j = l  

The local central limit theorem implies 

(8.22/ Z i~%(x, y) - p:(z, y)l ~ o 
y 

as e --+ 0, As we observed at the end of subsection c, 

N N 

j = l  j = 0  

and this convergence occurs uniformly on compact sets. Using (8.21), (8.22), and the 
dominated convergence theorem, gives 

(8.23) u~(t ,x)  = / p t ( x , y ) g ~ ( y ) d g  

j=l  

+ ~ ,  h.(bo, ~, . . . .  , b~)~o(t - ~, y) J--,l~I ~,, (t - ~, y)} 

The term in braces is 

(9.24) - E < cb(O,~)l(((o)=,) >=(t-,,y) + < c~(0,() >~(t_~,y)= f~(u(t  -- s, y)) 
b~a 

Combining this with (8.17) gives the conclusion of Theorem 8.1. 
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9. P r e d a t o r  P r e y  S y s t e m s  

In this section we will show that if you "know enough" about the limiting p.d.e, in 
Theorem 8.1 then you can prove results about the existence of stat ionary distributions for 
the system with fast stirring. For our approach, what you need to know about the p.d.e, is 
the following: 

(*) There are constants Ai < ai < bi < Bi, L, and T so that if ui(0, x) e (Ai ,Bi )  when 
z e [ - L , L ]  d then u i ( x , T )  C (ai,bl) when x E [ -3L,3L]  d. 

T h e o r e m  9.1.  If (*) holds then there is a nontrivial translation invariant stationary 
distribution for the process with fast stirring. 

As the reader can probably guess, (*) and Theorem 9.2 combine to produce a block event 
that  turns one "pile of particles" into two and has high probability when e is small and then 
the result follows from our comparison theorem. The details axe somewhat technical so we 
refer the reader to Section 3 of Durret t  and Neuhauser (1993) and turn to the problem of 
checking that  (*) holds in one particular example. For other applications of this technique 
see Durret t  and Neuhauser (1993) or Durret t  and Swindle (1993). 

E x a m p l e  9.1.  P r e d a t o r  P r e y  S y s t e m s .  The state at t ime t is ~ : eZ d ~ {0,1,2}. 
We think of 0 as vacant, 1 and 2 as occupied by a fish and shark respectively. As usual, 
ni(x,  ~) is the number of neighbors of x (i.e., y with [lY - xl[x = e) that  are in state i. The 
system changes states at the following rates: 

c , ( x , ( )  = 3 , n , ( z , ~ ) / 2 d  if ~(z) = O 
co(x, () = 51 if 5(x) = 1 
c2(x, ~) = fl2n2(x, ~)/2d if ~(x) = 1 
co(z, ~) = 52 + 7n2(z,  ~)/2d if ~(z) = 2 

The first two rates say that  fish repopulate vacant sites at a rate proportional to the 
number of fish at neighboring sites and die at rate 51. That  is, in the absence of sharks, 
the fish are a contact process. The third rate says that  sharks reproduce when they eat 
fish. This transition is a little strange from a biological point of view, but  it has the 
desirable property that  sharks will die out when the density of fish is too small. The last 
rate says that  sharks die at rate 52 when they are isolated and the rate increases linearly 
with crowding. Finally, the sharks and fish swim around: for each pair of neighbors x and 
y stirring occurs at rate e -2, i.e., the values at x and y are exchanged. Applying Theorem 
8.1 gives 

T h e o r e m  9.2.  Suppose that ~ ( x ) ,  x E eZ d are independent and u~(t, x) = P ( ~ ( x )  = i) 
~'or i = 1 ,2 .  z~ ' , ,~(0 ,x)  = r  w h i ~  is c o ,  t inuons ,  t hen  as ~ ~ O, , 4 ( t , x )  - "  , ,~( t ,~)  the  
bounded solution of  

= Aul +31u61 - u ,  -- u 2 ) - - 3 2 u l u 2  - 6 x u l  
(9.1) at 

Ou2 
- Au2  + 3~ulu2  - u2(52 + ~u2) 

Ot 
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with u~(0, =) = ~(=). 

As in the two examples in Section 8, the reaction terms are computed by assuming that 
adjacent sites are independent. To get f l l u l ( 1  - u l  - u s )  for example we note that if z is 
vacant and neighbor y is occupied by a fish, an event of probability (1 - u l  - u2 )u l  when 
sites are independent, births from y to z occur at rate f l l / 2 d  and there are 2d such pairs. 

When the initial functions 4 i ( z )  are constant, ui(t, z) = v i ( t )  and the vi's satisfy 

(9.2) 
ally 1 

dt  = ~ , ( (~1  - ~ , )  - ~ , ~  - (~1 + ~ D v 2 )  

dv2 = v ~ ( - ~ 2  + fl2vl - 3'v~) 
dt 

\ 

Figure 9.1 
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Here we have re-arranged the right hand side to show that the system is the standard 
predator-prey  equations for species with limited growth. (See e.g., page 263 of Hirsch and 
Smale (1974).) Before we plunge into the details of analyzing (9.2), the reader should look 
at Figure 9.1, which gives some solutions of (9.2) with 

fll = 3 , 6 I  = 1 ,  /32=3,~52=1,  7 = 1  

In this case, as we will prove later, there is a fixed point at (8 /21 ,3 /21)  that is globally 
attracting.  

The  first step in understanding (9.1) is to look at (9.2) and ask: "What  are the fixed 
points, i.e., solutions of the form vi(t) = piT'  It is easy to solve for the pi. There is always 
the trivial solution Pl = P2 = 0. In the absence of sharks the fish are a contact process. 
So if/31 > 61 there is a solution Pl = (/31 - 6x)//31, P2 = 0. If we impose the stronger 
condition 

(9.3) (/31 - 61)1/31 > 62//32 

there is exactly one solution with p= > 0: 

(51 - 61)'~ + 62(/31 +/32) 
51~ +/h(/31 +/3=) 

(~1 - 61)52 - 6251 
m = /3:r + (~1 + 52)/32 

The condit ion /31 > 61 is an obvious necessary condition for the fish to survive in the 
absence of sharks. The  condition (9.3) is not so intuitive but  turns out  to be sufficient for 
the existence of nontrivial stationary distributions for small e. 

T h e o r e m  9.3. Suppose that (51 - 61)/51 ) 62/52 holds. Ire  is smal l  there is a nontrivial  
translation invariant s ta t ionary  distribution in which the density of  sites o f  type i is close 

t o  P i .  

In view of Theorem 9.1 it suffices to prove (*), which is a consequence of the following 
convergence theorem. 

T h e o r e m  9.4. Suppose that (131 - 61)/51 > 62//32 holds and the ul solve (9.1) for 
cont inuous nonnegat ive  r  with r  + r _< 1 and r  > 0 t'or some xl.  Then 
there is a a > 0 so that  as t --+ co, 

sup [ u i ( t , x )  --  Pl]  ---+ O. 

PROOF: The proof is based on a simple idea due to Redheffer, Redlinger, and Waiter 
(1988): the existence of a convex strict Lyapunov function for the dynamical system (10.2) 
plus two technical conditions we will identify in the proof, give a convergence theorem for 
the reaction diffusion equation. In this case the desired function is 

n ( ~ , ,  ~ )  = /3~  (~,  - p~ log ~, ) + (/3, + ~ ) ( ~  - p~ log ~ )  
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Being the sum of four convex functions, H is clearly convex. The next step is to check 
that it is a strict Lyapunov function: if (vl, v2) is a solution of the dynamical system that 
does not start at the fixed point then c)H(vl, v2)/Ot < 0. Differentiating gives 

0vl-/3~ 1 -  0 v 2 - ( 3 1 + ~ 2 )  l - P 2  

So using the chain rule and (9.2) 

OH(v1, v2) 
H, - 0t - 132('Ol - P l ) { ( , ~ I  - ~ i )  - Z l V l  - ( Z l  "~ ,/~2)V2 } 

+ ( ~  + ~ ) ( , ~  - p 2 ) { - ~  + / h , ~  - ~ , 2 }  

Using the next two identities to subtract 0 from each term in braces 

0 = ( Z l  - -  ~1 )  - -  Z l P l  --  ( 31  + ]~2)P2 

0 = -~2 +/32pl - 7,o2 

H ,  = ~ ( v ,  - p l ) { - / ~ , ( v ~  - p , )  - (/J~ + / ~ 2 ) ( v 2  - P2 ) }  

(9 .4 )  + (/~, + / ~ ) ( v 2  - p~){ /3~(v ,  - p~) - ~ ( ~  - p~ ) }  

= - / ~ / ~ ( v ~  - Z l )  2 - 7(/3,  + / ~ ) ( ~  - p2) 2 < 0 

with strict inequality for (vl, v2) # (p~, P2). The importance of the last conclusion is that 
H(v,(t) ,  v2(t)) is strictly decreasing in t and hence all trajectories that  begin in (0, c~) 2 
must  end at the minimum of H,  (Pl,P2). For later purposes we would like to note that 
the level curves Ht = - r  are concentric ellipses. 

The above computations that show H is a Lyapunov function obviously depend on 
the special form of (9.2). To prepare for other applications at the end of this section, we 
would like the reader to check that in what follows only equations (9.6) and (9.10) depend 
on the special form of H. 

Since composing the Lyapunov function with solutions of the dynamical  system shows 
that  they converge to the fixed point, it is natural  to look at h(t, x) = H(ui (t, x), u2(t, x ) ) -  
H(p~,p2) _> 0 when u is a solution of (9.1). (Here we have subtracted the value of H at 
its min imum to make the minimum value 0.) To show the generality of this computat ion 
and to simplify notat ion we will write (9.1) as 

O--T = A,i  + fi(u). 

Differentiating and using the previous equation gives 

Oh OH Oul OH . (Aui + fi(u)) 

t l 

02h OH 02~L~ ~-. O~H aui auj 

i 

gives 
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Here and  in wha t  follows the indices i and  j are summed from 1 to 2. Summing  the  second 
equa t ion  from m = 1 to d gives 

OH O~H Oui Ouj 
A h  = 

i m, i , j  

so us ing H, ~ i  OH = ~-~., f , ( u )  gives 

Oh 02H Oul Ouj 
-~  = Ah + Ht - Z OuiOuj Oxm Ox,, 

rnlllJ 

Since H is convex the last  t e rm (including the minus sign) is nonposi t ive  and  we have 

(9.5) --0h < Ah + Ht 
0 t -  

To prove Theorem 9.4, we will use (9.5) to conclude 

(9.6) sup h(t,x) ---* 0 

If we were on a bounded  set with  N eum ann  boundary  condi t ions this  would be easy, since 
in this  case infu~(t,z) > 0 at  posit ive t imes and  thus h(t,x) is hounded .  If we let x( be a 
place where m( = m a x ,  h(t ,z)  is a t ta ined  then  Ah(t, xt) < 0 so 

d m t  

dt 
- -  _< H, < s u p { H , ( v ) :  H(v) = m,} < 0 

and  an  a rgument  like the one in the proof  of Theorem 5.1 shows (9.6). 
To prove (9.6) on R d we have to deal with  the  fact tha t  h(t,x) may be unbounded.  

To do this  we first get bounds  on how fast the Ht will push h to 0 and  then get a priori 
bounds  on h(t ,z)  inside [Ixll < at t ha t  will allow us to drive h to 0. To get upper  bounds  
on Ht (recall it is < 0), we let 

g(h) = inf{-H,(v , ,v2)  : H(vl,v2) >_ h} 

We have defined g this way to make it clear t ha t  h ---* g(h) is increasing. To de te rmine  the 
behav ior  as h ~ 0 we observe tha t  a t  (p l ,P2)  OH/Ovi = 0 and 

02H 82pa 02H (~1 +~2)p2 O~H 
- 0  

So near (Pl,P2) 

H ( ~ , , v 2 ) - H ( p , , p ~ )  ~ ~ ( ~ ,  - p l )  ~ + - -  
Pl 

(P' + ~ ) ( v 2  - p2) 2 
P2 
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and it follows from (9.4) that  g(h) ~ Bh.  Since g(h) is increasing we have 

(9.7) g(h) > c~h/(1 + h) for some c~ > 0 

The next step in bounding h(t, x) is to examine the behavior of 

w' - - a w  w(0) = W 
l + w  

Since w(t)  > W - a~ the t ime to reach q > 0 is at least ( W  - q ) /~ .  To see this est imate is 
fairly sharp observe that  while w(t)  > W 1/2 - 1  we have w' _< - a ( 1 - W  -1/2) so w(t)  reaches 
W 1/2 - 1 at t ime < W/(a (1  - W - 1 / z ) ) .  When w(t) < W 1/2 - 1 we have w' < - a w / W  x/2 
so the time to go from W x/2 - 1 to q is at most W X / 2 a - l ( l o g ( W  112) - l o g  q). Adding the 
two estimates we see that  

(9.8) For W >__ 4 and q < 1 the t ime to reach q is smaller than 

2 a - l W  + c w l l 2 ( l o g  W - log r/). 

To get a priori bounds on h note that  our hypotheses imply that  ui(1,x)  is positive 
and continuous so there are constants #i so that ui(1, x) > #i for all x with [[xi[~ < 1, and 
we can without loss of generality assume that the last conclusion holds at t ime 0. 

(9.9) L e m m a .  There is a constant K so that iT lizil2 ~ at and t > 1 then h ( t , x )  < Kt .  

P r o o f :  We have supposed that  r < 1 so the probabilistic interpretation implies 
ui (t, x) + u~(t, z) _< 1 for all t and z and it follows that 

0UI  > A U l  -- (,i~l -t- fl2)Ul & - 

Ou----2 > Au2 - (~2 + 7)u2 
0t - 

To see these inequalities it is convenient to write the r ight -hand side in the form in (9.2). 
(Recall that  our main assumption (9.3) implies/71 > $1 .) Let cx = (fix +/32) and e~ = ~2 +7.  
Recalling that  solutions of 

Ou 
at A v e , ,  u(0,x) r 

are given by 

u(t> z) = e -~t r j (  4~t)_dl~ e_ll~_yllll4, r ) dy 

and using the maximum principle (see (9.11) at the end of this section) we have that  when 

II=11~ <- at 

ui(t, x)  > e-C't/zi F (4zt)-a/2e-(lt 'II~+l)'/4tdY 
JII vll<a 

>_ c ~ w ( 4 ~ , t )  -di~ e ~ p ( - ( c ,  + (a~14) ) t  - ,,12 - ( l /4t) )  
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where Cd is the  volume of {y : ]IY]]2 -< 1}. Combining the last  expression with the  fact 
that 

(9.10) h(x) < C(I -log(minx,)) 

completes  the  proof  of (9.9) [] 

Let a > 0 be chosen so t ha t  3a-laK < (1 - a), i.e., so t ha t  if w(t) solves 

w ' = - a w / ( l + w )  with  w ( 0 ) = K a t  

then  for any 7 />  0 when  t > T~, w((1 -a)t)  < 7/. We will prove Theo rem 9.4 wi th  ~r = a/2. 
Let D r  = {Y: [[VII2 < r} and  define h~(t,x) to be the solution of 

Oh 
a--[ = A h - a h / ( l  +h) i n D t - [ a t ,  t ] x D a t  

h(s , x )=Ks  i f s = a t ,  o r x 6 0 D a t  

Since h(s,x) < h~(s,x) when s = at or x 6 ODor, and  g(h) >__ ah/(1 + h) it follows from 
the  m a x i m u m  principle t h a t  h(s,x) < h~(s,x) for (s,x) 6 l)t. 

To bound  h~(t,z) we will use h*2(z,x ) = w(s -a t ) .  Anothe r  use of the max imum 
principle shows h~ (s, x) >_ h~(s, z) in :Dr. The  last  inequali ty is the opposite of the  one we 
want  bu t  we will t u rn  it a round by showing tha t  the difference is small  when Ilxl]2 _< at~2. 
Intui t ivcly  the  difference is only due to pa ths  (t - s, B~) tha t  escape from the  space t ime 
cylinder [at, t] • bat on the side. Here Be is a Brownian  mot ion  run  at twice its usual  speed. 
W h e n  the  s ta r t ing  point  HBoH2 _< at/2 this  event has  exponent ia l ly  small  probabi l i ty  and  
br ings  a "reward" < Kt so the difference hi - h~ goes to 0 exponent ia l ly  fast as t ---* co. 

To begin to tu rn  our  intui t ion into a proof, we let ~(x) = ax/(1 + x) and  observe tha t  
I t6 's  formula  implies t ha t  if r = inf{s : B, ~ D~t} then  

0 At h ~ ( t - ( s A r ) , B , ^ ~ ) -  9(h~(t-r, Br))dr s<_(1-a) t  

is a bounded  mart ingale .  Using the  mar t inga le  proper ty  at  t ime s = (1 - a)t gives 

h~(t,x) E, - ; = h~(at, B(l_~)t) 9(h~(t-r, Br))dr "r>(1-a) t  
dO 

( /o ) +E. h~(t- ~,B~)- O(hl(t-~,B~))d~;~<(1-~)t 

Since h~(at, z) = h~(at, x), 0 < h~(t-r, Br) <_ h~(t-r, B~) when r > r ,  and  9 is increasing, 

it follows t ha t  on {r  > (1 - a)t} we have 

/ (i-a)t 

h~(at, Bo_ , ) , ) -  9(h'l(t-r,  Br))dr 
JO < _/(a-a)t 

_ h'~(at, 8 ( , _ o ) , )  9 (h~( t  - ,., u . ) )  d,- 
dO 
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Subt rac t ing  the  two expressions for h~(t, x) and recalling h~ k 0 and  ~ k 0 gives 

( /0 ) h l ( t , x ) - h ~ ( t , x ) < O + E ~  h l ( t - r , B ~ ) +  ~ (h~( t - r ,  B r ) ) d r ; r < ( 1 - a ) t  

<_ ( K t  + ~ t ) P ~ ( T  < (1  - a ) t )  

since h~(s,x) = Ks when x E OD,t and 0 < ~ < a .  S tandard  large deviat ions es t imates  
for n rown ian  mot ion  imply tha t  for Ilx[12 < at~2, P~( r  < (1 - a)t) < Cexp(-6t ) ,  so 

sup  [ h I ( t , z )  - h ~ ( t , z ) l  --* 0 as t ~ oo 
II=ll_<.t/2 

Since h~(t, x) >_ h(t, x) for x e D . ,  and h~(t, z) = w((1 - a)t) < '7 for t > T,,, Theorem 9.4 
follows. [] 

For completeness  we give a proof  of 

(9.11) M a x i m u m  P r i n c i p l e .  Suppose f l (h)  >_ f2(h) and the hi soIve 

Ohi 
= Ahl - fi(hi) in :D~ 

with hl(S , x) <: h2(s, x) i[ s = at, or x G OD,, then h,(s, x) < h~(s, x) in D,. 

PROOF: This  is easier to prove t h a n  to find in the library. Suppose first t ha t  f~(h) > f2(h) 
and hl(s ,x)  < h~(s,z) i f s  = at, or x e OD,t. Let so be the  smallest  value o f s  for which 
there  is an  x wi th  hl(s ,x)  >_ h2(s,x). Continui ty  of the  hi impfies tha t  we can find an 
x0 so t ha t  hi(so, xo) = hz(so,xo). The str ict  inequali ty between the  hl on the  boundary  
implies x0 E D~t and  so > 0. The  definition of so implies tha t  h~(so,x) < h2(so,Z) 
for all x. Since hl(so,zo) = h2(so,xo), we must  have V h l ( s 0 , x 0 )  = Vh2(so,zo) and 
Ahl(so,xo) <_ Ah~(so,xo). Using the last fact and  fx(h)  > f2(h) it follows tha t  at  (so,zo) 

Oh1 Oh2 
Ot = A h l  - f l (h , )  < Ah2 - f2(h2) = Ot 

However this  implies t ha t  hi(s0 - e , x )  > h2(so - e ,  Xo) for small e contradic t ing  the 
definit ion of s0, so we mus t  have ha(s,  x) < h2(s, x) for all (s, x) E D,t. To prove the  result  
in (2.4) now let fo(h) = f~(h)+ e and change the bounda ry  values to h ~ ( s , x ) -  e. The 
new solut ion h~(s, x) < h2(s, x) and  converges pointwise to hi(s, x) as e ~ 0. 

The  ma in  reason for interest  in Theorem 9.4 is t ha t  it applies to systems of equations.  
However, as the  next  two exaxnples suggest we also get in teres t ing informat ion when we 
apply it to a single equation.  

E x a m p l e  9.2.  The  b a s i c  c o n t a c t  p r o c e s s .  If we let fl = ~ N  where N is the number  
of neighbors  and  write u for ul then the equat ion in Example  8.1 can be wr i t ten  as 

Ou 
(9.12) Ot - Au - u +/3(1 - u)u u(0, z)  = r  
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To find a Lyapunov funct ion we let p = (fl - 1 ) / f l  and write the dyanmical  sys tem as 

dv 
dT = v ( - i  + f l ( l  - v)) = flv(p - v) 

Taking H ( v )  = v - p l o g v  and not icing h ' (v )  = I - ( p / v )  we have 

d H ( v ( t ) )  
dt - # ( v -  p)2 

Clearly H satisfies (9.10). Since H ' ( p )  = 0 and  H " ( v )  = p / v  2, repea t ing  the proof  of (9.7) 
shows it is satisfied. Since H is convex we get a convergence resul t  like Theorem 9.4 

T h e o r e m  9 . 5 .  Suppose  that  # > 1 u solves (9.12) for cont inuous  0 <_ r  _< 1 wi th  
r  > 0 for  s o m e  zo.  Then there is a a > 0 so that  as t ~ o% 

sup u( t, x ) -- '---A-- --~ 0. 
P 

Much b e t t e r  convergence results t han  this are known for this  equat ion  (see Aronson 
and  Weinberger  (1978) for more general  results  and  Bramson  (1983) for more detai led 
informat ion) ,  bu t  the last  result shows t ha t  (*) holds and  we have 

T h e o r e m  9 .6  Suppose  fl > 1. I f  e is smM1 then the contact process wi th  s t r r ing  at  r a t e  
e -2 has a translat ion invariant s ta t ionary  dis tr ibut ion in which the dens i ty  o f  1 's is dose  
to (# - I ) /# .  

E x a m p l e  9.3 .  T h e  t h r e s h o l d  v o t e r  m o d e l .  In this  case if N is the  number  of neighbors  
and  we write u for Ul then  the l imit ing equat ion in Example  8.2 is 

Ou 
(9.13) - Au  -- u(1 - u N) + (1 - u)(1 -- ( I  - u) N) u(0, x) = r  

0t  

W h e n  N = 1 the  last  two terms on the  right h a n d  side cancel so we will suppose t ha t  
N > 2. For our  Lyapunov funct ion we take H ( v )  = - l o g  v - log(1 - v), which has  

1 1 2v - 1 
H ' ( v ) = - - +  - -  

v 1 - v v(1 - v) 

dH(~(~)) 2 v - 1  { - v ( 1 - v  N ) + ( 1 - v ) ( 1 - ( 1 - v )  zv} 
a-----7-- - ~(1 - ; )  

= ( 2 v - - 1 ) { - ( l + v + . . - + v  N - ' )  + ( l  + ( 1 -  v) + ' '  " + ( 1 -  v) N - '  } 

} = - ( 2 ~  - 112 1 + ~ 2  (1 - ~)J - ~ 
~=~ T - ~  
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where the sum is 0 if N = 2. Since (1 - v) j - vJ and 1 - 2v are both positive on v < 1/2 
and negative on v > 1/2 their quotient is always positive. To compute the value at v = 1/2 
we note that  L'Hopital 's  rule implies that  

tim (l-v) j - v j  lim - j ( 1 - v ) J - ' - j v  -i-I = j 2 - ( J -  0 
~--1/2 1 - 2v v--l/~ - 2 v  

so the term in braces is bounded away from 0 and co. 
Since H ' (1 /2 )  = 0 and H" (1 /2 )  > 0 it is easy to see as before that  (9.7) holds. The 

other condition (9.10) does not hold as stated since H(1)  = c~. However it is easy to see 
that  under suitable assumptions (9.9) holds and we have 

T h e o r e m  9.7.  S u p p o s e  tha t  N >_ 2 u solves  ( 9 . 13 ) / ' o r  c o n t i n u o u s  0 < r  _< 1 wi th  

r > 0 for s o m e  xo and  r  ) < 1 for s o m e  x 1 . T h e n  there is a a > 0 so  tha t  as t ---* c~, 

sup 1,,(~, =) - 1 / 2 1 - ~  0. 
H~ll<~t 

Again bet ter  convergence results than this are known for this equation (see Aronson 
and Weinberger (1978) and Fife and McLeod (1977)) but  the last result shows that  (*) 
holds and we have 

T h e o r e m  9.8.  S u p p o s e  N > 2. I f  e is smal l  t hen  the  con tac t  p roces s  w i t h  strrhig at rate 
e -2  has  a t rans la t ion  invar iant  s t a t i o n a r y  d i s t r ibu t ion  in wh ich  the  d e n s i t y  o f  1 's is equal  

to 1/2. 

We get "equal to 1/2" rather than just "close to 1/2" by start ing from product measure 
with density 1/2 and using the symmetry of the dynamics under interchange of O's and 
l ' s .  Comparing this with Theorems 5.1 and 5.3, the only surprise is that  in the nearest 
neighbor case there is a stationary distribution with fast stirring. We conjecture that  the 
presence of stirring at any positive rate, there is a nontrivial s tat ionary distribution. In 
support  of this conjecture, Figure 9.2 shows a simulation of the nearest neighbor case with 
stirring rate = 3. 
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Figure 9.2. Threshold voter model, d = 1, X = { - 1 , 1 } ,  with stirring a t  ra te  3 
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Appendix.  Proofs of the Comparison Results 

In this section we will prove Theorems 4.1, 4.2, and 4.3. The proofs are not beautiful 
but  by now the reader has hopefully been convinced that  they are useful. We begin by 
recalling the set-up and repeating some definitions that were more fully explained in Section 
4. Let 

s  { ( x , n ) ~ Z ~ : x + n i s e v e n ,  n > 0 }  

and make s into a graph by drawing oriented edges from (x, n) to (z + 1,n + 1) and 
from (x, n) to (x - 1, n + 1). Given random variables w(x, n) that  indicate whether the 
sites are open (1) or closed (0), we say that  (y ,n)  can bc reached from (x ,m) and write 
(x, m) ---* (y, n) if there is a sequence of points x = x m , . . . ,  x ,  = y so that  [xk - xk- l ]  = 1 
for m < k < n and w(xk,k) = 1 for m <_ k _< n. We say that  the w(x,n) are " M  
dependent with density at least 1 - 7 "  if whenever (xi,ni), 1 < i < I is a sequence with 
I I (x i ,ml ) -  (xi ,mj) l loo > M if i ~ j then 

(A.1) P(w(xi,ni) = 0 for 1 < i < I) < 3 "1 

Let Co = {(y,n) : (0,0) ~ (y,n)} be the set of all points in space-time that can be 
reached by a path from (0,0). Co is called the cluster containing the origin. When the 
cluster is infinite, i.e., {1r = ~ }  we say that percolation occurs. Our first result shows 
that  if the density of open sites is high enough then percolation occurs. 

T h e o r e m  A.1 .  If O < 6 -4(2M+1)2 then P([C0] < oo) _< 5501/(2M+1)2 ~_~ 1/20. 

PROOF: The proof is by the contour method. Even though the argument is messy to write 
down, the idea is simple: if IC0[ < c~ then there is a "contour" of closed sites that stops 
the percolation from occuring. As we will show, the probability of a specific contour of 
length n is _< g(0) '~ where g(8) --* 0 as 8 --* 0 and the number of contours of length n is 
_< 3 n so by summing a geometric series we see that the existence of a contour is unlikely 
if 0 is small. 

Most of the work goes into defining the contour. Before start ing on this we have to 
discard a trivial case: if (0, 0) is closed, an event with probability < 7, then Co = 0. For 
the rest of the proof we will concentrate on the case in which (0, 0) is open and hence 
(0,0) E Co. Let D = {z E R 2 : ][Zl]l < 1}, where n is for diamond. To turn the cluster Co 
into a solid blob, we look at 

790 = U(m,,)ec0 ((m, n) + D) 

where ( m , n ) + n  = { ( m , n ) + z  : z E D} is the set D translated by (re, n). When 
(0,0) E Co, the lowest point in 790 is ( 0 , - 1 ) .  If [Co] < c~, then the open set 

G = { R  • ( - 1 ,  oo)} - v0  

has exactly one unbounded component U. We call F = 0U n 79o the contour associated 
with Co, and orient it so that the segment ( 0 , - 1 )  ~ (1,0), which is always present, is 
oriented in the direction indicated. For an example see Figure A.1. 
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Figure A.1 

The contour is made up of segments that are translates of the four sides of D 

type 1 2 3 4 
translate of ( - 1 , 0 )  --~ ( 0 , - 1 )  ( 0 , - 1 )  ---* (1,0) (1,0) ---* (0, 1) (0, 1) ---* ( - 1 , 0 )  

As we walk along the contour in the direction of the orientation, our left hand is always 
touching Do and our right is always touching U. If we stand at the midpoint  of one of the 
segments that  make up F then the site in 

s = {(re, n) E Z2:  m + n is even} 

closest to our right hand is called the ~ite a~8ociated with the ~egraenL A glance at Figure 
A.1 reveals that  the sites associated with segments of types 3 and 4 must be closed but 
those assoeiated with types 1 and 2 may be open or closed. Let ni be the number of 
segments of type i in the contour. The segments of types 1 and 2 increase the z coordinate 
by 1, while those of types 3 and 4 decrease the x coordinate by 1. The  contour ends where 
it begins so n3 + n4 = nx + n2 and hence if the contour is composed of n segments we must 
have n3 + n4 = n/2. Now a closed site may be associated with one type 3 and one type 4 
segement (see 5 on Figure A.1) but  cannot be associated with more than one segment of 
each type, so if there are n segments in the contour there must be at least n/4 closed sites 
along it. 
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To count the number of contours of length n we note that  the first segment is always 
( 0 , - 1 )  ---* (1, 0) and after that  there are at most 3 choices at each stage (since we cannot 
retrace the step just made), so there are at most 3 "-1 contours of length n. Suppose for 
the moment that the states of the sites are independent and open with probability 1 - 7- 
Noting that  the length of the contour is > 4, it follows that  

P(0 < IC01 < ~ )  < ~ 3"-L~ ~/4 = 
(3- t l / ' )4  277 

- 3 1 - 33,1/4 1 - 33 '1/4 
rt=4 

which is < 1 - 3' if 7 is small enough. (Recall P(Co = 0) < 7.) To extend the last result to 
the M dependent case, note that we can find a subset of the closed sites along the contour 
of size at least n / 4 ( 2 M  + 1) 2 so that  for each z # w in this set Itz - wlI~ > M.  (Pick any 
closed site to start,  then throw out the < (2M + 1) 2 - 1 closed sites in our set that  are 
too close to the first one, pick another site, throw out the closed sites too close to it . . . )  
Using (4.1) and noting our assumption on 3' implies 371/4(2M+1)2 < 1/2 we have 

oo 

P(0 < Ir < ~ )  ___ ~ 3 "-1 7 "/4(2M+1)2 
r t~4 

1 ( 3 " T 1 / 4 ( 2 M + l ) 2 )  4 
---- 5 "  ~ - - - ~ 2  --< 5471/(2M+1)2 

Recalling now that  P(Co = 0) < 7 < 71/(2M+1)2, we have proved Theorem 4.1. O 

From the last proof it follows immediately that  if we let I F] denote the number of 
segments in the contour and assume 7 < 6 -4(2M+1)2 then 

oo 

(A.2) P(L _< ]I" I < c~) -< ~ 3n-17"/4(2M+l)2 = 51 . l(371/4(2M+l)2)L-- 3"f 1/4(2M+1): -< 2-L 

rt=L 

In order to prove the existence of stationary distributions we need results about M 
dependent  oriented percolation start ing from the initial configuration W0 p in which the 
events {x E W0P}, x E 2Z are independent and have probability p. Let 

W~ = {y:  (x, 0) ---* (y,n) for some x E W~} 

T h e o r e m  A.2 .  Ifp > 0 and 7 < 6-4(2M+1)2 then 

l iminf  P(0 E Wff,) > 1 -5501/(2M+1)2 > 19/20 

Proof." The  first step is to look backwards in time to reduce the new problem to the old 
one solved in (A.2). This is the discrete time version of the duality considered in Section 
3. To have the dual process defined for all time, it is convenient to introduce independent 
random variables w(z,n) for n < 0 that  have P(w(x,n) = 1) = 1 - 7 and look at the 
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percolation process on /2  = {(z, n) E Z 2 : x + n is even}. Later in the proof we will want 
to use the fact that  7 > O, so you should observe that the desired conclusion is trivial when 
7 = O, i.e., all sites are open. 

We say that  (x, m) can be reached from (g, n) by a dual path (and write (g, n) 7 .  
(x,m)) if there is a sequence of points x = z m , . . . , z , ,  = y so that  [xk - xk - l l  = 1 for 
m < k _< n and w(xk,k) = 1 for m < k < n. It should be clear from the definition that 
(x, m) --4 (y, n ) i f  and only if (y, n) ---~. (x, m), so 

{0 e W~,} = {(0, 2n) --** (x, O) for some z e Wg} 

To est imate the right hand side it is convenient to introduce 

Vd~ '~ = {x :  (0, 2n) -% (x, 2n - m)} 

d(o,~.) = {(:,:, t ) :  (o, 2,-,) --.. (:~, ~)} 

By conditioning on the value of 1~2~, it is easy to see that  

P(O - E {(a } (A.3) 

so to complete the proof we want to show that if n is large and 1~22: r 0 then I I ~ : [  is 
large with high probability. The process l~-~" comes from random variables w(x, n) that 
have property (A.1), and the event on the left hand side of (A.4) below implies that the 
contour associated with C(0,2,0 has length at least 4n, so (A.2) implies 

(A.4) P(I;V~,~ # O, IC(o,=,,)l < oo) ___ P(4n <_ II'l < ~ )  < 2-" "  

Now the sites ( x , - 1 )  E /1 are independent of those in Z:0 and are closed with probability 
7 so 

w;.,+~ o < IW~,.I < v ~  >_ 

Combining (A.4) and (A.5) gives 

(A.6) P(0  < 1I~2221 _< vf~) < 
" 2. c~) 2_4..y_2r ~ P(W~. :/: 0, Id(0,;.)l < _< 

w;.+ ,  o < IW;. I 5 v ~  

Using (A.3) in the first step; then (A.6) and ^ 2, 0) > P(IW~.I > P(Id(0,2.)] = o~) in the 
second; and finally, Theorem 4.1 in the third we have 

P(O E W~,) ~ {1 - (1 - p),V~} p ( [ w ~ ]  k x/'n) 
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which proves the desired result. [] 

The arguments for the last two results can be extended easily to give the conclusion 
quoted in Section 6 as (6.1): 

T h e o r e m  A.3 .  If p > 0 then 

l iminf  P ( { - 2 K , . . .  ,2K} fl W~, ~ 0) >_ 1 - e~ 

where eK ---* 0 as K --* c~. 

PROOf: By the reasoning in the proof of Theorem A.2, we have { - 2 K  . . . .  ,2K} rl W~, r 0 
if and only if there is a path down from some ( x , n )  with Ix[ < 2K to (y,0) for some 
y E W{,. To estimate the probability that this occurs we suppose that all the sites 
{ - 2 K +  1 , - 2 K  + 3 . . . .  , 2 K  - 1} are open at time 2n + 1, let 

-- { (x , t ) :  (y ,2n  + 1) ---+. ( x , t )  for some M < 2 K -  1} 

and turn  the cluster C into a solid blob by looking at 

l~ = U(,,,,)ec (m, n) + D 

where D = {z e R. 2 : IIzlll _< 1}. As in the proof of Theroem A.1 when ICI < cr we can 
define a contour associated with the cluster, and when the contour has length n there will 
be at least n / 4 ( 2 M  + 1) d closed sites so that for each z r w in this set I]z - wilco > M. 
Since this time the shortest contour has length 8K using (A.2) gives 

P(ICl < or < 2 -sK 

If we let 

IJl/'m~"2n+l = { y :  ( x , 2 n  -~ 1) ---4. (y ,  2r~ -- Yn) for s o m e  Ix[ <_ 2K - 1} 

then the argument in the proof of Theorem A.2 shows that 

P(0 < IW~"2"§ I < v~) < 2-4"7 -r  

So repeating the last computat ion in the proof of Theorem A.2 proves the result with 
~K = 2 -sK [] 

Our last task is to prove Theorem 4.3. We begin by recalling the 

Comparison Assumptions. We suppose given the following ingredients: a translation 
invariant finite range process ~t : Z a -~ {0, 1 , . . .  a - 1} that is constructed from the graph- 
ical representation given in Section 2, an integer L, and a collection H of configurations 
determined by the values of ( on [ -L ,  L] d with the following property: 
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if ( E H then there is an event G~ measurable with respect to the graphical representation 
in [-koL, kon] d x [0,j0T] and with P(G~) > (1 - 0 )  so that if~0 = ( then on G~, ~T lies 
in O'2LelH and in a_2Le~H. 

Here (au~)(x) = ~(x + y) denote the translation (or shift) of ~ by y and cruH = {au~ : ( E 
H}. If we let M = max{j0, k0} then the space t ime regions 

~ m . ,  = ( m 2 L e l , n T )  + {[-k0L,  k0L] d x [0,j0T]} 

that  correspond to points (rn, n) , (m' ,n ' )  E / :  with [l(m,n) - (m',n ')l[cr > M are disjoint. 

T h e o r e m  A.4 .  If the comparison assumptions hold then we can define random variables 
w(z ,n)  so that  X ,  = {rn : (re, n) E s  E am2L,1H} dominates an M dependent 
oriented percolation process with initial configuration Wo = X0 and density at least 1 - 7, 
i.e., X ,  D W,  for all n. 

PROOF: We will define the w(x, n) in the oriented percolation by induction. We begin 
by setting V0 = X0 and defining a slightly enlarged version of the percolation process V, 
consisting of all the y so that  can be reached from some (x0,0) with x0 E V0 by a sequence 
xo,xl  . . . .  z ,  = y so that  [xk - zk-x[ = 1 for 1 < k < n and w(xk,k)  = 1 for 0 _< k < n, 
i.e., the last point in the sequence does not have to be open. Since Vn D W, it suffices to 
show that X ,  D V,. 

Let n > 0 and suppose that 17, and the w(x, g) with g < n have been defined so that 
X .  D V,. To define the w(m, n), and hence V,+I,  we consider two cases. 

CASE 1. m E V, C X,~. We set w(rn, n) = 1 if Go_~,L.I~.r occurs in the graphical repre- 
sentation translated by -rn2Lex in space and - n T  in time, 0 otherwise. By assumption 
this event is determined by the Poisson points in T~m,,, has probabili ty at least 1 - 7, and 
guarantees that  (m + 1), (m - 1) 6 X , + l .  

CASE 2. m r Vn. In this case, the value of w(rn, n) is not important  for the evolution of 
the percolation process so we set w(m, n) equal to an independent random variable that  is 
1 with probability 1 - 3' and 0 with probability 7. 

If m E V,t+l then either rn - 1 E V, and w(m - 1,n) = 1 or m + 1 E V, and 
w(m + 1,n) = 1. In either ease the observation in Case 1 implies that  m E X , + I .  The 
last conclusion and induction imply that X ,  D V, for all n. The  last detail to check is 
that  the w(rn, n) satisfy (A.1) and again we use induction. If I = 1 the conclusion is true, 
so suppose now that  k > 1 and that  the conclusion is true for I = k - 1. Let (x i ,n i )  
1 < i < k be a seqeunce of points with I[(Xi,ni) -- (xj,nj)[]oo > M if i 7~ j and suppose 
that  the sequence has been indexed so that nk >_ nj for all j < k. Let .T be the information 
contained in the graphical representation up to time nkT or in one of the space time boxes 
7~,~,,~ with i < k. The  comparison assumptions and the fact that  nk >__ nj for j < k imply 
that 

P(w(rnk,nk) = 017 ) < 3, 
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In tegra t ing  the  last  inequal i ty  over E k - i  = {w(mi,ni) = 0 for i _< k - 1} C ~" which by 
induc t ion  has  probabi l i ty  smaller  than  7 k-I  gives 

k - - I  J~'k--I 

= P(Sk-1 N {w(mk,nk) = 0}) = P(Ek) 

which verifies (A.1) and  completes the proof. [] 
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