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Summary.  In this paper we consider a modification o f  Ziff, Gulari and Barshad's 
(1986) model o f  oxidation o f  carbon monoxide on a catalyst surface in which the 
reactants are mobile on the catalyst surface. We find regions in the parameter space 
in which poisoning occurs (the catalyst surface becomes completely occupied by 
one type of  atom) and another in which there is a translation invariant stationary 
distribution in which the two atoms have positive density. The last result is proved 
by exploiting a connection between the particle system with fast stirring and a 
limiting system of  reaction diffusion equations. 
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1 Introduction 

We will consider a model o f  a catalyst in which the state at time t, ~t : Z d -~ 
{0, 1,2} where 0 = a vacant site, 1 = a carbon monoxide (CO) molecule attached 
to the surface, and 2 = a single oxygen atom (0)  attached to the surface. Let- 
ting llxllz =l  xl l + l x 2  1 §  lxd [ and declaring that x and y are neighbors if  
l[ x -y I I~  = 1 we can formulate the model as follows: 

(i) Carbon monoxide molecules land at vacant sites at rate p. 
(ii) An adjacent pair o f  vacant sites becomes occupied by two oxygen atoms at rate 
q/2d. This reflects the fact that oxygen molecules 02 need two adjacent vacant sites 
to land, and when they land separate into two oxygen atoms attached to the surface. 
(iii) Adjacent carbon monoxide molecules and oxygen atoms react at rate r/2d 
producing a carbon dioxide molecule and resulting in two vacant sites. 

The rate r is much larger than the rates p and q so Ziff et al. (1986) found 
it convenient to take r = oe. In this case (think about the limit r--~ oo) when 
a reactant lands it instantaneously checks its neighbors to see if one is occupied by 
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the opposite type and if  so, reacts with one of  them chosen at random. When 
r = ec, one can by changing the time scale assume that q/2 = 1 - p .  Ziff et al. 
(1986) investigated this system starting from all sites vacant in the physically rele- 
vant case d = 2 and found the following 

P <Pl  ~ 0.389 poisoning to all O 

Pl < P=<P2 coexistence of  CO and O 

p > p2 ~ 0.525 poisoning to all CO 

Here poisoning to all O means that P(~t(x) = 2) -+ 1, and coexistence of  CO and 
O means that there is an equilibrium state in which l ' s  and 2 's  are present at a 
positive density. A remarkable result o f  their simulations is that at p2 the system 
has a first order phase transition. The density of  CO in equilibrium jumps from less 
than 0.25 to 1. See Fig. 1. 

Proving that poisoning occurs for small p or for p close to 1 is not too hard. 
However,  it seems very difficult to attack the more interesting problem of  proving 
that the coexistence region exists since there is no parameter that is small (or large) 
in this regime. Two things that make this problem especially hard are: 

(a) computer simulations indicate that there is no coexistence in d = 1; 
(b) if  one simplifies the model by supposing that 2 ' s  land one at a time then there 
never is coexistence (see Grannan and Swindle (1991); Mountford and Sudbury 
(1992)). 

While waiting for an insight that will tell us why the combination of  a diatomic 
molecule and d > 1 allows for coexistence to occur, it is natural to modify the 
model to introduce a large parameter. Bramson and Neuhauser (1992) have done 
this by replacing the oxygen atom by an N • N polymer that consists of  N 2 identical 
atoms arranged in a square of  side N. They prove the possibility of  coexistence by 
showing that when N is large the first phase disappears (i.e., P1 = 0) and P2 > 0. 

In this paper we will pursue a different modification. We use the observation 
(see Engel and Ertl (1979)) that carbon monoxide molecules are highly mobile on 
the catalyst surface and that oxygen atoms have some mobility as an excuse to 
introduce stirring. That is, for each pair o f  neighbors x and y we exchange the 
values at x and y at rate v, i.e., we change the configuration from ~ to ff'Y where 

{ ~(y) i f z = x  
~x'Y(z) = ~(x) if  z = y  

~(z) otherwise 

Our main motivation for introducing stirring is that if  we consider the system on 
eZ  d, set v = c -2, and let e --+ 0 then, using results o f  Durrett and Neuhauser (1993), 
the particle system will converge to the solution of  a reaction diffusion equation 
and we can use results about the limiting p.d.e, to prove that coexistence occurs for 
small e. 

Before stating our coexistence result, we will give two results about poisoning. 
We do this mainly to show that when r is fixed and e is small we have, in contrast 
to Bramson and Neuhauser, a situation in which all three phases (poisoning to O, 
poisoning to CO, and coexistence) are present in the (p, q) plane. 

Theorem 1 Suppose v > O, p > q and 4o is translation invariant. Then for all x 
and neohbors y of  x we have P ( ~ t ( x )  = O) ---+ 0 and P ( ~ t ( x )  = 1, i t ( Y )  = 2) ~ 0. 
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So for  any K the probability that it is either - 1 or = 2 on [ - K , K ]  a approaches 
l as t---~ oe. 

To explain the condition p > q note that (ii) can be formulated as: 

(ii ~) At  rate q/2 an oxygen molecule attempts a landing at x. It picks a neighbor y 
at random. I f  both x and y are vacant, the two sites become occupied by  oxygen 
atoms; otherwise no change occurs. 

Thus we have two oxygen atoms attempting to land at rate q/2 versus one carbon 
monoxide molecule attempting landings at rate p ,  and when p > q the landing rate 
for carbon monoxide exceeds that o f  oxygen. We conjecture that i f p  > q and l ' s  
have a positive density in the translation invariant initial state ~0 then the system 
converges to all l ' s  but our argument for Theorem 1, which is simple enough to 
give in detail in the introduction, does not allow us to prove this. 

P r o o f  It suffices to prove that P(~t(x) = 0) --+ 0 to get the other two conclusions 
since (a) there is a 6 > 0 so that i f  y is a neighbor of  x 

P(~t+l(X) = 0) ~ (~P(~t(x) = 1, it(Y) = 2 ) ,  

and (b) i f  there is no 0 in [ - K , K ]  't and no two adjacent sites with a 1 and a 2 
then the whole cube must be - 1 or =- 2. 

To prove that P(~t(x) = 0) --+ 0 we begin by  observing that i f  we write y ~ x 
to denote y is a neighbor o f  x then 

P(i t (x )  = 1) = pP( i t ( x )  = O) - ~ P( i t (x )  = 1, ~tQv) = 2) 
y ~ x  

P(~t(x) = 2) = 
y ~ x  

r Z Sd P(~t (x)  = 2, i , (y )  = 1) .  
y ~ x  

There are no terms involving the stirring since it does not change the density o f  l ' s  
or 2 's .  I f  40 is translation invariant then so is i t  and hence the last term in each 
o f  the two equations are the same. Subtracting and using the fact that P(~t(x) = O, 
~t(Y) = O)<P(~t(x) = 0) we have 
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d{p(~t(x)  = 1) - P(~t(x) = 2)} > (p - q)P(~t(x) = 0). 

Integrating from 0 to T it follows that 

T 
(p - q) f P( ~t(x) 

o 

The 2 on the fight hand 
p > q we have 

= O)dt  <= ( P ( { t ( x )  = l )  - P ( ~ t ( x )  = 2)} [o r =< 2 .  

side o f  the last inequality does not depend on T, so if  

Cx3 

f P(~t(x) = O)dt < 2/(p - q).  
o 

From the last conclusion it follows easily that P(~t(x) = 0) ~ 0. Just observe that 
since O's disappear at a rate < (p + q), we have 

P(~t+s(x) = o) >= e-~+q) 'P(~t(x)  = o) 

so if P(~t(x) = 0) does not go to 0, it would not be integrable. 

Proving convergence to all 2 's  is made difficult by the fact that if p = 0 then 
the oxygen atoms cannot completely fill space since they will leave isolated vacant 
sites. Nonetheless we can prove 

Theorem 2 Suppose v > O, p > O, and 0 < r < oo are fixed. I f  q is large enough 
and ~o contains infinitely many 2's then P(~t(x) = 2) ~ 1. 

Sketch of  Proof We begin by considering the system with q = o~, i.e., an adja- 
cent pair o f  vacant sites is immediately filled with a pair of  2 's  (and if several 
pairs become vacant simultaneously we fill randomly chosen pairs of  sites until no 
vacant pairs remain). We will show that for any 6 > 0 we can pick a large L so 
that with probability at least 1 - 6/2 an event we call triplin 9 occurs: if  [ -L ,  L] d 
is completely occupied by 2 's  at time 0 then [ -3L ,  3L] d is completely occupied 
by 2 's  at all times 2L 2 <_t<_4L 2 and the event that guarantees tripling is measurable 
with respect to the flips that occur in A = [ -6L ,  6L] d x [0, 4L2]. (See Fig. 3 for 
a picture.) Since this is a statement about a finite space time block, it follows by 
"continuity" that if  q is large then tripling occurs with probability at least 1 - 6 .  
Once this is established one can compare with a mildly dependent oriented perco- 
lation process exactly as in Sects. 3 and 4 of  Durrett (1992) to conclude that if 
[ - L ,  L] d is completely occupied by 2 's  at time 0 then there is an a > 0 so that 
with positive probability we will have [-at, at] d completely occupied for all large 
t. To get Theorem 2 from this, we note that i f  there are infinitely many 2 's  in the 
initial configuration we will eventually find a translate o f  I - L ,  L] d filled with 2 ' s  
that gives rise to a linearly growing set o f  2's. 

The system with q = ec is simple because vacant sites cannot be created. To see 
this note that 0 's  are only produced by a reaction of  a 1 and a 2 but this leaves an 
adjacent pair of  vacant sites that is immediately filled by a pair o f  2's. 0 's  cannot 
be created but they are easily destroyed - any 0 is subject to being landed on by a 
1 at rate p. From the last observation it follows easily that if L is large then with 
probability at least 1 - 6/4 there are no 0 's  in /3  = [ -4L ,4L]  d x [L2,4L2]. To prove 
that with probability at least 1 - 3/4 there are no l ' s  in C = [ -3L ,  3L] a x [2L2,4L z] 
we note that when there are no 0's in B any 1 in C must have started outside o f /3  
and moved into C by stirring, however this is unlikely. [-L,L] d is filled with 2 's  at 
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time 0 and these 2 's  cannot be destroyed. So after stirring they lead to a positive 
density of  2 ' s  in B that the 1 must swim through for about L 2 units o f  time without 
undergoing a reaction. 

Remark. By interchanging the roles of  
show that for fixed values of  v, q, and r, 
will not give the details since Theorem 
be true if  one assumes only that p > q. 

As mentioned earlier, we will prove 
on cZ  d, setting v = e-2  and letting e --+ 

E~ 

l ' s  and 2 's  in the last argument one can 
poisoning to all l ' s  occurs for large p. We 
1 suggests strongly that this result should 

coexistence by considering the system {7 
0 (fast stirring). The motivatien for doing 

this comes from a result o f  De Masi et al. (1986). (For a proof  that encompasses 
our application see Durrett and Neuhauser (1993)). 

Proposition 1 Suppose that ~ (x )  are independent and let uT(x, t ) =  P(~7(x)= i). 
I f  uT(x, O) = gi(x) is continuous then as e --+ O, uT(x, t) --+ ui(x, t) the bounded 
solution o f  

Oul 
(1.1) 0t -- Aul + p ( 1  -- ul -- u2) - r u l u 2  

0u2 
0t = Au2 + q ( 1  - ul -- u2) 2 -- rulu2 

with Ui(x, O ) ~- gi(X). 

Proposition 1 is easy to understand. Pure stirring has product measures as its sta- 
tionary distributions. When E is small, stirring operates at a fast rate and keeps the 
system close to a product measure. The rate of  change of  the densities can then be 
computed by assuming that adjacent sites are independent, or, in the language of  
physics, the densities evolve according to the equations of  "mean field theory" (see 
Dickman (1986)). 

Remark. I f  you go back and look at our justification, it is clear that a better descrip- 
tion would be to have the two species moving according to the simple exclusion 
process at different rates. However,  the existence of  the hydrodynamic limit becomes 
a very complicated problem and the limiting equation contains density dependent 
diffusion constants that cannot be computed explicitly. (Jeremy Quastel, private com- 
munication. See Quastel (1992) for some related results.) 

The first step in using Proposition 1 to understand the behavior of  the particle system 
with small c is to let ui(x,O) = ci in (1.1) to get a dynamical system vi(t) = ui(x,t) 

dvl 
( 1 . 2 )  - - p ( 1  - v l  - v 2 )  - rvlv2 

dt 

dr2 
d-T = q(1 - / ; 1  - - / 3 2 )  2 - r v l / ) 2  . 

The first step in analyzing (1.2) is to look for equilibria (Vl, v2), which in this case 
satisfy 

(1.3) 0 = p ( 1  - gl - ~2) - r171ge 

0 = q(1 - vl - v2) 2 - rvlv2 �9 
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This system has two trivial solutions gl = 1, ~2 = 0 and gl = 0, v2 = 1. Subtracting 
the two equations and then substituting the result into the first equation we have 
that if  gl + ~2 < 1 then 

(1.4) p / q  = 1 - ~ - h p 2 / q r  = gsg2 . 

From the first equation it is clear that p < q is necessary for the existence of  an 
equilibrium with gl + g2 < 1. Combining this with the observation that the largest 
product x y  among nonnegative numbers with x + y = a occurs when x = y = a / 2  

we see that necessary and sufficient conditions for the existence of  a nontrivial 
equilibrium are 

(1.5) p < q p Z / q r < ( 1  - p / q ) 2 / 4  (or 4 q p 2 / r < ( q - p ) 2 ) .  

Substituting the first equation in (1.4) into the second to get a single quadratic 
equation, and solving it follows that when the conditions in (1.5) hold there are two 
(possibly equal) equilibria (c~,/~) and (/3, e) with 

(q  _ p )  _ v / ( q  _ p)2 _ 4 q p 2 / r  
(1.6) ~ = 

2q 

(q _ p)  + v/(q _ p)2 _ 4qp2 / r  

2q 

To see which o f  the four equilibria (1,0), (0, 1), (e, fl) and (//,c 0 will correspond 
to equilibrium states of  the particle system we begin by looking at their stability. 
Figure 2 shows a picture of  trajectories of  the dynamical system (1.2) when p = 
1/4, q = 3/4, and r = 1, in which case e --- 1/6 and/~ = 1/2. As that picture shows 
(1,0) and (c~,/?) are attracting fixed points and (/~, e) and (0, 1) are saddle points. The 
last result holds in general and can be easily checked by linearizing about the fixed 
points. 

The equilibria (/~, c 0 and (0, 1), being saddle points, are not serious candidates for 
equilibria of  the particle system with fast stirring. To decide whether the equilibrium 
densities will be near (e,/~) or (1,0) we take a look at the speed of  the "travelling 
wave" connecting these points. To prove the existence of  the travelling wave we 
need the following result of  Volpert and Volpert (1988). For a treatment of  closely 
related problems using the Conley index, see Feinberg and Terman (1991). 

Proposit ion 2 T h e r e  is a c o n s t a n t  a a n d  m o n o t o n e  f u n c t i o n s  Ui w i th  

Us(x)  --~ ~ as  x --+ - o  c ,  Us(x )  --~ 1 as  x --+ oc 

U2(x)  -+ ]3 as  x ~ - o o ,  g z ( x )  -+ 0 as  x --+ oo 

so tha t  u i ( t , x )  = Ui(x  - ~ t )  is a so lu t ion  o f  (1.1) in d = 1. 

Such a solution is called a travelling wave because the functions u i ( t , x )  keep their 
shape and move with speed ~r which may be positive, negative or 0. 

Our intuition, based on results for scalar equations in Durrett and Neuhauser 
(1993), is that 

(a) when o > 0 and the stirring is fast there will be an equilibrium for the particle 
system in which the densities o f  particles of  types 1 and 2 are close to c~ and /3; 
(b) when cr < 0 there will be no nontrivial equilibrium when the stirring is fast. 



Coexistence results for catalysts 495 

Fig. 2. 

--6L 

2L 2 

L 2 

~4L - 3 L  

4L 2 

~r no O'S or l ' s  

3L 4L 

,~ nO O~s 

all 2's 
i l 

-L L 

Fig. 3. 

6L 

The main work in tuming our intuition into a proof  of  (a) is to prove a (rather 
weak) convergence result. Here Ilxll~ -- s u p / I x ;  I and [x [= (x 2 + . . .  + x ~ )  1/2 

Proposition 3 S u p p o s e  a > O. T h e r e  are  c o n s t a n t s  r I > O, c > 0 a n d  L < ec  so 

t h a t  i f  I lu(x,O)-  (a, fl)ll ~ < t / w h e n  x r [ - L , L ]  d then  

lim sup [[u(x,t)  - (~,fl)ll~ = O. 
t-~o~ Ixl =<ct 

In words, u(x ,  t)  is close to (e, t )  on a ball that grows at a linear rate. Once Propo- 
sition 3 is established, we can let cl = c~, c2 = fl and pick 

C i -- t] < A i  < ai < ci < bi < Bi  < ci -~- 17 , 

to get 
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(*) There are constants A i < ai < hi < Bi, L, and T so that if Ui(x,O ) E ( A i , B i )  

when x C [ - L , L ]  d then ui(x, T) E (ai, bi) when x E [ -3L ,  3L] a. 

This is the PDE input one needs for the argument in Sect. 3 of  Durrett and 
Neuhauser (1993), (compare ( ,)  with their Lemma 3.2), and it follows from the 
argument given there that 

Theorem 3 Suppose that ~ > O. I f  e is small then our system has a translation 
invariant stationary distribution in which the dens#ies o f  l ' s  and 2's are close to 
c~ and fl respectively. 

In the case o f  scalar equations Ou/& = Au  + f ( u )  one can use an integration by 
parts trick to relate the sign o f  a to the sign of  an integral o f f  (see the derivation 
of  (1.7) in Durrett and Neuhanser (1993)). That trick fails for systems of  equations. 
However, we can use a variant o f  this trick to prove that Theorem 3 is not vacuous. 

Proposition 4 I f  p<=r/20 and q>=20r then a > O. 

The rest of  the paper is devoted to proofs. Theorem 2 is proved in Sect. 2, Propo- 
sition 3 in Sect. 3, and Proposition 4 in Sect. 4. This paper had its roots in conver- 
sations the authors had with Eric Grannan at the AMS regional meeting in Irvine, 
California in November 1990. We are grateful to Phil Holmes at CorneU and to 
Robert Gardner at U of  Massachusetts at Amherst for their help in coping with the 
reaction-diffusion equation, and to Claudia Neuhauser for her extensive comments 
on the first draft of  this paper. 

2 Convergence to all 2's 

In view of  the sketch of  the proof given in the introduction, it suffices to consider 
the system with q = ec and show that 

(*) for any ~ > 0, i f  L is large then with the probability at least 1 -c~/2 tripling 
occurs: i f  [ -L ,L]  ~ is completely occupied by 2 ' s  at time 0 then [ -3L ,3L]  d is 
completely occupied by 2 ' s  at all times 2LZNt<_4L 2 and the event that guaran- 
tees tripling is measurable with respect to the flips that occur in A = [ -6L ,  6L] a x 
[0,4L2]. 

To prove ( , )  it is convenient to construct the process from a graphical represen- 
tation, i.e., a collection of  independent Poisson processes. For each x E Z a, let U~ 
be a Poisson process with rate p,  and for each 1 <<_i<<_d, let S~ "i and T x'i, be Poisson 
processes with rates v and rid respectively. At time S~ ,i we exchange the values 
at x and x +  ei where ei is the ith unit vector, i.e., (ei)j = 1 if i = j , 0  otherwise. 
At time T x'i a reaction between atoms at x and x + ei occurs producing two vacant 
sites if  these sites are occupied by two different atoms. At time U X a 1 lands at x 
if  it is vacant. I f  q = cc we add the rule that an adjacent pair of  vacant sites is 
immediately filled with a pair o f  2 's  (and if several pairs become vacant simultane- 
ously we fill randomly chosen pairs of  sites until no vacant pair remain). I f  q < oo 
we introduce Poisson processes VX ,i with rate q/2d at which times two 2 's  land if 
x and x q-ei are vacant. 

Even when q = oo it is not hard to use the argument in Harris (1972) to show 
that our recipe gives rise to a well defined process. Our main reason for introducing 
this construction is that it allows us to work backwards in time. To facilitate this 
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it is useful to decorate our construction in the style of  Griffeath (1979). At stirring 
times s = S x'i we draw an undirected line segment from (x, s) to (x + ei, s) and we 
write a 6 at each end point. We say that (Xs, s), a<_s<_b is a stirrin9 path if  it is 
(a) piecewise constant, (b) at each discontinuity there is a 8 at (X~, s) and at (X~_, s), 
(c) there are no 6 's  at any (Xs, s) where the path is continuous. In words, the path 
jumps only at stirrings and does not ignore any stirrings that touch the path. We 
say that (Xa, t -  s) with O<s<-to is a dual stirrin9 path i f  (Xt_r,r), t - t o  <=r<=t is 
a stirring path. 

When q = oo, O's cannot be created, only destroyed, so if  there is a 0 at x 
at time t then there is a dual stirring path (Xs, t - s ) ,  O<s<t  with X0 = x  so that 
( i t ,  t - s) is always occupied by a 0. Since l ' s  land at rate p this is very unlikely 
if t is large. This observation leads easily to 

L e m m a  2.1 I f  L is large then with probability at least 1 - 6/4 there are no O's in 
/3 = ( - 4 L ,  4L) d x [L 2, 4L 2] and the event that guarantees this is measurable with 
respect to the Poisson arrivals in .4 = [ -6L ,  6L] d x [0, 4L2]. 

The first step in proving this result is to define a fast path as a stirring path that 
moves a distance more than L in time < L  and ends in /3  and to prove 

L e m m a  2.2 I f  L is large then with probability at least 1 - 6/8 there is no fast 
path. 

Proof I f  there is a fast path then working backwards in time from the end of  the 
path, there will be a dual stirring path ~s = (Xs, t - s) that starts at time t = L 2 or at 
the location of  some 6, (x0, t), in the graphical representation in B and exists from 
xo + [-L,L] d by time L. The number of  starting points at time t = L 2 is smaller 
than (8L) d. The number of  such stirring 6's  is 2 times a Poisson with parameter 
AlL d+2 and hence, with probability at least 1 -  Cexp(-TLd+2),  there are at most 
4AlL a+2 such starting points. A standard large deviations results implies that the 
probability a simple random walk starting from 0 and moving at a fixed rate (here 
2dr) will exit [-L,L] d by time L is smaller than Ce -~L. Combining this with the 
previous observation it follows that the probability of  a fast path is at most 

Ce-7 Ld+2 + (8 d + 4A1)Ld+2Ce -TL , 

and this proves Lemma 2.2. _" 

Proof of  Lemma 2.1 By considering the first time there is a 0 in /3  we can find a 
dual stirring path that was always occupied by 0 's  that either starts at time L 2 or at 
a stirring point in /3  and goes backwards to time 0 or to a point outside of  ,4. When 
there are no fast paths, any such path must have duration at least L and hence has 
probability at most e -pL to avoid having a 1 land on it. As in the previous proof, 
the number of  stirring starting points is 2 times a Poisson with parameter AlL a+2 
and hence with probability at least 1 - C e x p ( - y L  a+2) there are at most 4AlL a+2 
such starting points. Adding the fewer than (8L) d starting points at time L 2 and 
recalling our estimate on the probability of  having a fast path, it follows that the 
probability of  a 0 i n /3  is at most 

~- + Ce-~ Ld+2 + (8 d + 4A1)Ld+2e -pL 
8 

and this proves Lemma 2.1. 71 
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Lemma 2.3 I f  L is large then with probability at least 1 - 3/2 there are no O's or 
l ' s  in C = [ -3L ,  3L] d x [2L 2, 4L 2] and the event that guarantees this is measurable 
with respect to the Poisson arrivals in A = [-6L,6L] d x [0,4L2]. 

Proo f  We can, in view of  Lemma 2.1, suppose that there are no 0 's  in 13 and in 
view of  Lemma 2.2 suppose that there are no fast paths. We would like to emphasize 
that we are not conditioning on the occurrence of  these events which could change 
the personality o f  our process but instead are looking at the part o f  the probability 
space where these events occur. 

Since there are no 0 's  in /3, any 1 in C must have started outside B and 
moved into C without reacting with a 2. To prove that this is unlikely we note 
that the first time such a 1 entered C, must have been at time 2L 2 or at a stir- 
ring time. Let (x, t) be one of  these space time points and let (Xs ~ t -  s) be the 
dual stirring path starting from X ~ = x. Since there are no fast paths we know that 
X ~ E [-4L,4L] d for O<s<_L. Our goal is to prove that with probability at least 
1 - Cexp(-TL ~) 

I{O <_s<L : ~t_,(X ~ + el) = 2)1 > a2L ~ 

(here el = (1 ,0 , . . . , 0 )  is the first unit vector) so the probability that a 1 can travel 
along this path without reacting with a neighboring 2 is <=exp(-ra2L~/2d). 

To examine the states o f  the sites (Xs ~ + e~, t - s) we will follow their dual stir- 
ring paths. In order to have the dual stirring paths that we examine behave like inde- 
pendent random walks, we will only look at the sites (X ~ + el, t - s) at times that are 
fairly well separated. This is the intuition behind the following construction. At times 
t -  k U +  1 for 1 <-k<L ~ we begin watching the site xk + el where xk = X~ I f  
this site is not occupied by one o f  our earlier chosen particles and if no stirring 
event affects xk or xk + el between time t - kL ~ and t - k U  + 1 we add a new par- 
ticle to our collection and let X [  denote its position at time t -  s for kL~<_s<_t; 
otherwise we add no particle to our collection. For reasons that will emerge in the 
proof we pick c~ = 1/5 and fi = 1/15 to satisfy 

a + f i < l  f i - ( e / 2 )  < 0 0 .36+0 .3f i  < 0.4.  

We will show that there is a constant al > 0 so that with probability > 1 - L -(d+3) 
(a number chosen to reflect the fact that it is very likely that there are fewer than 
A2L d+2 starting points to worry about): 

(i) we start at least alL ~ particles, and 
(ii) the particles X k we start can be coupled to independent particles Y~ so that the 
discrepancy is never more than L ~ 

We will now show that (i) and (ii) easily imply the desired result before embarking 
on their somewhat lengthy proofs. Since X ~ is not a fast path and ~ + fl < 1, all 
the yk start inside [-4L,4L] d and at times =>2L 2 -L~+~>=L 2. So they each have 
a probability > b l  o f  tracing back to [-L/2 ,L/2]  d at time 0 and staying inside 
[ -5L ,  5L] d. Since the yk are independent, a standard large deviations estimate im- 
plies that if a2 = albi /2  then with probability at least 1 - Cexp( -vL  ~) at least a2L~ 
of  the Yk's are good, that is, they trace back to [-L/2 ,L/2]  d at time 0 and stay 
inside [ -5L ,  5L] d. The coupling result in (ii) then implies that the X k associated 
with these good yk trace back to [ - L , L ]  d at time 0 and stay inside ( - 6 L , 6 L )  a, 
so xk + el is occupied by a 2 from time t - kL ~ to t kL ~ + 1. We have arranged 
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things so that no stirring affects xk § el or xk between times t - k U  and t - k U  § 1, 
so there is a probability > b2 > 0 that a reaction between these two sites will occur 
removing the 1. The possibilities o f  a reaction are independent for different values 
of  k so the probability that no reaction occurs is smaller than exp(a2U~ln(1 - b2)). 
Our error probabilities add up to something less than 4L -(d+3) when L is large, so 
taking into account the number of  possible starting points it follows that with high 
probability there is no 1 in C. 

To complete the proof, it is enough to prove (i) and (ii). We begin with the 

P r o o f  o f  (i). Let Ek be the event that we add a new particle at the kth stage, and 
let Uj denote all the information in the graphical representation between times t and 
t - j U  + 1. 

Lemma 2.4 There is a constant ao > 0 so that i f  L is large then 

P ( E k l f k - i ) > a o  . 

P r o o f  It is clear that there is a positive probability, independent of  .T'k, of  no stirring 
affecting x~ or xk + e1 between times t - kL ~ and t - kL ~ + 1. To prove the result 
then it suffices to establish a lower bound on the probability that none of  our earlier 
chosen particles sits at Xk + el. To do this we begin by considering the behavior 
of  the distance Ds = IIYs -zsll~ between two particles Ys and Zs moved by stirring. 
We claim that Ds is stochastically larger than II&lll where Ss  is a d dimensional 
simple random walk that starts at 0 and jumps at rate 4dr. To verify this claim note 
that 

(a) i f  D~ > 1 or D~ = 1 and the stirring involves only one of  Xs and Ys then D~ 
behaves like IISsN~, 
(b) if  Ds = 1 stirrings of  the pair (Xs, Ys) (which leave Ds unchanged) happen at 
rate v while IISslll has jumps from 1 to 0 at rate 2v. 

With the last two observations in mind one can easily construct a coupling of  the 
two processes that has II&.lll </7),. Combining the last comparison with well known 
facts about Ss we have 

P(D~ = 1) <P(II& Ill < 1) < c/(1 + s) 1/2 . 

The last estimate applies to ]IX ~ -Xilll for any value o f j .  So the probability that 

xk + el is occupied is at most CL ~-(~/2). The last quantity approaches 0 as L --+ 
because f l -  (~/2) < 0, so the proof  is complete. 

Lemma 2.5 Let  Nk = ~)=1 1~ be the number o f  particles we 9enerate in the first 
k tries and let a1 = ao/2. Then 

P(Nk <=alk) <=2e -ka2/2 . 

P r o o f  Define Mk by Mo = 0 and for k => 1 

M~ = Mk-1 + 1Ek -- P(Ekl~k-1)  . 

Mk is a martingale with respect to 5k with I Mk --Mk-1 I < 1 so Azuma ' s  inequality 
(see (4.1) on p. 159 in McDiarmid (1989)) implies that for any t > 0 

P(lmkl > t) ~_2e -tz/2k . 
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Lemma 2.4 implies that Nk >Mk + aok so 

P(Nk < alk) <=P(IMNI >-_ alk) < 2e -ha2~2 . 

Having established that there are lots of  paths, the next step is to show that they 
can be closely coupled to independent random walks yk. 

Proof of (ii). Following the approach of  part b of  Sect. 2 o f  Durrett and Neuhauser 
(1993) we say that X k is crowded at time s if  Ilx j - X k l l l  = 1 for s o m e j + k .  When 
X k is not crowded we define the increments of  yk to be equal to those of  X ~ but 
when X k is crowded we use an independent random walk to define the increments 
of  yk. Since the movements o f  an X ~ are independent of  the other xJ when X k is 
not crowded, the yk just defined are independent simple random walks. 

To estimate the amount of  time that X k is crowded we will use the observation 
made in the proof of  Lemma 2.4 : ]lXs J - x ~ l l l  is stochastically larger than IISslll, 
where Ss is a simple random walk that starts at 0 and takes steps at rate 4dr. Let 

t 

Ht(x) = f l{ss=x)ds 
0 

be the occupation time of  x up to time t. By considering the time of  the first visit to 
x it is easy to see that Ht(x) is stochastically smaller than/-/t(0). To estimate Ht(O) 
with an error probability smaller than L -(d+3) we will compute moments E{Htm(0)}. 
The next estimate can be improved considerably in d > 1. We use this crude bound 
to avoid splitting the proof  into cases. 

Lemma 2.6 There is a constant C so that E{Htm(0)} <=m!Cm(1 + t) m/2 and hence 

P(Ht(O) > (1 + t)~ § t)  -m/ lO . 

Proof The second result is an immediate consequence o f  the first, which we will 
prove by induction on m. When m = 1 this estimate is well known. Writing pt(x,y) 
for the transition probability of  simple random walk, letting to = 0, and then using 
the result for m -  1 and for 1 we have 

m 

E{Htm(o)} = m! f ]-IPt~-t, l(O,O)dtm �9 . . a l l  
0=<t I <...<tm<=t i=1 

t 

= mfpq (0, O){EHt_Tll(O)}dh 
0 

t 

<=m(m -- 1)!Cm-l fptl (0, 0)(1 + t - tl)(m-I)/2dtl 
0 

t 
<=m!cm-l(1 + t)(m-1)/z fpq(O,O)dt~ <=m!Cm(1 + t) m/2 . 

0 

The movements of  yk when X k is crowded are a simple random walk. Somewhat 
surprisingly. 

Lemma 2.7 The movements of  X ~ when it is crowded are a simple random walk. 

Proof Intuitively this is true because we are using a predictable function to pick 
points out of  a family o f  Poisson processes. We will now prove a result that makes 
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the last sentence precise. For simplicity we move up (in time) rather than down. For 
x E Z a let N; ' "  be the stirrings o f  x and x + v, where v = el, - e l  . . . .  or - ea. and 
let ~ ,  be the a-field generated by all stirrings up to time t. Let h : [0, ~ )  --+ Z a U 
{A} be a left continuous process adapted to 5t't. In our application hs = x if Xs k_ 

is crowded and at x, hs = A if X~_ is not crowded. The left continuity of  h~ is 
important here since the intervals on which h~ = x will end with Poisson arrivals 
that move the path to another site and we don ' t  want to miss these points! Let 

t 

at = f l{hs.~x}ds 
0 

suppose am = c~ and let 7s = inf{t : as >= t} be the left continuous inverse of  O-t. 
Let J ]  = 1 if  hs = x and write 

7t 
M[ = 2 f  jXdN x'v . 

x O  

We have written M[ as a sum of  stochastic integrals since this makes it clear that 
its compensator /M~ = vt and then it follows from Theorem 4.5 on p.103 of  Jacod 
and Shiryaev (1987) that M[ is a Poisson process with rate v. 

The last result implies that after the time change 7t is applied, the times at which 
X~ x is crowded and is stirred to Xs x + v are a Poisson process with rate v. To get 
from this to the full result we have to prove that the Poisson processes M[ are 
independent. To do this we m m  the M[  into a random measure that puts a point 
at v when M[ jumps, note that the compensating measure is deterministic and then 
use Theorem 4.8 on p. 104 in Jacod and Shiryaev (1987). �9 

Combining Lemma 2.7 with Lemma 2.6 it follows that we can estimate the difference 
between X~ and Y~ by considering the behavior o f  a simple random walk S~ run 
for a random amount o f  time. To do this the next result is useful. 

Lemma 2.8 I f  m > 1 there is a constant Cm, d so that 

( max IISsll, > ( ]  + t) ~ ~-~Cm, d(l + P t ) -m/1o  " 
\O<_s<t / 

Proof Using the triangle inequality, P(UiAi) ~ ~-~i P(Ai) , and then Doob 's  inequality 
we have (here IS  1 ] is the absolute value of  the first coordinate) 

P ( max l[Ssllt > (l + t)~ <=dP \o<_s<_t ) 0_<s_<t ( max Isll > (1 + t)~ 

( m ) m d m E l S l t m  
~ d  ~ (1 q-t) ~ ~Cm, d(1 4-t) -m/l~ . 

For the last inequality we use the well known fact that in the case o f  one dimensional 
simple random walk, the central limit theorem can be strengthened to conclude the 
convergence o f  moments E(I S) I~/t m/2) to those o f  the limiting normal distribution 
and this convergence implies E(I S) Im)~c(1  q-t) m/2. 

Lemmas 2.6 and 2.8 give us what we need to estimate the difference between the 
X k and the yk. The t ' s  we are interested in are related to stirring points in d and 
hence satisfy 4L 2 > t _> 2L 2 - L ~+/~ > L 2 since c~ +/~ < 2, so ignoring constants, we 
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can think of  t = L 2. Taking m > 5(d + 5) in Lemma 2.6 it follows that the amount 
o f  time X k is crowded by one XJ with j q= k is larger than t ~ with probability at 
most Ct-(d+5)/2. Applying this result to each of  the at most L/~ other particles it 
follows that the total amount o f  time that any X k is crowded is at most t ~ 
(recall t = L 2) with probability at least 1 - Ct -(d+5-p)/2. Now Lemma 2.8 implies 
that the maximum movement by a simple random walk in t ~ units o f  time is 
at most t 036+0"3~ with probability at least 

1 - Cm,d t-(O'O36+O'O3fl)m ~ 1 - Ct  -(d+3)/2 

if we pick m > ( d  + 3)/0.072. Plugging fi = 1/15 < 1 into the last two results, and 
recalling 0.36 + 0.3fi < 0.4, t = L 2 we have proved (ii). This completes the proof 
o f  Lemma 2.3 from which ( ,)  and Theorem 2 follow. 

3 Proof of Proposition 3 

This result is proved by using a result of  Fife and Tang (1981) and an argument o f  
Gardner (1982). We begin with the result of  Fife and Tang, which is a theorem for a 
general system Otv = Av  + f (v) with a quasi-monotone f that is if vi = vi and vj > gj 
when j q= i then f ( v )  >f (b3 .  To apply their result we change variables Vl = Ul and 
v 2 = l - u 2  in(1.1)  to get 

0vl 
(3.1) 0-7 = AVl +p(v2 - vl) - rye(1 - v2) 

0V2 =- /kt~ 2 __ q(v2 -- Vl) 2 q- rVl(1 -- /)2). 
0t 

Letting Ji and j )  denote the reaction terms we have 

0ji ak 
0V~ = P  q- rvl 0v--7 = 2q(v2 - -  Vl )  -}- r(1 - v2). 

The first expression p + rv~ >0  when vl > - p / r .  The second is nonnegative when 
-2qv l  + (2q - r)v2 > - r, i.e., 

2q r 
I)2 =- D1 

2q - r 2q - r ' 

(Eventually we will take q > 2 0 r  so we can suppose now that 2q > r.) Now the 
set where = holds is a line that contains vl = v 2 =  1 and has slope > 1. To see 
that this (just barely) contains the region of  interest recall that we have changed 
variables vl = ub v2 = 1 - / / 2  SO 

{(Ul, U2) : Ul ~ 0, U2 ~ 0, U 1 -~ U2 ~ 1 } = {(Vl,/22) :/)1 ~ 0,/22 ~_ 1, V 2 -- /)1 ~ 0} , 

i.e., a triangle with vertices at (0,0), (0, 1) and (1, 1). 
Applying a slight generalization o f  Theorem 5 on p. 181 of  Fife and Tang (1981) 

to (3.1) gives. 

Lemma 3.1 Let  v(x, t) be a solution o f  (3.1) with continuous initial data satisfyino 
0 <= v(x, O) < 1, and v(x, t) gk O. There is a constant c > 0 so that 
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lim inf inf Vl(x,t)>=o~ 
t ~  [Ixll~ ~ct 

lim inf inf /)2(X, t) > 1 - / 3 .  
t ~  I l x l l ~ c t  

To explain the conclusion, note that our change of  variables has moved the unstable 
critical point at (0,1) to (0,0), and the desired limit (~,fi) to (~, 1 - f i ) .  The result 
thus says that if we have an initial condition that lies strictly above the unstable 
critical point at (0,0) then the solution will grow up at least to the first critical 
point above the unstable one. This is a generalization to systems of  the "hair trigger 
effect" o f  Sect. 3 o f  Aronson and Weinberger (1978). 

P r o o f  o f  (3 .1 ) .  Fife and Tang assume (to use their formula number) that for each i 
there is a K i > 0 and a j  (that may depend on i) so that for v > 0 in a neighborhood 
of  0 

(12) f ( v )  > ~civj . 

However in (3.1), jq (v) = - ( p  + r)v l  + (p + rv~)v2 so this condition is not satisfied. 
Fortunately, for their proof  it is enough that 

(12') there are Oi > 0 so t h a t f ( w O ) > ~ c i O i w  when w > 0 is small. 

To see that (12') suffices for their proof, observe that if  we let 

eOi(1 _p2)~ when O ~ p ~ l  
/)i = { 0 o therwise  

where p = and ~ > 2 then (15) on page 181 in Fife and Tang (1981) holds 
with the right hand side multiplied by Oi (and r replaced by p) and the rest o f  the 
argument for their Theorem 5 is exactly as before. 
To check (12') now we observe that if  Vl = w and v2 = a w  then 

f l ( v )  >= - (p + r ) w  -+-paw 

f2 (v )  = r w  - r a w  2 - qw2(1 - a) 2 

so the desired conclusion holds if  a 

To prove the other half  o f  the  
equation (1.1), change variables u = 

> (p+r)/p. 

Proposition 3, we will return to the original 
Ul, v = u2, and let 

f ( u , v )  = p ( 1  - u - v) - ruv 

g ( u , v ) = q ( 1  --u--v)2--ruo 

to make our notation match that o f  the proof of  Theorem 2.2 on pp. 359-362 of  
Gardner (1982). After reading a page or two of  our proof, the reader will sympathize 
with our desire to stay as close to our source as possible. We have to give the details 
o f  the proof  for three reasons: (i) Gardner gives his proof only for the case d = 1, 
(ii) our system hag 3g/t3v = 0 when u = 1 and v = 0, and (iii) Gardner mistakenly 
omitted two terms from his expression for the derivative in formula (16) on p. 360 
of  his paper. In one respect our proof  is simpler. Since we are only proving half  o f  
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Gardner's result, we can ignore the function ~b that enters into his proof and this 
simplifies the computations somewhat. 

The idea behind the proof  is to use the travelling wave of  Proposition 2 to 
construct something that satisfies appropriate partial differential inequalities (see (3.9) 
below) to give an upper bound on u and a lower bound on v. Continuing to change 
our notation to match Gardner, we let 

~ = g l  f = u 2  

be the two functions that comprise the travelling wave. Gardner was interested 
in proving that monotone functions converge to the travelling wave, but we are 
interested in a result for compactly supported initial data. So, following the approach 
in the Appendix of  Durrett and Neuhauser (1993), we let 

if  0_<x-<l 
if x > l  

f X 2 (x3/3) 
(3.2) h(x) = t x - 1/3 

To see the reason for this choice note that 

hi(x)= { 2Xl - x 2  if ifx>10<x<l 

2 - 2 x  if  0 _ < x < l  
hl'(x) = 0 if  x > 1 

(3.5) Qi(z) 

Here Q+ and Q7 are positive 
assume that the Qi are C 2 and 

(3.6) 

so h is C 2, that is, has two continuous derivatives. For the future, note that 

(3.3) h ' ( x ) < l ,  h'(x)<2x, and h " ( x ) < 2 .  

Let ~ = h(I x I) - at + s(t) where s(t) = - A  + B log(1 + t) and 

(3.4) 7(x, t) = ~(~) + Ql(~)O(t) - u(x, t) 

6(x, t) = v(x, t) - f(~) + Q2(~)$(t) 

where $(t) = tee -pt, and there is a constant K0 > 1 so that 

Q7 for z <  - K 0  
= O,+ forz_>_K0 

constants that will be chosen in Lemma 3.2. We 
satisfy 

Qi(z) > Qo > 0 

(3.7) IQ'l(z)l<~'(z)/2 IQ~(z)l ~ - ~'(z)/2. 

The last requirement can be satisfied if we multiply our original choices of  the Qi 
by small positive constants. Let Q. be such that 

(3.8) IOi(z)l, Ipff(z)l, IQff'(z)l < Q . .  

To prove our result we will choose our constants so that 7(x, 0), 6(x, 0 )>0 ,  and if 
- A then Z~=37 
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(3.9) s t) > 0 when ~ = 0, 6 > 0 

s  when 7 > 0 ,  c~ = 0 .  

Applying Theorem 4.1 in Chueh et al. (1977) we conclude that 7(x,t) ,  6 ( x , t ) > O  
and it follows that 

u(x, t) < ~(~) + Q1 (~)O(t) 

v(x, t) > 13(~) - Qz(~)0(t) �9 

Since ~ = h(I x I) - at  - A + Blog(1 + t), the Qi are bounded and 0(t) = ke -pt  the 
desired result follows from this. 

Let u _ = g ,  v _ = f l  be the limits o f a a n d ~ 3  a t - c o  a n d u + = l ,  v + = 0  be 
the limits at +c~.  The first step in the proof o f  (3.9) is to observe that the travelling 
wave converges exponentially fast to its values at -4-0o. (See Lemma 3.2 on page 
349 in Gardner (1982).) That is, there are constants Co and 2 so that 

(3.10) [fi' (z)l, tfi'(z)], ]f(fi(z), fi(z)) l, Ig( fi(z), ~(z)) I <= Coe -2lzl . 

This can be proved by linearizing around the fixed points in question. The next 
step is 

Lemma.3 .2  W e  can f i n d  Q + , Q 7  > O f o r  i = 1,2 so that 

- X T f ( u _ , v _ ) .  ( Q 1 , - Q 2 )  > 0 V g ( u _ , v _ ) .  ( Q T , - Q 2 )  > 0 

' V f ( u + , v + ) .  ( Q + , - Q + )  > 0 Vg(u+,v+) .  ( Q + , - Q + )  > o .  

P r o o f  Geometrically, this is possible because the zero set o f f  viewed as a function 
o f  u downcrosses the zero set o f  g at these fixed points. To check this algebraically 
we note that 

(3.11) 

so we have 

xTf = ( - p  - r v , - p  - ru) 

Vg = ( -2q(1  - u - v) - r v , - 2 q ( 1  - u - v) - ru) , 

- V f .  ( Q I , - Q 2 )  = (p + rv)Q1 - -  ([9 § ru)Q2 

XTg" (Q1, -Q2)  = - (2q(1  - u - v) + rv)Q1 + (2q(1 - u - v) + ru)Q2 . 

At (u+, v+) = (1, 0) this says p Q +  - (p + r )Q + > 0 and rQ + > 0 which is clearly 

possible. At (u_, v_) we want to pick Q7 so that 

(p § rv_ )Q 1 > (p + ru_ )Q~  

(2q(1 - u_  - v_ )  § r v _ ) Q ~  < (2q(1 - u_ - v_) § ru_)Q 2 

which is possible if  (note that we can set Q2 = 1 without loss o f  generality) 

p + ru_ 2q(1 - u_ - v_) + ru_ - -  < 
p + rv_  2q(1 - u_  - v_)  + rv_  
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To show that this holds, we note that u_ < v_ so 

2pru_ + p r y _  < 2pry_  + p r u _  . 

Using the equality 1 -  u_ - v _  = p / q  (see (1.4)) we can rewrite the last equation 
a s  

2q(1 - u_ - v_ )ru_ + p r y _  < 2q(1 - u_ - v_ )rv_ + p r u _  . 

Adding p 2 q ( 1 -  u _ -  v _ ) + r 2 u _ v _  to both sides of  the previous inequality we 
have 

(p + ru_ )( 2q(1 - u_ - v_ ) + rv_  ) < (p + rv_  )( 2q(1 - u_ - v_ ) + ru_  ) , 

which implies the desired inequality. I 

The next step is to make our choices of  constants. The reader will see the reasons 
for these choices in the proof. We have collected all the choices together here to 
make it clear that it is possible to make the ten choices we desire. 
(i) Pick # > 0 so that 

- V f ( u _ ,  v _ ) .  (Q~-, - Q~) ,  XTg(u_, v _ ) .  (Q~-, - Q ~ )  > 4# 

- V f (u+, v+ ) . (Q+, - Q + ) ,  V g(u+, v+ ) . (Q+, - Q +  ) > 4 # .  

(ii) Pick t 1 > 0 so that Q.t/=<#. 
(iii) Pick to< 1 so that tcQ. __<min{p/r, 1} and if  x , y > O  and x + y <  1 + Q.• then 
9x(X,y) < ~I. Here 9x denotes the partial derivative of  9 with respect to x. Note that 
our proof of  quasi-monotonicity shows (after change of  variables) that 9x(x ,y)  < 0 
when x , y > O  and x + y <  1. 
(iv) Pick e E(0,Q0~c) so that if I I ( a _ , b _ ) - ( u _ , v _ ) l [ l < c ~ ,  and I I (a+ ,b+) -  
(u+,v+)[[1 <c~ then 

- V f ( a _ ,  b _ )  . ( Q 1 ,  - Q ~ ) ,  V g ( a _ ,  b _ )  . (Q;-,  - Q ~ )  >= 3# 

- V f ( a + ,  b+ ) . (Q+, - Q + ) ,  Vg(a+,  b+ ) . (Q+, - Q + )  > 3 # .  

(v) Pick KI >K0 so that if  z <  - K 1  then t[(~,~) - (u-,v-)I[1 <c~ and i f z > K 1  then 

Jl( , - ( . + ,   +)HI 
(vi) Pick p small enough so that p Q .  < #, and p < 2a/3. Here a is the wave speed 
and 2 is the constant in (3.3). 
(vii) Pick Kz>=K1 large enough so that (2d + a + 1)C0e -zx2 <to#. 
(viii) Pick/~ > 0 so that ~ ' ( z ) , - ~ ' ( z ) > f l  when I z [ </s 
(ix) Let R. = (p + 4q + 2r + q)Q. and pick B large enough so that for all t > 0 

- - _ - - B  > d - 1  a n d - - B f l  = > ( # + ( l + ~ ) Q . + R . ) t c e  -pt  
2(t + 1) - 1 + o't/3 4(t + l) 

(x) Choose A > 0  large enough so that s(t)  = - A  + Blog(t + 1)_< - 1 - / s  + (at/3) 
for all t > 0. 

Lemma 3.3 V(x, O) _-> 0 and 6(x, O) _-> O. 

P r o o f  Recall that 
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?(x, t) = fi(O + QI(O~s(t) - u(x, t) 

6(x, t) = v(x, t) - ~(() + Q2(O~s(t), 

where ~(t )  = sce -pt, ~ = h ( I x l )  ~rt + s(t)  and s(t)  = - A  + Blog( l  + t). When 
t = 0 we have ip(0) = ~c and ( = h(] x ]) - A .  Let 

~7(x) = ~(h(I x I) - A )  + Ol(h(I x I) - A ) ~  

_v(x) = t3(h(I x I) - A) - Q2(h(I x I) - A)tr 

We want to show that f f (x)>u(x ,O)  and v_(x)<v(x,O). When I xl >K1 + A +  1/3 
which is >1  since K I > K 0 > I  and A > 0 ,  we have 

h(i x I) - A = I x  [ - 1 / 3  - A > KI > Ko , 

so Qi(h([ x ] ) - A ) = - Q +  >Qo by (3.5) and (3.6). The choice of  K1 in (v) im- 
plies fi(h([ x [ ) - A ) > I - ~  and g(h(] x ] ) - A ) < ~  so the choice of  ~ < Q0• in 
(iv) implies that ~7(x) > 1 and _v(x) < 0 and the desired inequalities hold for [x ] 
>KI  + A  + 1/3. Since the travelling waves are monotone and Q i ( z ) > Q o  by (3.6) 
we have 

~ > u _  + Qotr v < v _  - Qo~c 

for any x. If  we take e = Q0K and L = (Ka + A - f - 1 / 3 )  in Proposition 3 then 
our assumptions imply that when Hxl ioo<L,u(x ,O)<u_ +Q@c and v ( x , O ) > v _ -  
Q0~:. The two regions [[xl]~o < L  and ] x ] > L  cover all o f  space so the proof is 
complete. [] 

The first step in computing 12 7 and s  is to observe that 

d e x x x ) -1 /2  k(h(I I)) = k'(h(I I))h'(I L) ( Z x '  Xi 

d 2 
k h(I x x ,< x ,  

+ k'(h(I x I))h"(I x I) i x, 

+ k'(h(t x 1))h'(I x I) (V, x2.)-312x2 -,12 

i ) d _  1~ 
Ak(h(I x I)) = k"(h(I x I)W(I x I) 2 + k'(h(I x I)) U(I  x I) + h'(I x Ix I J " 

Recalling that A; = ~ - A, ?(x,t) = tT(O + Q/(()~s(t) - u(x,t) ,  and taking k(y) = 
fi(O and then k(y) = Q1 (()~/(t) where ( = y - at + s(t) we have 

s  -- ( - G  + s ' )~ '  + ( - ~  + s')Q(~s + Q I ~ '  - ut 

-(~" +Q'(O)h'(lxl) 2 (~' +Q(O)(h"(Ixl)+h'(lxl)d-~l ) - + A u .  

Substituting qs' = - p ~  - f i "  = arT' + f ( ~ ,  ~), and - u t  + A u  = - f ( u ,  v) we have 
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(3.12) s  = ( - a  + s')~' + ( - a  + s')Q'lO - Qlp~l § {a~' § f(g~t, 5) 

i)d_1) - Q ' l ' O } h ' ( ] x ] 1 2 - ( ~ '  +Q' lO)  h " ( [ x [ ) + h ' ( [ x  Ix [  J - f ( u ' v )  

= ( - a ( 1  - h'(l x I) 2) + s '  - h" ( I  x I) - h ' ( I  x I) d - 1 ~,  

+ ( -~ r  + s' - h ' ([  x [) - h'(I x I)dT-;T-)- 1 Q'aO - Q'ltOh'(I x I) 2 

- QlpO + f ( ~ ,  ~)(h'(I x I) 2 - 1) + { f ( ~ ,  3) - f ( u ,  v ) ) .  

Similarly differentiating 6(x, t) = v(x, t) - f(~) + Q2(~)O(t) gives 

s  = vt - ( - a  + s')~' + ( - a  + s')Q~O + Q24/ 

i)d- 1) - A v  + ( U  - Q~'O)h' (]  x I) 2 + if '  - Q;~,) h"(] x 1) § h'(] x 7 7 T J  

and substituting vt - A v  = g(u, v), t)' = - p t ) ,  and ~" = -a f t '  - g(~, 13) we have 

(3.13) s  = g(u, v) - ( - a  + s')~' + ( - a  + s')Q~2tp - Q2pO 

(a~  t + g(t~, 5) ,t , - + Q2 ~ } h  ([ x I) 2 

[ ) d -  1"~ 
+ ( e ' - Q ; O )  h ' t ( [ x l ) + h t ( l x  - ~ ]  

i)d- 1) = --0"([ -- h/([ x [)2) _1_ s t  _ h l t ( i  x [) - h'([ x ~ - j  ( - e  t) 

) d - l \  
+ - a  + s t - h"(] x l) - h'(I x 7 7 7 )  Q'2O - O';~'h'(I x I) 2 

- Qzpt~ - g(~, ~)(h'( I x l) 2 - 1) § {g(u, v) - 9(~, ~ ) ) .  

The right-hand sides o f  (3.12) and (3.13) are lengthy but fortunately they are 
very similar and several o f  the terms are easy to deal with since h'([ x [ ) =  1 and 
h"(l x I) = 0 when Ix I > 1. The hard part of  the proof is to deal with I ~ I >/(2 
and in this case it is the differences f(~,  ~ ) - f ( u ,  v) and g(u, v ) -  9(~, 3) that keep 
s  and s  positive so we  begin by investigating those terms. Since our aim is to 
prove (3.9), 

our bounds on f assume y = 0 ~ > 0 

our bounds o n g a s s u m e 7  > 0  6 = 0 .  

L e m m a  3.4 Let R, = (19 + 4q + 2r + ~1)Q, be the constant  in (ix). 

2 # 0  when I ( ] > K2 
f ( ~ , ~ ) - f ( u , v ) , g ( u , v ) -  g( f i ,~)> - R . O  otherwise 
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Proof Now, from (3.11) it is easy to see that f o ( u , v ) = - p - r u < O  whenever 
u> - p / r .  If 7 = 0 and 3 > 0  then using (3.4) and (3.8) u = ~ +  QI~' and v > ~ -  
Q2~>= -Q.tr - p / r  by the choice of tc in (iii) so since f is decreasing in its 
second argument 

f (u ,  v) = f ( f i  + Ql~b, v) _<_f(~ + QI~', ~) - Q2~O). 

Subtracting both sides from f(fi, g) gives 

(3.14) f (~,  ~) - f (u ,  v) > f(Ft, ~) - f (~  + Q1 ~1,, ~ -  Q2~') . 

To deal with the difference of the g's we note that if ? > 0  and <5=0 then 
u<~+ Ql ~ ,  and v = ~ - Q 2 ~ .  Inside the triangle x,y>O, and x + y < l  we have 
gx(x,y)<O. To control the contribution to the difference of the g's from moving 
outside the triangle we note that 

(3.15) u + v<~  + QI~' + ~ - Q2~= < 1 + Q.~/, 

since ~ + ~ < 1  and O<Qi<Q..  So our choice of ~c in (iii) implies that for the 
points we encounter outside the triangle gu(u, v )<t  1 and hence 

(3.16) g(u, v) = g(u, ~ - Q2O) > g(u + Q1 ~', v - Q2O) - Q.~/'q �9 

Subtracting g(a, 9) from both sides and recalling the choice of t / in  (ii) we have 

(3.17) g(u,v) - g(~,O)>=g(~ + Qll / I ,v-  Q2~9) - g(~, ~)) - Q.0t/ 

=>g(t2 + QI~/', v - Q2O) - g(a, ~)) - # ~ .  

To estimate the differences o f f  and g that appear in the lower bounds in (3.14) 
and (3.17) we observe that 

(3.18) f ( a ,  6) - f ( t 2  + Q1O,~ - Q2O) = - V f ( w ) .  (Q1,-Q2)~O 

g(d + QI~', v - QzO) - g(a, t3) = Vg(z) - (QI,-Q2)O 

where w and z lie on the line segment that connects (g, f) to (fi + Ql~b, f -  Q2~)- 
Up to this point all of  our calculations have been valid for any ~ and t. Now the 
choice of K~, which is <K2, implies that H(~,~)- (u_, v_)lll < e  for ~< - / s  and 
ll(fi,6)- (u+,v+)[ll __<c~ for ~>K2. So it follows from the choice of c~ in (iv) that if 
[~l  >/(2 then 

(3.19) f ( a ,  ~) - f ( a  + Q1 ~/', ~) - QaO) > 3#0 

g(a + Q~O,e -  Q2O) - g(a,~)) > 3 # 0  �9 

Combining (3.19) with (3.14), and (3.17) gives the result for I~l >K2. 
For the other result, we observe that by (3.11) and (3.15) the right hand side of 
(3.18) can be estimated by 

- V f ( w )  - (Q1, -Q2)~  = ((p + rv)Q~ - (p + ru)Q2)O 

>_- - (p + r(1 + Q,~))Q,~, 

since QI =>0,-Q2 > - Q., and u < l  + Q.O; and 
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Vg(z) - (Q1,-Q2)O = ( - ( 2 q ( I  - u - v) + rv)Q1 + (2q(1 - u - v) + ru)Qz)t)  

> - (2q + r)(1 + Q , O ) Q , O  

since 1 > 1 - u - v >  - Q,O and v <  1 + Q,O. Now ~9(t) = ~ce -pt and our choice of  
in (iii) implies Q , O < I  so combining the last result with (3.18), (3.14), and the 

first inequality in (3.17) it follows that for all 

(3.20) f ( f i ,  ~) - f ( u ,  v) > - (p + 2r)Q,~9 > - R ,O 

9(u, v) - 9(2, ~) > - (4q + 2r + tl)Q, ~ > - R , ~  

and the proof is complete, i 

To deal with the rest of  (3.12) and (3.13), we observe that if we write v) for fi or 
- ~ ,  e(x ,y)  f o r f ( x , y )  or - 9 ( x , y )  and i for 1 or 2, then two expressions look the 
same and can be divided into four pieces 

first ( - a ( 1 - h ; ( I x l ) 2 ) + s ; - h H ( I x l ) - h ' ( I x l ) ~ -  ) (v~') 

second ( - t r  + s; - h ' ( , x , ) -  h ' ( l x l ) f f ~  - )  Q , ~ -  Q,'~kh;(lx,) 2 

third - Q ip~  

fourth e(a, 0)(h;(lxl) 2 - 1). 

To estimate these terms we divide the argument into three cases. 

Case 1. ]xl<l+o.t/3. N o w  h(Ixl)<__txl and A w a s  chosen so that s ( t ) <  
- 1 - / s  + (o.t)/3 for all t > 0. Thus 

ff = h ( l x [ )  - at + s(t) < - K2 - (o.t)/3 . 

The last inequality implies ~ < - K o ,  so Qi(~), Qi ( ) = 0 ,  and the second term 
vanishes. To estimate the first term we observe that o->0, s is increasing, h ' ( x ) < 2 ,  
and h ' ( x ) < 2 x  so we have 

h,([xl)d - 1 > _ o. - 2 - 2 ( d  - 1 )  = - 2 d  - o- - o - ( 1  - h; ( lx [ )  z )  + s t - h'(lxl) - Ix[ = 

and it follows from (3.10) that the first term is larger than 

--Coe-2K2-2~rt/3(2d + O.) . 

The third term is larger than - Q . p $ >  - p $  by the choice o f  p in (vi). To deal 
with the fourth term we observe that 0 > h ' ( [  x I)  2 - 1 >__ - 1, and ~<  - / s  - (at)/3 
so (3.10) implies that the fourth term is larger than 

-- Co e -  "a'K2 - -  ~ c r t / 3  . 

Combining the four estimates from above with Lemma 3.4 and recalling that ~(t) = 
Ke -pt  it follows that 

s s _> - (2d + cr + 1)Coe -'tK2-;~t/3 + #tee -pt  . 
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which is positive by the fact that (2d + a + 1)C0e -2K2 __< ~c# by the choice of/s in 
(vii) and p <=2a/3 by the choice of  p in (vi). 

, ~  , ,~  Case 2. I (1 >/<2, I x l  _->1 + at~3. In this case Qi( ) = O, Qi ( ) = 0,h'(I x l) = 1 
and h"(I x I) = 0 so the second and fourth terms vanish. To bound the first we note 
that 

- a ( 1  - h'(lxl) 2) + s' - h"(lxl) - h'(lxl)dlZxl 1 

d - 1  B d - 1  
--s' - - > - -  - - - > 0  

Ixl = t + 1 1 + at/3 - 

by the choice of  B. The third term is larger than -Q ,  pO> - # 0  by the choice of  
p so using (3.19) to bound the fifth term 

s s  O. 

Case 3.  K2. To handle the bounded interval that remains, we note that by 
the argument at the beginning of  Case 1, ( >  - K 2  implies I x ] > 1 + at~3 so 
h'(] x I) = 1, h"(I x 1) = 0 and the sum of  the first and second terms becomes 

I~ (w' + O;O) - Qi 0 - aQ;O . 

To bound this expression, recall that s ( t ) = - A  +Blog(1  + t), and in this case 
[ x [ > 1 + o-t/3 so our first choice o f  B in (ix) implies 

d - 1  B d - 1  B 
S t _ _ _ >  _ _  > _ _  

Ixl = t + 1 1 + at~3 = 2(t + 1) 

We have assumed in (3.7) that I Q~[ __<~'/2 so using (viii) and have 0-< ~c_< 1 
by (iii) 

(s ,  d - l )  B fi 
Ix  ] (w' + Q;0) > 2(t + 1~" 2 "  

For the remaining pieces we note that - Q [ ' 0 >  - Q . 0 , - o Q ~ 0 >  o-Q.0, the third 
term is larger than -Q.pO> - # 0  as usual, and the fourth term vanishes since 
h'(] x I) = 1. Using (3.20) to bound the fifth term and combining our estimates we 
have 

B/~ 
s163 1) ( p + ( 1  +a)Q. + R . ) 0 > 0 ,  

by the second choice o f  B in (ix). 

4 Proof of Proposition 4 

In this section we will prove that for fixed r, if  p is small and q is large then 
cr > 0. Now if  Ui(x - ~t) is a solution of  (1.1) then 

(4.1) -aL,) '  = Uf' + f ( U b  U2) 
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where Ji(ul ,u2) = p ( 1  - ul - u2) - rulu2 and A(ul,u2) = q(1 - U l  - / t 2 )  2 - rUlU2. 
To prove that a > 0 we will suppose that a__< 0 and get a contradiction. Imitating 
an integration by parts trick well known in the p.d.e, literature (see for example, 
the derivation of  (1.7) in Durrett and Neuhauser (1993)), we can multiply by U/, 
and integrate to get 

(4.2) 0 <= - a f (Ui')2dx = f U/'U,~(x)dx + f f (U1,  U 2 ) U / d x  

= ff(u , U )U:dx. 

Since the antiderivative of  U,"U/' is ( g i t ) 2 / 2  which vanishes at +oo.  To justify this 
step the estimate in (3.10) is useful. 

We want to contradict (4.2) for fixed r if  p is small and q is large. To do 
this we note that U(>O and fl(Ul,U2)<O if  (ubu2) lies in ,4, the region above 
the curve p ( 1 -  U l -  u 2 ) -  rulu2 = 0, while U~ =<0 and y~(ub u2 )>0  if  (ul,u2) lies 
in B the region below the curve q ( 1 -  u l -  uz) 2 -  rulu2 = O. A U  13 covers most 
o f  {(ub u2):ui >O, Ul + u2 < 1}. We will obtain our contradiction by showing that 
when p is small and q is large it is impossible to get from (e, fl) to (1,0) without 
making one of  the integrals negative. To carry out this idea, we pick 

(4.3) a > ct, fi > 1 - a  > b 

and let 

S = i n f { x ' U l ( x )  > a} and T = i n f { x ' U z ( x )  < b} 

and divide into two cases: 

Case 1. S < T .  In this case Uz(x)>b for x < S  so using the fact thatJi  is decreasing 
in u2 for fixed ul and changing variables y = U1 (x) we have (see Fig. 4) 

S OO 

ff (u , v )u;dx<= f A(U ,b)U;ax + f A(u, ,o)u;ax 
- - o o  S 

a 1 

s f(p(1- y b)-ryb}dy+ fp(1-y)dy 
~X a 

l a 

< fp(1 - y)@ - f,-yb dr 
0 a 

_ p  rb 2 
2 ~-(a __~2) 

so the integral is negative if  

(4.4) p < r b ( a 2 - ~ 2 ) .  

Case 2. S > T .  In this case Ul(x)<_a for x<_<_T and Ul(x)< 1 - Uz(x) for all x. The 
first bound is worse than the second when U2 >= 1 - a, so we introduce 

R = inf{x: U~(x) < 1 - a} .  
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t~ a 1 

Fig. 4. 
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1-a 

T 

a 1 

Fig. 5. 

Using the fact that j~ is decreasing in u~ for fixed u2 and U~ <0,  then changing 
variables y = U2(x), and reversing the limits which introduces a minus sign, we can 
hound ff2(Ul, U2)U~dx (see Fig. 5) by 
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R T 

f 2~(1 - U2, U2)U~dx § f f 2 ( a ,  U2)U~dx 
- -  cx) R 

o c  

+ f A ( 1  - u:)U dx 
T 

/~ 1 - a  b 

< - f - ry(1 - y ) d y  - f q(1 - a _ y ) e  _ r a y d y  - f - r(1 - y ) d y  
1--a b 0 

1 1--a 

< f r y ( 1  - y ) d y  - f q(1 - a - y ) Z d y  
0 b 

=r/6  - q(1 - a - b)3/3 . 

So the integral  is negat ive  i f  

(4.5) q > r /{2(1 - a - b ) 3 } .  

Taking  a = 0 .48,b  = 0.225 and assuming  ~ < 0 . 0 0 1  converts  (4.4) and (4.5) into the 
bounds  

(4.6) p < 0 .05184r  q > r /2(0 .295)  3 = 19 .48r .  

To comple te  the p r o o f  we have to show that  when  (4.6) holds  we have what  we 
assumed  in the p r o o f  (i.e., (4.3)) 

(4.7) c~=<0.001 < 0 . 4 8 = a  fl > 0 . 5 2 =  1 - a .  

To check  the first inequal i ty  we note that  i f  p = xr  and q = y r  then 

z 
(y  - x) - v / ( y  - x) 2 - 4x2y 

2y 

- - y  

= 1 ( I - y ) { 1 - 1 1  4x2y } 
2 (y - x) 2 " 

Taking  part ia l  der ivat ives  o f  4xZy/(y - x) 2 and not ing that  (4.6) impl ies  x < y we 
find 

4x 2 4x2y - 4 x 2 ( x  + y )  

~yy = (Y _ x) ~ - 2 .  (y  _ x) 3 - -  ( y  __ X) 3 < 0 

_ 8 ~ + 2 .  4x2y - 8xye > 0 .  
~X ( y  - -  X) 2 ( y  - -  X) 3 ( y  - -  X) 3 

So decreas ing  x or increas ing y decreases  cc W h e n  x = 0.05184 and y = 19.48, 
< 0.001 < 0.48 = a so the first bound  in (4.7) holds.  For  these values  o f  x and 
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y,/~----0.99720 and a similar  monotonic i ty  argument  applies to /3, so the second 
b o u n d  in (4.7) holds with room to spare. 
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