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In this paper we consider the Greenberg Hastings and cyclic color models. 
These models exhibit (at least) three different types of behavior. Depending on 
the number of colors and the size of two parameters called the threshold and 
range, the Greenberg-Hastings model either dies out, or has equilibria that 
consist of "debris" or "fire fronts." The phase diagram for the cyclic color 
models is more complicated. The main result of this paper, Theorem 1, proves 
that the debris phase exists for both systems. 
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color models; Greenberg-Hastings model. 

1. I N T R O D U C T I O N  

We consider two families of processes in which the state at time t is 
~ , : 2 d ~  {0, 1,..., K - l } .  Before describing the dynamics we need some 
preliminary definitions. For l ~ < p < o o  and x ~ N  a, let ]ixIIp=([x~lp+ 
... + [XdlP) I/p and let Ilxrl~ =supi  [xi[. In both systems the neighbors of a 

point x will be the yeBp(x ,  N ) =  {y: [ly-Xllp<~N}. We will primarily be 
interested in the cases p = 1 and p = oo but p = 2 is also interesting and it 
is just as easy to formulate the results in general. 

Example 1. (Greenberg-Hastings Dynamics.) In this model we 
think of the sites as being occupied by neurons that can be rested (0), 
excited (1), or in a sequence of recovery states (2, . ,  ~ : -1) .  The system 
evolves according to the following rules: 
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a. If x is in state i > 0 then after an exponential amount  of time with 
mean 1, it progresses to state i + 1. Here and throughout the paper 
arithmetic involving states is done modulo ~c, e.g., (x - 1) + 1 = 0. 

b. If x is in state 0 then at the times of a rate one Poisson process 
x looks at its neighbors. If the number of excited neighbors is at 
least 0, the threshold, then x becomes excited; otherwise nothing 
happens. 

When ~: = 2 and 0 = 1 this model is the threshold contact process in which 
the birth rates and death rates are 1. See Cox and Durrett  (2/for more on 
this process. Durrett  and Gray (4) have investigated the case ~ = 2, 0 = 2. 
When K = 3 and 0 = 1 this is an epidemic model in which the infection, 
death, and birth rates are all 1. See Durrett  and Neuhauser (6) and referen- 
ces therein. The results in Refs. 4 and 6 primarily concern the case 
N = p = l .  

The name for the processes in Example 1 comes from their deter- 
ministic counterparts in which time is discrete and 

a. I f ~ n ( x ) = i > 0 t h e n  ~ + l ( x ) = i + l .  

b. If r  and at least 0 neighbors are 1 then ~ n + l ( X ) = l ,  
otherwise ~n+ l(x) = 0. 

These "cellular automata"  with 0 = 1 and ~: = 3 were introduced by Green- 
berg and HastingsJ TM See Durrett  and Steif (7) and Fisch, Gravener, and 
Griffeath (~~ for recent results and references. We would like to point out 
that the last three authors initiated the study of "threshold range scaling" 
of these models that is the primary focus of this investigation. 

The second family of examples is simpler to describe but much harder 
to analyze. 

Example 2. (Cyclic Particle Systems.) In this family of models we 
think of the states as colors and the system evolves as follows: 

If x is in state i then at the times of a rate one Poisson process x looks 
at its neighbors. If at least 0 neighbors are in state i +  1 then x 
progresses to state i + 1; otherwise nothing happens. 

When x = 2 and 0 = 1 this system is the threshold voter model which has 
been studied recently by Cox and Durrett. ~2) The systems with x > 2 and 
0 = 1 have been studied by Bramson and Griffeath tl) in one dimension. 
Their deterministic counterparts have been investigated by Fisch ~8) in one 
dimension and Fisch, Gravner,  and Griffeath ~9) in d >  1. The August 1989 
Scientific American has a popular account of their results. 
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The basic question concerning these systems is: When do they have 
nontrivial stationary distr ibutions-- that  is, one that assigns no mass to 
absorbing states? In Example 1 there is only one absorbing state ~ ( x ) - 0  
but in Example 2 there are a large number of configurations in which no 
transitions can occur. To give our first answer we need some definitions. 
When we say "multicolor system" we mean that the result applies to both 
examples. The constant N appearing in the definition of the neighborhood 
set is the range of interaction and we let v N = tB,(0, N)! be the number of 
neighbors. 

Theorem 1. Consider a multicolor system with threshold 0 = av N. If 
a < 1/2~c and N is large, then there is a nontrivial stationary distribution. 

Sketch of proof We begin with two disclaimers: ( i ) In  the actual 
proof  some definitions are different for technical reasons but the picture is 
the same. ( i i )The reader who finds this sketch confusing can skip it 
without loss. The proof of Theorem 1 is done in three steps. 

Step I. We define a deterministic discrete time process r / , , :Zd~ 
{0, 1} by q~+ l (x )=  1 if and only if I{y~Bp(X, M): qn (y )=  1}t ~>2vM. We 
call this process the threshold contact automaton or t.c.a. The first step is 
to show that if 2 <  �89 and the t.c.a, is 1 on a large ball then the region 
occupied by l 's has a linearly growing radius. To be precise, if 2 < �89 then 
there are constants R0, Mo, and A so that if M>~M o and r/o(x)= 1 for 
x e B 2 ( 0  , rM) with r>>.R o then q l ( x ) =  l for xeB2(0 ,  ( r + A ) M ) .  

Step 2. Let H x = [ x l L , ( x i + l ) L )  x ... x [xdL , (xd + 1)L) for 
x ~ 2 d and call H x a house. The houses are like the sites in the t.c.a. To 
make the comparison, pick 2 < �89 and p < 1/~; so that 2p > a, let ~r ~ (p, 1/x), 
and set ( , (x )  = 1 if there are at least aL a sites in the house in each state at 
time nL. Suppose the range N =  L ( M +  1) and pick K>~ RoM. To use the 
result of Step 1, a collection of houses H~, x e B2(zK, K) is combined to 
make a city for each z ~ yd. We call a city occupied at time n if all its houses 
have (,,T(X)= 1. 

Suppose for simplicity that z = 0 and T =  0. Our choices imply that all 
the sites in all the cities H x, x ~ B 2 ( O , K + A M )  see an above-threshold 
number of sites of each color. Now (i) the "single-site chain" that has state 
space {0, 1 ..... t c - 1 }  and makes transitions from i to i +  1 at rate 1 has 
a stationary distribution that assigns mass 1/~c to each state, and (ii)as 
long as all the sites in a house see all colors above threshold they flip 
independently so the empirical distribution of the sites will with probability 
less than C e x p ( - 6 L  d) differ by more than eL d from what we expect. 

Step 3. Using Steps 1 and 2, it is straightforward to show that if L 

860,,'5/1-9 
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is large then with high probability the occupied ball of houses will expand 
to B2(0, K+ AM) by time L. Repeating the last construction Ro/A times we 
see that an occupied city will, with high probability, make its neighbors 
occupied and then a routine comparison with 1-dependent oriented site 
percolation allows us to construct a nontrivial stationary distribution. 

[] 

Remark. The last proof  generalizes immediately to hybrids of Exam- 
ples 1 and 2 in which some updates are automatic (i.e., one progresses to 
the next state at rate 1) and some are by contact (i.e., only occur if there 
are enough neighbors of the next color). One can also treat the variant of 
Example 1 introduced in Ref. 12 in which we view states 1,..., l as excited 
and transitions 0 ~ 1 occur at rate 1 if more than 0 neighbors are excited. 
In this case the condition becomes a < l/2~c. 

The construction in the proof  of Theorem 1 not only allows us to con- 
struct a stationary distribution but also allows us to propagate coupling 
between two stationary distributions and leads to the following uniqueness 
result. Occupied cities were defined in Step 2 of the sketch of the proof  of 
Theorem 1 and will be defined precisely in Section 2. 

Theorem 2A. Consider a multicolor system with threshold 0 =aVN. 
If a <  1/2~C and N is large then there is only one extremal stationary 
distribution in which occupied cities have positive probability. 

To turn the last theorem into a uniqueness result one needs process 
specific arguments to rule out stationary distributions in which occupied 
cities have zero probability. In this direction we have not been very suc- 
cessful. To state our result for the Greenberg-Hast ings model we need to 
define h(~) to be the set of sites that could be 1 at some time t > 0  with 
positive probability. 

Theorem 2B. Consider the Greenberg-Hast ings model with 
threshold 0 = aVN. ( a ) I f  a < 1/2~c and N is large then there is a unique 
stationary distribution concentrated on ~ = {4: h(~) = zd}. (b) In d =  1 if 
a < 1 then any nontrivial stationary distribution is concentrated on 34 ~. 

In (b) N does not have to be large and there is no ~. If 0 > N there 
is nothing to show: The process dies out since an interval of length > N  
with no l 's will never contain any l 's at later times. In dimensions d > 1 we 
do not know how to rule out the existence of nontrivial stationary distribu- 
tions concentrated on ~ c .  

The ideas that are used in the proofs of Theorem 2A and 2B can be 
applied to systems without letting N-~  oe. Consider the following: 
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Example 3. (Threshold Contact  Processes.) In this model ~t: YJ-* 
{0, 1 }, we think of 0 as vacant and 1 as occupied, and the system evolves 
according to the following rules: 

a. If x is occupied then after an exponential amount  of time with 
mean 1, it becomes vacant. 

b. If x is vacant and at least 0 neighbors are occupied then x 
becomes occupied at rate 2. 

If 2 = 1 this is just the two-color Greenberg-Hast ings model. The proofs of 
Theorems 2A and 2B can be combined to show the following: 

Theorem 2C. Consider the threshold-2 contact process with 
neighborhood set Bp(x, N). If we exclude the nearest neighbor case 
N =  p = 1 then for large 2 there is a nontrivial stationary distribution and 
the complete convergence theorem holds. That  is, if ~ is the limit starting 
from ~l(x) = 1 and r =inf{t :  ~ , - 0 }  then 

~ , ~  P('c < oO ) 6o + P(r= oo ) ~1 

The existence of a nontrivial stationary distribution is not new but the con- 
vergence is. In the case d =  1, N =  1 the system dies out since an interval 
of vacant sites of length 1>2 cannot become occupied. When d~> 2 and 
N =  p = 1, survival is impossible starting from a finite set. If the initial set 
of l 's is inside a box B~(x, R) then this will be true for all time. This does 
not mean that the system dies out, however. Durrett  and Gray  (4) have 
shown that if d~> 2 and N =  p = 1 there is a nontrivial stationary distribu- 
tion for large 2. The proof  of Theorem 2C generalizes to some thresholds 
0 > 2 but if 0 is too large, we run into difficulties like those in the proof  of 
Theorem 2B. 

Theorem 1 gives a sufficient condition for the existence of a stationary 
distribution. The next result shows that in one case the condition is 
(asymptotically) necessary. 

Theorem 3. Consider the two-color Greenberg-Hast ings model with 
threshold 0 = bv N. If b > �88 then the system dies out for large N, i.e., the only 
stationary distribution is 6o, the point mass on the "all 0" state. 

Remark. The proofs of Theorems 1 and 3 generalize easily to show 
that for the threshold contact process the cutoff is b o = 2/2(2 + 1). That is, 
if 0 = bvx then there is a nontrivial stationary distribution for large N if 
b < b o b u t n o t i f b > b  o. 
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A remarkable aspect of Theorem 3 is that it works very well for small 
N. If we call the largest threshold for which a stationary distribution exists 
the cutoff then for the Boo neighborhood in d =  2 we have 

N 1 2 3 
v N 9 25 49 
cutoff 2 6 12 

These data were obtained from computer simulation but one cannot just 
run the system and see if it dies out or not. When N =  3 and 0 = 14 the 
system will run for at least several thousand time units without deviating 
significantly from a 50-50 mix of 0's and l's. To see that the system has no 
nontrivial stationary distribution in this case, we make the sites in a ball 
vacant and observe that if the radius of the ball is larger than 10 then the 
vacant region expands. This shows that the state we are observing is not 
stable but only metastable. 

Our final result attempts to quantify the metastability just mentioned. 
We begin with a simple observation: If 0 < VN/tC, N is large, and we start 
the ~c color Greenberg-Hastings model from a product measure in which 
each color has density 1/~: then the probability a site in the initial 
configuration sees all colors above threshold is at least 1--exp(--6Nd).  
Combining this with parts of the proofs of Theorems 1 and 3 leads easily 
to the following: 

Theorem 4. Consider the two-color Greenberg-Hastings model on a 
torus (~ rood L) d starting from product measure with density �89 Suppose 
the threshold O = b v  N where l < b < � 8 9  and (logL)/Na--*O as N ~ o e .  If 
Zu=inf{t :  i t = 0 }  then there are constants 6, A e (0, oo) so that 

P(exp(6Na)<zu<exp(AN~))-*l as N--+ ov 

To prove the upper bound we show that by time exp(AN u) a large 
vacant hole will form and grow to wipe out the system. We conjecture that 
(log ZN)/N a-~ 7 in probability as N ~ ~ .  To prove this one has to answer 
the following questions: ( a )What  is the optimal size and shape for the 
hole? ( b ) H o w  does it form? Of course, you also have to show that the 
process does not die out by some other mechanism. The condition 
(log L) /Na~ 0 is important for the conjecture (and to a lesser extent for 
Theorem 4) since it guarantees that there are no large holes in the initial 
configuration and the time for a large hole to grow and wipe out the 
system can be ignored. 

Theorem 3 shows that the condition in Theorem 1 is sharp for the 
Greenberg-Hastings model when • = 2. We believe the result is not sharp 
for large ~ in d >  1. To explain this we introduce the following: 



Multicoior Particle Systems 133 

Example 4. (An Epidemic Model.) In this model ~,: 2d--+ {0, 1, 2}, 
we think of 0 as healthy, 1 as infected, and 2 as removed (dead or 
immune). The dynamics are like the three-color Greenberg-Hastings model 
but the transition 2--+ 0 is not allowed. 

a. If x is healthy and at least 0 neighbors are infected then x becomes 
infected at rate 1. 

b. If x is infected then after an exponential amount of time with 
mean 1, it becomes removed. 

c. Removed sites remain removed for all time. 

The epidemic cannot have a nontrivial stationary distribution so attention 
focuses on the question of survival, i.e., if we start with all sites in 
[ - C N ,  C N ]  d infected and all other sites healthy, then is there positive 
probability that the set of infected sites is always nonempty? 

Conjecture. Consider the epidemic model with threshold 0 = a v  N in 
dimension d >  1. There is a constant ae, that depends on p and d, so that 
(a) if a < a  e and N is large the epidemic survives and the Greenberg- 
Hastings model has a nontrivial stationary distribution for any tc < c~ and 
(b) if a > a e and N is large then the epidemic dies out. 

The conjecture in (a) is based on results of Durrett  and Neuhauser, ~6~ 
who showed for the case 0 = 1, d =  2, N = p = 1 that if the epidemic sur- 
vives and the rate for 2 --+ 0 transition is increased to a positive level 6 then 
there is a nontrivial stationary distribution. Having ~c colors is something 
like having 6 = 1/(~c-2), and hence our conjecture. If our conjecture is 
correct Theorem 1 is not sharp for large to. 

The general idea of investigating the Greenberg-Hastings model and 
cyclic systems with threshold 0 > 1 and the particular idea to consider the 
behavior when N ~  oo and O/v u ~ a are due to David Griffeath. He has 
made an extensive study of these two cellular automata when p = 1, oo and 
N ~ 6  and has mapped out the parameter values that lead to different 
qualitative behaviors. See Fisch, Gravner, and Griffeath. (~~ Based on their 
investigations, we guess that the phase diagram for Example 1 should for 
large N look like the picture in Figure 1. 

The "dies out" region is easiest to define: There is no stationary dis- 
tribution and the system converges exponentially rapidly to the all rested 
state. To explain "debris" we note that it follows from Theorem 2A and the 
proof of Theorem 1 that if 0 = av:v with a <  1/2~c then the unique equi- 
librium concentrated on ~4 ~ converges to product measure with density l )c  
as N ~  oo. We define the debris region to he the set of (a, to) for which the 
last conclusion holds and the "fire front" region to be the pairs not covered 
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Range 2 Threshold 3 Colors 5 Time 25 

Fig. 3. 

by the first two. To explain the name, see Figure 2, which gives a picture 
of the equilibrium for the threshold 5, eight-color model, with 
neighborhood set Boo(0, 3). Here and in Figure 3, excited sites are black, 
rested sites are white, and recovering sites are shades of gray. 

In accordance with our conjecture we have drawn the boundary of the 
dying out region to be asymptotic to ae as ~c ~ oo. There is a portion of the 
curve where the "dying out" and "debris" phases touch because we conjec- 
ture that this occurs when ~c is small. As for the boundary of the "debris" 
region, we believe that it is 1/2~c. In support of this see Figure 3, which 
gives the equilibrium state for the five-color model with threshold 3 in d = 2 
with the p =  ~ ,  N = 2  neighborhood. We have chosen this particular 
parameter value because it shows how accurate the vN/2~c formula is when 
N = 2 .  Notice that v2=25 and 25 / (2 .5)=2 .5 .  We have not included a 
picture of the five-color threshold 2 model because it would look like 
product measure with density �89 
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2. P R O O F  OF T H E O R E M  1 

The proof is a three-step process. In the first step we introduce the 
threshold contact automaton and show that if its threshold is 2v N with 
2 < 1 then a large ball grows at a linear rate. The second step is to show 
that after renormalization a multicolor system with threshold aVN dominates 
a t.c.a, with )~ < 1. In the third and final step, a second renormalization 
makes the multicolor system dominate supercritical 1-dependent oriented 
site percolation and standard techniques produce the desired stationary 
distribution. 

Step 1 

We define a deterministic discrete time process ~ : Z a ~  {0, 1} by 
qn+ l (x )=  1 if and only if [{y~Bp(x, M): qn(Y)= i}[ >~2v~. We call this 
process the threshold contact automaton or t.c.a. The first step is to show 
that if the t.c.a, is 1 on a large ball then the region occupied by l's contains 
a ball with linearly growing radius. 

Lemma 1. Suppose 2 <  �89 There are constants R o, ~, and Mo, so 
that if M>~M o and V/o(X)= 1 for xeB2(0,  rM) with r>>-Ro then t / l (x)=  1 
for x E B2(0, (r+A)M).  

Proof In one dimension we can take Ro -= 1 and A = 1 - 2Z Turning 
to dimensions d >  t, let Q =  {xsRd:  Ilxllp<<, t} and let q be its volume. To 
prove the result it is convenient to scale space by 1/M and translate so that 
x/M sits at the origin. Any d - 1  dimensional hyperplane through the 
origin divides Q into two pieces with volume q/2. For i = 1, 2, 3 let 2 < ~3 < 

1 '~2 < ,~1 < 5. By continuity, there is a A > 0 so that if a hyperplane passes 
within a distance A of the origin then it divides Q into two pieces each of 
which has volume at least q)~l. Another application of continuity shows 
that if Ro is large and D = B2(y, r) with r >~ R 0 and B2(y , r )~  B2(0, A ) r  
then the volume of D c~ Q is at least q22. 

The last step is to argue that if M is large then the lattice behaves like 
the "continuum limit" considered above. Pick e > 0 so that if D = B2(y, r) 
is as above then B2(y, r - e ) n ( 1 - e ) Q  is always larger than q)~3- Then 
pick Mo so that 1/Mo < ~ and if M>~ Mo then JBp(0, M)J/qMa< ;%/2. Let 
YC = (Za/M)c~ D c~ Q, The first part of the choice of Mo implies that if 
M >~ Mo then 

B 2 ( y , r - e ) ~ Q ( 1 - e ) c  ~ x +  2-M'2~/  
x C .,~f 
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SO 

M - J  I f [  >I q)~3 >/~ [Bp(O, M)[ 

by the second part  of the choice of Mo and the proof  of Lemma 1 is 
complete. [] 

Step 2 

The next step is to show that if the threshold is av u with a < 1/21c then 
after renormalization the multieolor system dominates a t.c.a, with 2 < �89 
Pick A < �89 and p < 1/~c so that 2p > a, use Lemma 1 to pick Ro, A, Mo and 
then pick M~ ~> M0 so that 

2p [Bp(0, M~)[ Ld> a IBt,(O, L ( M  1 + 1 ))l holds for large L 

Let a 6 (p, 1/tc) and suppose that the range of interaction in the multicolor 
model is N =  L(M~ + 1). Here L is an integer that will be chosen below. 
For  x ~ Z d let 

Hx= [xiL, (xi + 1)L) x -.- • [xdL, (Xd+ 1)L) 

We will call H:~ a house and set ~.(x) = 1 if there are at least aL d sites in 
the house in each state at time nL. 

Lemma 2. Let e > 0 .  If L is large and ~ 'o(x)=l  on B2(O, rM~) 
with ra[Ro,2Ro]  then with probability at least l - e ,  ~ '~(x)=l  on 
B2(0 , (r-}- zJ) m l ) .  

Proof Let v be the first time some house H X with x ~ B2(0, rM~) has 
less than pL u sites of some color. The choice of R o and Mo implies that for 

r ~> R o and M1 >~ Mo 

[B/x, M,)n ~2(0, rM,)l 1>,~ WAx, M,)I 

for all x~B2(0 , ( r + A ) M I ) .  Until time r, each house in B2(0 , rM1) has at 
least pL u sites in each state, so each site in each house in B2(0, (r + A) M 0  
sees at least 2 ]Bp(O, M~)] pL u sites of each color and by the choice of M1 
this number  is at least a IBp(O, N)l if L is large. The last observation 
implies that until time r the sites in each house Hx with 
xEB2(0, ( r + A ) M O  behave like a system of independent flips in which 
state i changes to i +  1 at rate 1. Independent flips converge to a product 
measure in which each color has density 1/~c so a simple large deviations 
estimates will allow us to conclude that (a)P(~ ~ L ) ~  0 as L ~ ~ ,  and 
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(b) if x e B2(0 , (r + A ) M 1 )  and L is large then with high probabi l i ty  there 
are at least e L  d sites of each color in H~ at t ime L The  large-deviat ions 
est imate is the following: 

L e m m a  3. 
t - p. Then  

Let  X~ ..... X ,  be i.i.d, with P ( X i =  1 ) = p ,  P ( X g - - 0 ) =  

P(X1 + ""  + X .  ~ n (p  - ~)) ~< e x p ( - e 2 n / 2 )  

Remark .  This result and its p roof  are s tandard  but  for us it is useful 
that  the r ight -hand side does not  depend on p. 

Proof.  If  c~ > 0 then 

P( XI  + .- .  + X,, <~ n (p  - ~)) exp( - ~ n ( p  - ~)) <<. (pc  -~  + (1 -- p))n 

so rearranging and using log(1 + x)~<x we have 

1 
- log  P ( X ~  + . . .  + X .  <<. n (p  - e ) )  
n 

~(p - e) + log(1 + p(e  ~ - 1)) 

<~ ~(p  - ~) + p ( e -  ~ - 1 ) = -cce + p ( e  ~ - 1 + or 

N o w  e -~ - 1 + c~ = cr - ~3/3[ + ..- ~ e2/2 for 0 ~< cr ~< 1, so taking cr = e 
and using p ~< 1 gives 

P(X1  + . . .  + X ,  <~ n (p  - e)) ~< e x p ( - e 2 n / 2 )  

which completes  the p roof  of L e m m a  3. 

To  approach  the p roof  of (a) and (b), consider a M a r k o v  chain Z,  
with state space {0, 1 ..... ~c-  1 } in which state i changes to i +  1 at rate 1. 
As in the In t roduct ion,  we will call this the "single-site" M a r k o v  chain. Let  
ui, j ( t )  = P i ( Z ,  = j )  and observe that  ui, j ( t )  = uo. j_s(t) .  Let v~ be the number  
of sites in state i in H~ at t ime 0. Then  the expected number  of sites in state 
j at  t ime t is wj( t )  = Y~ viui, i ( t ) .  

To prove  (a) apply  L e m m a  3 with n = vi >~ ~rL a to the sites that  s tart  
in state i to see tha t  with probabi l i ty  at least 1 - e x p ( - e 2 ~ L a / 2 ) ,  at least 
v i ( u ~ , j ( t ) - e )  of the sites that  start  in state i will be in state j at  t ime t. 
Tak ing  ~ = (a - p) and summing  over  i gives 
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since ~ ug, a(t) = ~ uo, j_~(t) = 1. So with probability at least 
1 - ~c exp(--c2aLd/2), at least pL a sites in H~ will be in state j at time t. 

The last bound is for a fixed time but it is easy to extend it to 
[0, L].  Let 6=~2a/2, let J=exp(6LU/2 ), and t~=k /J  for l~k<~JL .  The 
probability that the number of sites in state i is less than pL J at some time 
t k is at most 

JLtr exp( - e2crLa/2 ) = ~cL exp( - 6L d/2 ) 

The probability that two sites flip in some interval (tk_ ~, tk) is at most 

jL(L2d)(exp(--6Ld/2))2<<.L2d+lexp(--6Ld/2) 

When we never have two flips in any interval, the state at each t ~ (t~_ l, tk) 
agrees with the state at one of the two endpoints. Combining the estimates 
we have 

P(r  <~ L) <~ ( 4 RoM o + 1 )d ( ~cL + L 2d + 1) exp(--6Ld/2) 

since there are at most (4RoMo + 1)d houses in B;(0, rMo), proving (a). 
The proof of (b) is similar but simpler. Let x6B2(O, ( r+A)Mo) .  

When ~ > L each site in Hx always sees at least a IBp(O, N)! sites of each 
color and flips from i to i + 1 at rate 1. If L is large then all the quantities 
ui,./(L ) introduced in the proof of (a) are at least (or+ 1/~c)/2 so using 
Lemma 3 again as in the proof of (a) shows that the fraction of sites 
in Hx in state i at time L is at least aL d with probability at least 
1 -  ~c exp(-(3La/2), which is more than enough to give (b) and completes 
the proof of Lemma 2. gO 

Step 3 

Our final step is to show that if e > 0 then after a second renormaliza- 
tion, the multicolor system dominates a 1-dependent oriented percolation 
process on s = {(x, n ) e  Z2: x +  n is even} with density at least 1 - e .  The 
first step is to define the percolation process. Given random variables 
o)(x, n), (x, n ) e •  that indicate whether the sites are open (1) or closed 
(0), we say that (y ,n)  can be reached from (x, rn) and write 
(x, m)--, (y, n), if there is a sequence of points x ..... ,x,, so that 
I x ~ - - X k _ l l = l  for m < k ~ n  and o J ( x ~ , k ) = l  for m ~ k < n .  Up to this 
point the ~o(x,n) could be arbitrary random variables. The phrase 
"l-dependent with density at least 1 - e "  means that if (xi, ni), i a l  is a 
sequence of points with ( Ix i -x j[  + [hi-nj[)/2 > 1 for all i then 

(*) P(o(&,  n~) = 0 for all i) ~ g ~ 
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To make the comparison with oriented percolation, it is convenient to 
construct the process from a "graphical representation." For  states 
i E {0, 1 ..... ~: - 1) and x E Zd let { T~ x, n >~ 1 ) be independent Poisson pro- 
cesses with rate 1. At time t = T~ x, fit(x) jumps from i to i + 1 if it was in 
state i and the conditions of its neighbors dictate that a transition should 
occur. Let K =  RoM1, and let T=Ro/A. By decreasing 3, we can suppose 
T an integer without loss of generality. If (x, n)~ ~ we say (x, n) is 
occupied if all the houses H~, z ~ B z ( x K  , K) are occupied at time nTL. Here 
the radius K was chosen so that Lemma 2 applies. Applying that result T 
times we see that if all the houses in B2(xK, K) are occupied at time nTL 
then with high probability all the houses in B2(xK, 2K) are occupied at 
time (n + 1 ) TL and B2(xK, 2K) ~ B2((x + 1 )K, K). Finally, if we condition 
on the state of the multicolor system at time nTL then the "good" event 
that makes city x grow and populate its neighbors is measurable with 
respect to the Poisson points in Ax,n=B2(xKL, 2KL)• [nTL, (n + 1) TL], 
and has probability at least 1 - e if L is large. The percolation process will 
be 1-dependent since the space-time cylinders Ax,, have the property that 
Ax, ,~Ay,  n= ~ unless m=n and I x - y l < ~ 2 .  Recall ~ = { ( x , n ) ~ 7 / 2 :  
x + n is even }, 

To formalize the comparison with oriented percolation, we need to 
define the random variables co(x, n) for (x, n) ~ 5e. To do this, we consider 
two cases. If (x, n) is occupied, we set co(x, n) = 1 if the "good" event occurs 
in A . . . .  and co(x, n) = 0 otherwise. If (x, n) is vacant we define co(x, n) by 
flipping a coin with probability 1 - e  of heads (1) and ~ of tails (0). Let 
V, = {x: (x, n) is occupied}, let Wo = Vo, and let Wn = {y: (x, 0) ~ (y, n) 
for some x e Wo}. It follows easily from the definitions and induction that 
V ~  W, and ( . )  holds. 

To produce a nontrivial stationary distribution, we start the multi- 
color system from a product measure in which each color has density 1/~, 
run the system to time S, take the Cesaro average of the distribution at 
times 0 <~,~ ~< S, and extract a convergent subsequence. The result, call it re, 
is a stationary distribution. (See Liggett, ~5) Proposition 1.8, on page 10). 
To see that rc is nontrivial, we observe that if L is large the law of large 
numbers implies P(0 ~ Vo) is close to 1 and if e is small a well-known per- 
colation result (see Durrett, ~3) Section 10) implies lira inf P(0 e W2,) is close 
to 1. From the last result it follows easily that rc is not concentrated on the 
absorbing states and the proof of Theorem 1 is complete. 

3. P E R C O L A T I O N  LEMMAS 

In this section we will prove some results about oriented percolation 
that will be the key to the proofs. To explain our motivation let S2(x, r) be 
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the set of sites in the houses in B2(x, r) and note: ( i)Until  the time 
defined in the proof of Lemma 2 all the sites in $2(0, (r + A)M1) flip inde- 
pendently; (ii) if we have two realizations of the single-site Markov chain 
that are driven by the same Poisson process, as in Step 3 above, then the 
probability they will agree by time L is at least 1 -  Cexp(-cSL)  for some 
C, 6 E (0, oe). From the last two observations it follows that if we have two 
initial configurations ~o and ~0 in which city 0 is occupied and L is large 
then ~L and ~L will with high probability agree on $2(0, (Ro+A)M1) at 
time L. Iterating the last argument and arguing as in Step 3, it is easy to 
see (details will be given in Section 4), that if L is large then the coupled 
region {x: ~t(x)=~t(x)} dominates a 1-dependent oriented percolation 
process with density close to 1. The last comparison was good enough to 
construct a stationary distribution but is not enough to prove uniqueness. 
We want the coupled region to expand and cover the whole space, but the 
percolation process has a positive density of closed sites. 

Having explained the problem, we turn our attention now to the solu- 
tion. We begin by defining oriented percolation on Z d. Each site z e Z d is 
independently designated as open or closed with probabilities p and I -  p. 
In the usual oriented percolation model one is allowed to move up from x 
to x + ei where ei is the ith unit vector but here we are interested in "dual 
clusters" so we say there is an open dual path from x to y if there is a 
sequence of open points zo = x ..... z,, = y so that zm - zm_ 1 ~ ( - el,..., - e~ } 
for I < m  ~<n. The cluster containing x, Cx, is the set of points that can be 
reached from x by an open dual path. We say that x is wet if lCxl = 0% and 
dry otherwise. 

The aim of this section is to show that if p is close enough to I then 
the dry sites do not percolate. To define percolation for dry sites, we say 
there is a dry path from x to y if there is a sequence of dry sites zo = x ..... 
zn = y so that ] l Z m  - -  Z m _  111 ~x) ~ 1 for 1 ~< m ~< n. This definition is motivated 
by the proofs of Theorems 2A and 3. It is a little more lenient than 
necessary but easier to state than the exact condition. 

To rule out percolation of dry sites we will use a "contour argument." 
To build up the contour we will start with the unit cube Q = [ -  1/2, 1/2J a 
and then orient the faces assigning + 1 to the top faces (i.e., ones pierced 
by segments from 0 to ei) and - 1  to the other "bottom" faces. If the top 
face is pierced by the segment from 0 to ei we call e~ the site above the face 
and 0 the site below. These definitions are extended to other cubes x + Q 
by translation. 

Let Do be the cluster of dry sites containing the origin, i.e., all the y 
that can be reached from 0 by a dry path. We define the dry region 90 to 
be the union of the y + Q  for all the y E D o  and define the contour 
associated with Do to be the algebraic sum of all the faces of the cubes that 
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make up 9o. That is, plus and minus faces cancel and disappear from the 
sum. The first ingredient in the contour argument is the following: 

Lemma 4. If the contour has n faces then there are at least n/2d 
closed sites. 

Proof It is immediate from the definition that (i)there are an equal 
number of plus and minus faces and (ii) the site above a plus site must be 
wet and hence the site below the face must be closed. Obviously the same 
closed site can sit below d plus faces but this is the worst that can happen. 

[] 

The next thing we have to do is count the number of contours. Define 
~9o to be the union of all the faces that appear in the contour with a 
nonzero weight. 

Lemma 5. If 9o is finite then 090 is connected (as a closed subset 
of ~d). 

Proof We begin by observing that since wet sites are necessarily part 
of an infinite cluster of wet sites, there cannot be any finite collections of 
wet sites and ~9  is what is usually referred to as the external boundary. All 
the ideas needed to prove this result can be found in Kesten, (14) p. 143-151. 
The somewhat gruesome details are left to the reader. In defense of our sin 
of omission we would like to observe that the only purpose for Lemma 5 
is to prove the estimate in Lemma 6 and for this a much weaker conclusion 
would suffice. 

From Lemma 5 it follows immediately that we have the following: 

Lemma 6. There are a constants C ,#  that only depend on the 
dimension so that if An is the number of contours with n boundary faces 
that contain a given face then A, ~< C/~ ". 

Proof Embed the collection of boundary faces into Ed by identifying 
each boundary face with its midpoint, and make this set of points into a 
graph F by connecting any two points for which the corresponding faces 
intersect. Now each point in F has the same number of neighbors, say v. 
Lemma 5 shows that after the orientations are discarded the contour is a 
connected subset of the graph F. The desired conclusion is now a "simple 
exercise" in combinatorics, but following Kesten we will use percolation to 
get the desired estimate. Consider site percolation on F in which sites are 
open with probability a and closed with probability 1 -  a. An induction 
argument shows that any cluster of n open sites has at most n ( v -  2 ) +  2 
closed sites on the boundary. [Adding a new open site removes 1 boundary 
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site and adds at most ( v -  1) others.] Using Co to denote the cluster con- 
taining a fixed point o and B,, the number of clusters of size n containing 
o, it is clear that 

1 >~P(ICol =n)>~B,a~(1 - a )  n(~ 2)+2 

SO B, ,~(1--a)-~(a(1--af f -2)  - ~. The last inequality is valid for all a~ 
Taking a = 1/(v-  1) to minimize the right-hand side gives a bound on the 
number of contours when orientation is ignored. Since A~<.G2"Bn the 
desired result follows. 

Combining Lemmas 4 and 6 now gives the following: 

Theorem 5. If p is close enough to 1 then the dry sites do not 
percolate. 

Proof. Consider first a modified system in which all sites outside 
[ - K ,  K]d are wet. We will get an upper bound (independent of K) on the 
probability that the contour associated with the (necessarily finite) cluster 
of dry sites containing the origin contains n faces. The first step is to 
observe that if the cluster reaches {x: xl = n + 1 } then by looking at the 
highest points (lexicographically ordered) of the intersections with 
{ x : x t = m }  for l ~ < m ~ < n + l  we conclude that there are n + l  faces, a 
contradiction, so the cluster is contained in {x: l[xll~<~n}. Now, there 
are at most d(2n + 2) a plus faces to pick to start our contour, and once 
the starting face is picked, Lemma 6 bounds the number of contours. 
Combining the last observation with Lemma 4 shows that the probability 
of having a contour with n faces in {x: IPxli~<~n} is at most d (2 n +2 )  d 
C/in(1 _ p)~/2a. If (1 - p)i/2a< 1/# then 

~k = ~ d(2n + 2) u C#"(1 - p)n/zd 
n = k  

approaches 0 as k ~ c~. Since 7rk is a bound on the probability the cluster 
of dry sites containing the origin escapes from {x: rlx[l~ ~<k}, the result 
follows. 

The proof of Theorem 5 generalizes immediately to mildly dependent 
percolation processes. 

L e m m a  7. Consider a dependent percolation process on Z d in which 

P(zi is closed for 1 ~< i ~< m) ~ ~m 

whenever Jfzi-zjtJ2>v for all i# j .  Let e=J{zs~_d:l[zl[2<~V}l. If 
~1/2a~< 1/2~t then the probability the cluster of dry sites containing the 
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origin escapes from {x: IIxlk~<~n} is at most Cnd2 -~, where C depends 
only on the dimension. 

Proof When the contour has size m, Lemma 4 guarantees the 
existence of at least m/2d closed sites. There is a subset of the closed sites 
of size at least m/2de that are all separated by distance > V. Since the 
cluster cannot escape from {x: ]lxl[ ~ ~<n} without having at least n faces, 
it follows that the probability of interest is at most 

d(2m + 2) d c[Am~, m/2d~ ~. C'nd2 " 
r n ~ t t  

The constant C in Lemma 6 only depends on d, so C' does as well. 

To use Lemma 7 to study the multicolor processes we need to rotate 
the integer lattice into a more convenient position. Let D = d + 1 and let A 
be a D • D matrix so that (i) if x has Xl + --. + xD = 1 then (Ax)D = 1 and 
(ii) if x and y are orthogonal then so are Ax and Ay. Let e~,..., eD be the 
D unit vectors and let vi=Aei. Let 5~ {Az:zeY D} and make LPD into 
a graph by drawing an oriented arc from x to x + v~ for 1 ~< i ~< D. In words, 
we have rotated and scaled the D-dimensional lattice so that the steps x to 
x + e~ of the usual oriented percolation model on Y ~ now increase the last 
coordinate by 1. When d = l  and D---2, we must have v~=(1, 1) and 
v2= ( - 1 ,  1) so 5~2 = ~ .  To help visualize the lattice for d~> 2 and explain 
why we have not given a formula for A, we note that when d = 2 and D -- 3 
one possibility is 

v2 = ( 1 / ~ f i - , , f ~ ,  1) 

v3 = ( - x ~ , O ,  1) 

Let us, 1 ~< i~< D be the vectors in R a that consist of the first d com- 
ponents of the vs. It is easy to see that the vectors ui are the vertices of a 
simplex and are all at the same distance U from the origin. 

We come now to the final ingredient for the proofs of Theorems 2A 
and 3. For (z, n)~ 5f D, let Cz,, be the collection of (y, m) that can be 
reached by a dual path of open sites. Let G, be the set of z so that 0 ~ Cz,, 
and let H ,  be the set of z so that ICz,,l = oQ. 

Lemma 8. Consider a dependent percolation process on 5r D in which 

P(zs is closed for 1 ~< i ~< m) <~ ~m 
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whenever Hzi-zjll2> Vfor  all i # j .  Let c~= [ {z~ 5~0:[Fz[[2 ~< V}I. If el/2a~ < 
1/2# then there is a/~ > 0 so that on {Gn r ~ for all n } we have Gn ~ 11,, c~ 
B2(O, nil). 

Proof The result is easy in d =  1. In that case results in Section 3 of 
Durrett  (3) show that if G, # ~ ,  In = inf G,,  and r,  = sup Gn then Gn = H ,  c~ 
[l , ,  r~] and results in Section 11 of Durrett  (3/show that 

lira inf r,/n, lim inf - In/n >~ B > 0 

To get the result in d > 1 we have to work harder. A simple argument 
using the methods in Section 10 of Durrett  (3) shows that we have percola- 
tion in each plane H = { z + m v i + n v / m , n ~ 7 / } .  With this in hand, 
Lemma 8 can be proved using the methods in Durrett  and Griffeath. (5) 
Referring to that paper we see that the conclusion of Lemma 5 is (6) on 
page 539, which as demonstrated on pages 541-542, is a simple conse- 
quence of the exponential estimates (4) and (5) on page 539. The proof  of 
(4) given on page 546 generalizes easily to the current situation. The proof  
of (5) given on pages 547-549 must be adapted to the geometry of dD but 
no new ideas are required so we will not repeat the proof here. [] 

4. U N I Q U E N E S S  RESULTS 

In this section we will prove Theorems 2A-2C. 

4.1. Proof  of Theorem 2A 

The first ingredient is some "general nonsense." The multicolor 
processes are Feller processes with a compact  state space so well-known 
results of Rosenblatt (16) imply the following: 

Lemma 9. The collection of stationary distributions is a nonempty 
simplex, i.e., a convex set in which each element can be written as a convex 
combination of its extreme points in a unique way. 

Lemma 10. Any two extreme points are mutually singular. 

We will now use the last two lemmas and the coupling in Step 4 in 
Section 2 to prove 

Lemma 11. L e t / t  and v be two extreme points and suppose that in 
each measure, city 0 is occupied with positive probability. Then p = v. 

Here city 0 refers to the ball B2(0, 2K) of houses where K =  R o M  1 was 

860/5/I 10 
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defined in Step 3 in Section 2. It is clear that if some city B2(x, 2K) is 
occupied with positive probability in a stationary distribution # then by 
using the construction in Step 3 in Section 2 to expand the occupied region 
we can conclude that city 0 is occupied with positive probability so 
Lemma 11 implies Theorem 2A. 

Proof In view of Lemma 10 it suffices to show that # and v are not 
mutually singular. Our hypotheses imply that realizations Go and 40 of the 
two stationary distributions can be constructed on the same space so that 
with positive probability city 0 is occupied in both processes. We will now 
use a modification of the construction in Step 3 in Section 2 to show that 
if the evolution of the two processes is determined by the same graphical 
representation then the "coupled region" {x: ~ , (x)= ~t(x)} will expand to 
cover the whole space with positive probability. Since the distributions of 
~t and ~, are independent of t, this implies that the two measures are not 
mutually singular and yes the desired result. 

Let K=RoMI  and T=Ro/A, which we suppose is an integer. If 
(x, n ) e  LfD we say that city x is occupied at time n if all the houses in 
B z ( x K / U  , K) are occupied at time nT in ~,r  and in ~,r. The scaling is 
chosen so that the points u~K/U lie on the boundary of B2(0, K). (ui and 
U were defined right before Lemma 8.) At the beginning of Section 3 we 
argued that if (x, n) is occupied then with high probability at time 
(nT+ 1)L all the houses in B2(xK/U , K- t -AM1)  will be occupied in ~ and 

and ~ = ~ in S2(xK/U, K+ AMI) = the set of sites in B2(xK/U, K+ AMI). 
Iterating the last argument T times we conclude that if (x, n) is occupied 
then with high probability all the (x + u~, (n + l) TL) will be occupied and 

= ~ on the corresponding cities. Here, by "high probability," we mean 
that if ~ > 0 and L is large then the event has probability at least 1 - e for 
all possible values of ~ , r  and ~nr. Now if we condition on ~,r and ~nr, the 
"very good" events that produce the coupling are measurable with respect 
to the Poisson points in Ax, . = B2(xK/U, 2K) x [nTL, (n + 1) TL]. Many 
of these cylinders intersect but there is a V so that if Ll(x, n ) -  (y, m)l[2 > V 
then A~,, c~ A y, m = ~ .  

To compare the coupled region with oriented percolation, we need to 
define the random variables co(x, n) that indicate whether the sites are open 
(1) or closed (0). To do this we consider two cases. If (x, n) is occupied we 
let co(x, n) = 1 if the "very good" event in A~,, occurs, and =0  otherwise. 
If (x, n) is vacant we define co(x, n) by flipping a coin with probability p of 
heads (1) and 1 - p  of tails (0). For  (x, n ) e  5r let Cx,, be the collection 
of (y, m) that can be reached by a (dual) path of open sites, i.e., m ~< n and 
there is a sequence Zo = x ..... Z,-m = y SO that co(zk, k ) =  1 for 0 ~< k ~< n -  m 
and z k _ l - - z k e  {Ul ..... UD} for 1 <~k<~n--m. Let G, be the set of z so that 



Multicolor Particle Systems 147 

(0, 0) ~ Cz.,,. It  is easy to see that  if z s G,, and n ~> 1 then (nrc and ~ r c  
agree at all the sites in S2(zK/U, K). However ,  a posit ive fraction of the 
sites are not  very good  so we need to work  harder.  

Let G = [.),(G, x {n }) and observe that  discrepancies cannot  appear  at 
a site when all of its neighbors  within distance N (the range of the inter- 
action) are the same. Let wi, 1 ~< i<~D(D- 1) be the vectors that  have one 
+ 1 component ,  one - 1  component ,  and D - 2  zeros. These are the vec- 
tors with integer coordinates  in the hyperplane  Xl + .-. + x D  = 0 that  are 
closest to 0. Let ~ = { A w i : l < ~ i < ~ O ( O - 1 ) }  and ~f={v~:l<~i<~D} 
where A and the vi were defined before L e m m a  8. A little thought  reveals 
that  if ( , rL  and ~nTL disagree at some site in S2(zK/U, K) then z is 
G-exposed at t ime n, i.e., we can find a sequence (Zm, km),  0 ~ m <<. M of 
points not  in G so that  Zo = z, ko = n, kM = 0, k m is nonincreasing,  and 
zm - Zm _ ~ ~ ~ when k m < k m i and z,~ - zm_ ~ e ~/U when km = k,~ _ 1. Here  
we use the fact that  the cities were defined using B2(zK/U, K) and if w e 
then there are v~, v j e Y  ~ so that  w+v~=v~, and hence Irw/Ul]2<~2. 

To make  connect ion with results in Section 3, let H ,  be the set of  z for 
which ]C~,,,]=oo and H = U , ( H , x { n } ) .  Defining H-exposed in the 
obvious  way and applying the t rans format ion  A -~ to return to Z d we see 
that  A - 1 H  are the wet sites and the H-exposed  sites are a subset of  the dry 
sites defined there. To  connect  G and H we observe that  L e m m a  8 shows 
that  there is an f l > 0  so that  on {]G[ = o o } ,  we have G,~H,c~B2(O, nfl) 
for large n. L e m m a  7 gives an exponent ia l  upper  bound  on the radius of 
dry clusters so it follows f rom the Borel-Cantel l i  l emma that,  on 
{[G[ = oo }, we have no G-exposed sites in B2(0, n[I/2) for large n. The last 
conclusion implies that  with positive probabi l i ty  the coupled region grows 
at a linear rate and the p roof  is complete.  

4.2. Proof of Theorem 2B 

Here and for the rest of the  pape r  we restrict our  a t tent ion to the 
Greenbe rg -Has t ings  model.  The next two lemmas  prove  conclusions (a) 
and (b). 

L e m m a  12. Let/~ be a s ta t ionary  distribution. If h(~0) = za,  ,u a lmost  
surely, then all finite dimensional  sets have positive probabil i ty,  and hence 
occupied cities do. 

Proof. The definition o f h  implies that  for any L < ~ ,  P(~1(x)= 1 for 
all x E [ - L ,  L ]  a) > 0. F r o m  this it follows easily that  P(~(x)= q(x) for all 
x e [ - L , L ] d ) > O  for any q, and hence occupied cities have positive 
probabil i ty.  U 
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Lemma 13. Consider d =  1, let N be the range of the interaction, and 
suppose that O<~N. Any stationary distribution has h(~0)= Z, # almost 
surely. 

Proo f  If h(~) contains 0 consecutive sites then h(()  = Z so suppose it 
does not. Let a ~ h(~) and b < a < c with b, c r h(~.) and [b - c[ > N. Starting 
with initial distribution/~, there is positive probability that there are no l's 
in (b, c) at time 1. However once this happens no l's can be created in 
(b, c) because (i) the two endpoints see a number of l's below threshold in 
h(~t) ~ {x: ~t (x)= 1 } for all t, and (ii)since I b - c l  > N the sites in (b, c) 
see fewer l's in h(~t) than one of the points b or c does. [] 

4.3. Proof of Theorem 2C 

Let D = d + l .  We begin by observing that LI(1/D,..., 1/D)IL2=D -v2  
and I l e i - e j l ]  2 = 2 1/2 so the constant U defined in Step 3 in Section 2 is 
(2D) m. For  (z, n) s 5~D we say that z is occupied at time n if all sites in 
Ba(z, 2U) are occupied at time n6. If we pick ~ small and then 2 large it 
follows that the occupied sites on ~D dominate the wet sites in a mildly 
dependent percolation process with p close to 1. Repeating the argument at 
the end of Step 3 in Section 2 shows that there is a nontrivial stationary 
distribution. 

To prove the convergence theorem we begin by observing that if all 
sites in B2(z, 2U) are occupied then ~, must agree on B2(z, 2U) with the 
process starting from all l's. It follows from the proof of Lemma 11 that if 
all sites in B2(0, 2U) are occupied at time 0 then with positive probability 
the coupled region grows linearly and covers the whole space. To get the 
coupling started we use the following: 

Lemma 14. Suppose ~ is a configuration in which a birth is possible 
at a vacant site; then h(~)= yd. 

Proo f  If a birth is possible at x then there must be l's at 
y, z ~ Bp(x, N). Suppose without loss of generality that Xl ~ Yl. Let u be the 
vector that has the first coordinate of y and the last d - 1  from x. Since 
1Ix-Ullp and [lY-ullp are less than ]Ix-Ylk p a birth is possible at u once 
x is occupied. Now once u is occupied births are possible at x + e 1 if Yl > xl 
and at x -  e~ if Yx < xl.  Once we have a pair of sites v, v + e~ occupied the 
rest is easy. The conclusion is trivial if d =  1, N >  1. In d >  1 when N >  2 lip 
the birth rate is positive at v + e~ and v + el + ei, SO h(~) contains {v + mei, 
v ..t- e 1 -b rnei for m E 7/}. Repeating the last argument ( d -  1 ) times gives the 
desired result. [] 
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Lemma 14 implies that if births are possible at time t then there is 
probability at least 6 > 0 that at time t + 1, all sites are occupied in some 
B2(z, 2U). From this it follows immediately that if births are possible at a 
sequence of times tn--.oo then ~ , ~ .  Conversely, if births are not 
possible for large t then the system dies out, i.e., ~, ~ c~ 0. 

5. P R O O F  OF T H E O R E M  3 

The proof  follows the outline of Theorem 1 but this time we show that 
a large vacant ball grows. 

Lemma 15. Consider the threshold contact automaton defined in 
Step 1 in Section 2 and suppose 2 > �89 There are constants Ro, A, and Mo, 
so that if M>~M o and t /o (x)=0  for x~B2(O, rM) with r>~Ro then 
r/l(X)= 0 for x~Bz(O, (r+J)M). 

Proof Use the constants of Lemma 1 for 1 - 2. 

Consider the two color Greenberg-Hast ings model with threshold 
0 = b v  u where b > �88 and pick 2, p > �89 so that 2p < b. Our  next step is the 
following: 

Lemma 16. Let � 8 9  There is a constant z < o o  so that if we 
start with all sites in the contact process = 1 then at times t >~ T the process 
is dominated by a product measure in which l 's have density a. 

Proof The construction in Step 3 in Section 2 shows that the contact 
process is dominated by an independent flips process which always jumps 

0, x from 0 to 1 at times T ,  . In the independent flips process the density of 
l 's at time t is (1 +e-2')/2. 

Let L =  [N 1/2] and f o r x ~ Z d l e t  H x =  [xlL, (xl+ 1 ) L ) x  ... x [xdL, 
(Xd+ 1)L). As before we call Hx a house but now we say that it is vacant 
if it contains no l's. Let D = d +  I and let s176 be the lattice introduced in 
Step 3 in Section 2. For  (z, n) E 5e D we say that city z is vacant at time n if 
all the houses in Bz(zL/U, 2L) are vacant at time nTL where T =  L/A. We 
call a house H x reasonable at time n if there are at most aL d l 's in Hx at 
all times te [nTL, (n + 1) TL]. Recalling Lemma 16 and using Lemma 3 as 
in Step 2 in Section 2 it is easy to see that if L is large and n i> 1 then with 
high probabili ty all houses Hx, x e B2(zL/U, 3L) are reasonable at time n. 
Now, if all the houses in Hx, x E B2(zL/U, 3L) are reasonable at time n, if 
all the houses in B2(zL/U, 2L + k A )  are vacant at time (nT+k)L, and if L 
is large, then all the sites in B2(zL/U, 2 L +  ( k +  1)A) see a number of l 's 
that is below threshold at all times in [(nT+k)L, (nT+k+ 1)L]  and no 
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births occur. The probability a I will survive for L units of time is e x p ( - L )  
and" there are only CL d sites to worry about, so with high probability the 
vacant region will expand to B2(zL/U, 3L) by time (n + 1) TL. 

The definition in the last paragraph are those of Step 3 in Section 2 
with K =  L and T =  L/A. Continuing to follow the developments there, let 
A =B2(O, 3KL)x [ - r ,  TL], and for (z,n)E SF D let O(zKL/U, nTL), and 
A .... = 0(z, n ) +  A. If we condition on the state at time n T L - z  then the 
"good" event that makes a vacant ball centered at z grow and depopulate 
the neighboring cities is measurable with respect to the Poisson points in 
Az, n. This time the space-time cylinders Az,, have the property that 
Aw, mnAz,,~=~j unless I m - n l ~ < l  and Ilw-zll2<<.6U. However, if L is 
large the vacant cities again dominate a mildly dependent percolation 
process in which open sites have probability close to 1. 

To complete the proof of Theorem 3 now, we follow the proof of 
Lemma 11. For  (z, n)e,.~o let Cz,~ be the collection of (y, m) that can be 
reached by a (dual) path of good sites, let G, be the set of z so that 
(O,d)eC .... and let Hn be the set of z so that ICz,,l=~. (We need a 
positive time so that Lemma 16 guarantees the density has dropped close 

Time d is the first time (0, n) e ~D-) If we suppose that at time d city to 5- 
0 is vacant then there can be a 1 in some house in B2(zK/U, 2K) at time 
n only if (z, n) is G-exposed. Using Lemmas 8 and 7 now as in the proof 
of Lemma 11 we conclude that with positive probability we have no 
G-exposed sites in B2(0, ne/2) for large n. This shows that a large vacant 
ball will expand linearly with positive probability and Theorem 3 follows. 
For  the proof of Theorem 4 in the next section we would like to observe 
that the "positive probability" in the last sentence is close to 1 if L is large. 

E2 

6. P R O O F  OF T H E O R E M  4 

We begin with the lower bound on z N. This part of the result holds 
for a general multicolor system. Let o- u be the first time there is an x and 
an i so that the number of neighbors of site x of color i is below threshold. 
Until time o" N all sites flip independently. In a system of independent flips 
starting from a product measure in which all colors have density 1/~c it 
follows from Lemma 3 that the probability that at a fixed time t some site 
x e (?7 mod L) a sees color i below threshold is at most CL a e x p ( - ~ N  a) for 
some C, ~e(0,  ~ ) .  Subdividing the time interval [O, exp(eNa/4)] into 
intervals [k~, (k + 1)~) where ~ = exp( -eNa/2)  we see that the probability 
two sites flip in the same interval is at most ~2L2a exp(e3Na/4) which con- 
verges to 0 as N--+ ~ since (log L)/Na~ O. When we never have two flips 
in the same interval, the state at each time t ~ [kc~, (k + 1)~) agrees with the 
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state at one endpoint. The probability some site will see some color below 
threshold at some time ke E [0, exp(eNd/4)] is at most 

exp(e3NJ/4) CtcL a exp( - eN d) 

which also converges to 0 as N-+  oo. Combining the last two estimates 
proves P(aN < exp(eNd/4)) ~ 0 as N ~ ~ .  

To prove the upper bound on 17 u we observe that it follows from the 
proof  of Theorem 3 that there is a constant R o so that if there are no 
occupied sites in B2(0, RoN) then with a probability that approaches 1 as 
N--* oo the vacant region will expand linearly and cover the whole space. 
Now if we let/? = e -2 be the probability that a site sees exactly one arrival 
in T~, '~ and no arrivals in T ~ in [t, t + 1) then the probability that 
all sites in B2(0 , RoN) are vacant at time t +  1 is at least /?W2m, RoN)J 
independent of the state at time t. Let T N be the first time B2(6, RoN) is 
vacant. Standard arguments show that for any 6 > 0 

P(TN>exp((2+O)]B2(O, RoN)]))~O as N ~ o c  

Since (log L)/Nd~ 0 and the hole grows linearly, it follows that 

P(ZN>exp((2+2~i )  IB2(O, RoN)t))~O as N ~ o o  

completing the proof of Theorem 4. 
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