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In this paper we will describe recent results on four interacting particle systems
that model the growth and competition of plant species or the spread of an
epidemic or forest fire. In each system there is a collection of sites, the d-
dimensional integer lattice, that at each time ¢t € [0,00) can be in one of a
finite number of states, so the state of the process at time ¢ is a function
& :Z¢ — {0,1,...,k}. The time evolution is described by declaring that each site
changes its state at a rate that depends upon the states of a finite number of
neighboring sites. Here, we say that something happens at rate r if the probability
of an occurrence between times ¢ and ¢t + h is rh + o(h).

1. The Basic Contact Process

In 1;his model ¢, : Z¢ — {0,1}, we think of 0 as vacant and 1 as occupied by a
“particle,” and the system evolves as follows:

(i) Particles die at rate one, give birth at rate f.

(ii) A particle born at x is sent to a y chosen at random from the 2d nearest
neighbors {y : |x — y[; = 1}.

(iii) If y is occupied then the birth is suppressed.

Rule (iii) says that there can be at most one particle per site. This is a
reasonable constraint if you are thinking of the spread of a plant species but this
realism makes the model very difficult to analyze. Let &/ be the state at time ¢
when initially ¢§(x) = 1 if and only if x € 4, and let ©4 = inf{t : ¢ = 0}. If
there are no particles then none can be born, so ¢/ = 0 for all t > 4. In words,
the “all 0” state is an absorbing state and we say the system dies out at time 77.

The first question to be addressed is “When does the system have positive
probability of not dying out starting {from a single occupied site?” or “When
is P(z1% = o0) > 0?” It suffices to use a single occupied site as an initial
configuration since P (t{% = oo) = 0 implies P (t# = o0) = 0 for all finite 4. Now,
increasing f§ improves the chances for survival, so it should be clear that there is
a critical value

B =inf{B : P (&) # 0 for all £) > 0}.
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If we delete rule (iii) from the definition, the resulting system is called a branching
random walk and has f, = 1. That is, in order for a branching random walk to
survive it is sufficient to have a birth rate larger than the death rate. Since in
the contact process some of the birth rate will be wasted on occupied sites, this
proves the easy half of the following result.

Theorem 1A. 1 < B.(Z%) < 4.

The lower bound is due to Harris (1974), the upper bound to Holley and
Liggett (1978). Both bounds are reasonably accurate. Numerical results (see
Brower, Furman, and Moshe (1978)) suggest that B.(Z) ~ 3.299 and f.(Z?) ~
1.645, and it has been shown (see Holley and Liggett (1981) or Griffeath (1983))
that B.(Z%) — 1 as d — .

Once it was established that . € (0,00), attention turned to “What does the
process look like when it does not die out?” To answer this question we begin
by introducing a special property of the contact process called duality

P(¢(x) =0 for x € B) = P(£8(x) = 0 for x € 4).

An immediate consequence of duality is that if we start from &}(x) = 1 then
&l = EL . Here, = is short for converges weakly and means that

P(¢L(x) =0 for x € B) = P (&L (x) =0 for x € B)

for all finite sets B. To prove the weak convergence we set A = Z¢ in the duality
equation to get
P(¢l(x) =0 for x € B) = P(£3(x) = 0)

which increases to a limit as ¢t — oo, since “all 0” is an absorbing state. It
follows from standard results (see Chapter 1 of Liggett (1985)) that &L is a
stationary distribution for the contact process, i.e., if we start the process with
this distribution it has this distribution for all time.

At the other extreme, the point mass on the “all 0” state, dg, is a trivial
stationary distribution. Letting B = {y} and ¢t — oo in the duality relation gives

P(EL(y) =0) = P < ),

so EL = § if the contact process dies out, but is a nontrivial stationary dis-
tribution if the contact process survives. The next result, called the complete
convergence theorem implies that £L is the only nontrivial stationary distribution.

Theorem 1B. ¢! = P (14 < 00) §p + P (14 = o0) L.

In words, when the process dies out it looks dead, but when it survives and t
is large it looks like the system starting from all sites occupied.

The last result took fifteen years to evolve to its current form. Harris (1974),
Griffeath (1978), Durrett (1980), Durrett and Griffeath (1982), and Durrett and
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Schonmann (1987) proved increasingly more general results before Bezuidenhout
and Grimmett (1990) finished the problem and in addition proved

Theorem 1C. When f = f., P(1{% = o0) = 0.

In words, the contact process dies out at the critical value. For applications
(including some we will make in this paper) it is worthwhile to note that all the
results in this section hold if (ii) is replaced by

(ii) A particle born at x is sent to a y chosen at random from x + A",

if we assume A" is (a) symmetric with respect to reflection in any coordinate
plane, and (b) irreducible, i.e., the group generated by .4 is Z¢.

2. Multitype Contact Processes

It is well known, even to mathematicians, that there is more than one type of
plant, so it is natural to generalize the contact process to have two (or more)
types of particles. In this model, the state at time ¢ & : Z¢ — {0,1,2} and we
think of 0 as vacant and 1 and 2 as occupied by pine and maple trees respectively.
With this in mind we formulate the evolution as follows:

(i) Particles of type i die at rate one, give birth at rate f3;.

(i) A particle born at x is sent to a y chosen at random from x + A" where A"
is symmetric and irreducible.

(iii) If y is occupied then the birth is suppressed.

When only one type of particle is present the system reduces to the basic
contact process so if 1,2 > B.(Z?) then there are three trivial equilibria: &g,
and pp, where y; is the limit starting from &,(x) = i. The main question to be
answered about the new system is: “Is there a nontrivial stationary distribution?”,
i.e., one that concentrates on configurations that contain both 1’s and 2’s. The
first result is a negative one.

Theorem 2A. If 1 > P then there are no nontrivial translation invariant stationary
distributions.

Here translation invariant means that that the distribution is invariant un-
der spatial shifts. This result and the others in this section are from Claudia
Neuhauser’s (1990) thesis. We conjecture that Theorem 2A holds without the
assumption of translation invariance but that assumption is often difficult to
remove. Note that Harris proved Theorem 1B for translation invariant initial
distributions in 1974 but the general case was settled 15 years later.

Restricting our attention now to the special case f; = B2 > f.(Z?), we have

Theorem 2B. In dimensions d < 2, for any initial configuration, we have P (£;(x) =
1,&(y) =2) — 0 for all x,y € Z¢, so all stationary distributions are trivial.
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Theorem 2C. In dimensions d > 3, there is a one parameter family of stationary
distributions vy, 0 € [0, 1], and all translation invariant stationary distributions are
convex combinations of the vg.

As in the voter model, (see Liggett (1985) Chapter V or Durrett (1988)
Chapter 2), the dichotomy between the behavior in d < 2 and d > 3 comes
from the fact that random walks are recurrent in the first case and transient in
the second. The stationary distributions are constructed by starting the system
from an initial product measure in which 1’s have density 6 and 2’s have density
1—4, ie., &(x) are independent and take values 1 and 2 with probabilities § and
1 — 6. The reader should note that while the basic contact process has a single
nontrivial stationary distribution, the two color version has a one parameter
family in d > 3.

3. Successional Dynamics

In this model we again have ¢ : Z¢ — {0,1,2} but this time we think of 0
as vacant and 1 and 2 as occupied by a bush or tree respectively. With this
interpretation in mind the dynamics are formulated as follows:

(i) Particles of type i die at rate one, give birth at rate f;.

(ii) A particle born at x is sent to a y chosen at random from {y : |x—y|l; < M},
where M is an integer.

(iii) If &(y) > &;(x) then the birth is suppressed.

In words, trees can give birth onto sites occupied by bushes but not conversely.
In biological terms the two species are part of a successional sequence. When
only one type of particle is present, the system reduces, as in the last example, to
a contact process so if f1, 2 > B, then there are three trivial equilibria: o, ui,
and up, where p; is the limit starting from &,(x) = i.

Again, the main question to be answered is: “Are there nontrivial stationary
distributions?” or more briefly “Is coexistence possible?” Our first answer is

Theorem 3A. If d = 1 and M = 1 then for any initial configuration we have
P (x)=1,¢,(y)=2) > 0as t— oo for all x,y € Z so there is no coexistence.

This result can be proved by drawing a picture of a “typical” realization of
the process starting with a single 2

0010102022020002101001

and checking that since M = 1 there can never be a 1 between the leftmost and
rightmost 2’s. If the 2’s do not die out, then the ends of the interval of 2’s go
to —oo and oo respectively (see Durrett (1980)) and the 1’s get crowded out. In
general either (a) all the 2’s die out, or (b) some 2 starts an interval that grows
forever. In either case P(&:(x) = 1,&(y) =2) » 0 as t — co.

We believe that coexistence is possible in all other cases
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Conjecture 3A. If d > 1 or M > 1 then coexistence is possible when o = B, + &
and P, is large.

The main trouble with proving this conjecture is that coexistence can only
occur near the critical value, It is not hard to show that if i > f(d, M) then
there is no coexistence for any fi; < oco. Somewhat surprisingly, this problem
which is difficult to solve when d = 1 and M =2, ord = 2 and M = 1 turns
out to be more tractable when M is large. In addition to proving Theorem 3A,
Durrett and Swindle (1990) have shown

Theorem 3B. If 1 > p% > 1 then coexistence occurs for large M.

To explain the last conclusion we need to introduce the long range contact
process, a modification of the basic contact process in which (ii) is changed to:

(ii) A particle born at x is sent to a y chosen at random from {y : |[x—y|; < M}.

If we write f.(M) to indicate the dependence of the critical value on M and use
¢l 1o denote the limit starting from all 1’s then we have

Theorem 3C. As M — oo, f.(M) — 1. Furthermore, if B > 1 then EL converges
weakly to a product measure with density (f —1)/8.

This result (for the neighborhood {y : |[x — y]wo < M}) was proved by
Bramson, Durrett, and Swindle (1989) who identified the rate at which f.(M)
approached 1. A simpler and more general proof, which does not give the right
rate, can be found in Durrett (1989).

To explain the condition in Theorem 3B, observe that 7, = {x : &(x) = 2}
is a long range contact process, so if M is large and we are in equilibrium, #,
is approximately a product measure with density (f2 — 1)/f2. If the 2’s were
exactly that product measure, a 1 would die at rate 1 4 E%;l B, (the second term
representing births onto the site by 2’s) and give birth at rate /2 (the site must
not be occupied by a 2 for a successful birth to occur). So for coexistence to
occur we need 1+ ,!_3%1 B2 < B1/B2 or By > ﬁ%. The careful reader will have noted
that we have just argued the condition is necessary while Theorem 3B proves it
is sufficient. Having faith in the heurisitc argument we make

Conjecture 3B. If §; < f? then there is no coexistence for large M.

Remark. The heuristic argument generalizes easily to show that if the two particles
die at different rates then we need

) 2]
B2 B2
and the proof of Theorem 3B generalizes to show that this condition is sufficient.

It is natural to generalize the multitype contact process in this way but we do
not know how to prove any results in that generality. The naive guess is that

61 + B2 > B
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B1/d1 > Ba/d, is right hypothesis for Theorem 2A. We believe this is correct but
have no idea how to prove it.

Having discussed the existence of nontrivial stationary distributions, we turn
to the question of uniqueness. Durrett and Meller (1991) have proved a “complete
convergence theorem.” To state their result let dp, 3, and up be the trivial
stationary distributions mentioned at the beginning of this section. Let ui; be
the nontrivial stationary distribution constructed in Theorem 3B. Let #, = {x :
&(x) =1}, = {x : &(x) = 2}, v = inf{t : n, = 0}, and 7, = inf{t : {, = 0}.

Theorem 3C. If 1 > p2 > 1 and M is large then

& = P(t1 < 00,73 < 00)dg + Pt = 00,73 < 00) Uiy
+ P (71 < 00,72 = 00) iz + P (71 = 00,73 = 00) piy2.

In words if the 1’s and/or 2’s die out we end up with a trivial stationary
distribution in which one or zero types of particles are present. If both the 1’s and
2’s survive and ¢ is large, the system looks like uj, so that is the only nontrivial
stationary distribution. The value of M required for Theorem 3C is larger than
that for Theorem 3B which is enormous. With more work this difference might
be eliminated but the interesting problem is to show

Conjecture 3C. The complete convergence theorem holds whenever coexistence oc-
CUrs.

4. An Epidemic Model

Our fourth system is a process & : Z? — {0, 1,2} that has been used to model the
spread of epidemics and forest fires. In the epidemic interpretation 0 = healthy,
1 = infected, 2 = removed = immune or dead. In the forest fire interpretation,
0 = alive, 1 = on fire, and 2 = burnt. With these interpretations in mind, we
formulate the dynamics as follows:

(i) A burning tree sends out sparks at rate f.

(ii) A spark emitted from x flies to one of the four nearest neighbors {y :
ly—xl|l1 = 1} chosen at random. If the spark hits a live tree, the tree catches
fire and begins immediately to emit sparks.

(iii) A tree remains on fire for an exponential amount of time with mean 1 then
becomes burnt.

(iv) Burnt trees come back to life at rate a.

At first glance, the spontaneous re-appearance of trees may not seem rea-
sonable. In the epidemic interpretation this is quite natural, however. Consider a
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disease like measles that upon recovery confers lifetime immunity. New suscepti-
bles are born and immune individuals die. We combine the two transitions into
the one in (iv) to keep a constant population size.

When o = oo, sites change instantaneously from 2 to 0 and the result is the
contact process. At the other extreme, « = 0, is the so-called “spatial epidemic
with removal” in which regrowth is impossible. We begin by considering the
behavior of our processes starting with a single burning tree at the origin in
the midst of an otherwise virgin forest, ie., £(0) = 1, £J(x) = 0 for x s 0. Let
70 = {x : Ex) = 1}, let {0 = {x : &%(x) = 2}, and define a critical value by

Be(®) = inf{B : P(¢} # 0 for all £) > 0}.
Cox and Durrett (1988) considered the case o = 0 and showed

Theorem 4A. If B > B.(0) then there is a nonrandom convex set D so that on
{n: # O for all 1} we have {? =~ (% NtG, and n? = tdG. To be precise, for any ¢ > 0
the following inequalities hold for large t

N1 —et6 ct®c(1+etG
n? c (14etG—(1—e)tG.

In words, this result says that the fire expands linearly and has an asymptotic
shape. The statement is made contorted by the fact that the set of trees that will
ever burn, {2, is not all of Z“. Thus what we prove is that when ¢ is large, {0 is
contained in (1 +¢)tG and (if nonempty) contains all the points of {2 in (1 —eg)tG.

When o = 0 the system cannot have a nontrivial stationary distribution but
Durrett and Neuhauser (1991) have shown

Theorem 4B. If > B.(0) and o > O then there is a nontrivial stationary distribu-
tion, i.e., one that assigns no mass to “all healthy” state.

The last result illustrates some of the frustrations in “applied probability.”
The proof is intricate and required several months to put down on paper, but
we have been repeatedly told by physicists and biologists that the conclusion is
obvious. In view of our difficulties in proving existence the reader should not be
surprised to learn that we have little to say about uniqueness.

Conjecture 4C. If f > f.(x) then there is a unique nontrivial stationary distribution.
In the first three examples we have had varying degrees of success in identi-

fying the set of stationary distributions. In each of those cases however there is
a useful “duality equation” and we have not been able to find one here.
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